Math 4500 HW #01 Solutions

Instructor: Birgit Speh
TA: Guanyu Li

This solution set is not error-free. Please email me (gl479@cornell.edu) if you spot any errors or typos!
Problem 1 (Exercise 1.2.4 (5 pts)). Deduce, from the distributive law and multiplicative absolute value, that
|luv — vw| = |ullv — w|.

Explain why this says that multiplication of the whole plane of complex numbers by u multiplies all distances by
|l

Solution.
luv — ww| = |u(v — w)| = |u||v — w|.?

Suppose v, w are two points in the complex plane, then |v — w| represents the distance between two points and
|uv — uw| represents the distance between points after the transformation that multiplying the whole plane by
u.P?l The equation means that the distance changes with a parameter |u|.[! O

Problem 2 (Exercise 1.2.5 (5 pts)). Deduce from Exercise 1.2.4 that multiplication of the whole plane of complex
numbers by cos 6 4 isin § leaves all distances unchanged.

Solution. Denote u = cos 4 isin 6 then |u| = cos? 8 +sin? # = 1.[2) Suppose v, w are two points in the complex

plane, then by previous exercise |uv — uw| = |u||v — w| = |v — w|,!) where |[v — w| represents the distance
between previous points and |uv — uw| means the distance between the new points. Hence the transformation
leaves all distances unchanged.!?! O

Problem 3 (Exercise 1.3.6 (10 pts)). Show that the multiplicative property of determinants gives the real four-
square identity

(a1 + b3 4 & + di)(a3 + b3 + ¢3 + d3) = (a1az — biby — c1¢2 — dida)? + (arby + biag + crdy — dycz)”
+ (a1c2 — bido + cra2 + d152)2 + (a1da + breg — c1ba + d1a2)2

. (a1 + Zd1 7()1 - iCl (a2 + ng 7b2 — iCQ
Solution. Let o := (b1 —ier ay —idy ) and 3 := (b2 ey ay —idy

). Then the determinants gives
lal|B] = |ag],P!
where the left hand side is just
(a2 + b2 4¢3 + d?)(a3 + b3 + 3 + d3).1?
On the other hand, the right hand side is
_ a1 + Zd1 7b1 — iCl as + ’LdQ 71)2 — ng
|Oéﬁ| _det(<b1 72161 aq 7Z.d1 ) (bQiCQ agflldg ))
— dot (a1 +idy)(ag +idz) 4 (=by —ic1)(ba —ic2) (a4 idy)(—ba —ic2) 4 (—by —ic1)(az — ids)
(a1 + ’Ldl)(bl — iCl) + (a1 — Zdl)(bz — iCQ) (—bg — iCQ)(bl — iCl) + (a1 — idl)((lg — ng)

— det (ala? —ayds — b1bg — 0102) + Z'(a2dl + aydy + coby — Clb2) —(albg + bias + c1ds — dlcg) — i(a102 — b
—(a1b2 + brag + c1dy — dlcg) + i(alcg —byds + cra9 + dlbg) (a1a2 — aydg — biby — 6162) + i(agdl + aq¢



Problem 4 (Exercise 1.4.4 (10 pts)). Also deduce the Jacobi identity for the cross product:
ux (vxw)+wx (uxv)+ovx(wxu)=0.

The antisymmetric and Jacobi properties show that the cross product is not completely lawless. These properties
define what we later call a Lie algebra.

Solution. We first verify the identity
ux (vxw)=(w- -uwv—(u-v)w.
Suppose that © = u1i+ usj + usk, v = v1i + voj + v3k and w = wyi 4+ wsj + wsk. By definition, we have

ux (vxw)=uX ((vaws — v3wsz)i+ (v3wy — Viws)j + (Viws — vowr )K)

(ug(v1we — vown) — uz(vswy — viws))i
+ (u3(vows — vzwa) — uy (Viwe — vaw1))j
+ (ug(v3wy — viws) — us(vaws — vaws))k
= ((ugwg + uzws)vy — (ugvy + uzvs)wy )i

+ ((usws + urwy)ve — (ugvs + uvy)ws)j

+ ((urwy + ugws)vs — (uv1 + ugv2)ws )k
= ((ugwy + ugws + uzws)vy — (uv1 + ugve + uzvs)wy)i
+ ((ugw2 + uzws + uywy vy — (ugv2 + uzvs + u1v1)wa)j
+ ((usws + wywy + ugwa)vg — (uzvs + u1v1 + ugvz)ws )k

= (w-u)v— (u-v)w.l

Back to the problem,

ux (vxw)+wx (uxv)+ovx(wxu)
= ((w-w)v = (u-v)w) + ((v- wu = (w- w)v) + ((u-v)w = (v-wu)
= 0.3

O

Remark. If your find Fxercise 1.5.5 and 1.5.6 hard to guess/prove the answer, go to do Exercise 1.5.1-1.5.4. The
2-dimensional case would tell you everything.

Problem 5 (Exercise 1.5.5 (20 pts)). Adapt the argument of Exercise 1.5.3 to great circles &, .#,.# shown in
the picture. What is the conclusion?

Solution. Literally there are two conclusions: (i) any rotation can be decomposed as a composition of two re-
flections, and the composition of two reflections is a rotation; (ii) two rotations make a rotation (or all rotations
form a group with the multiplication being the composition of maps).m

Suppose 4 is a rotation about a line [ through the origin. Let INS? = {P, Q}, and let .# be an ARBITRARY
great circle through P and Q. Also we use .# to denote the plane through the line [. Let £ be another great
circle through P and @ s.t. the angle between .# and .4 is 6/2 where 6 is the rotation angle. Let  be an
arbitrary point, and let 2’ be the point of z reflected by the great circle %, and let 2’ be the point of z’
reflected by the great circle .#. Then ZzPz" =24 =0, and [2P| = |2”P|. Hence A can be decomposed as the
composition of reflections, by the great circle .# and by the great circle .# respectively. The same argument
proves that the composition of two reflections is a rotation.%

Suppose A1, Ay are two given rotations, and P, Q) are points fixed by A;, As respectively. As shown in the
picture, denote the great circle through points P, Q as .#. Let £, .4 are the great circles s.t. the angle from



Figure 1: Reflection in great circles on the sphere

L to M is % and the angle from .# to .4 is ¥, where 6, ¢ are the angle of the rotations. By abuse of notation,
we also denote the reflection by great circles &, 4, AV as £, . # ,./ . Hence by the first conclusion,

A= Mol Ao =N o.H.

Therefore
Aso Ay =N oMot oL =N,

which implies A5 o A; is again a rotation.!”! O

Problem 6 (Exercise 1.5.6 (5 pts)). Explain why there is no exceptional case analogous to Exercise 1.5.4. Deduce
that the product of any two rotations of R? about O is another rotation, and explain how to find the axis of the
product rotation.

Solution. Suppose we have three planes &, .#, ./ in the space going through the origin, then any two of them
(w.l.o.g. assume they are .Z and .#) intersect, so their intersection is a line denoted by [. Suppose [ intersects
the unit sphere at a point R, then R is an intersection point of the great circles which are the intersections
ZN82 and # N S?, where S? denotes the sphere.!”! O

Remark. Generally it is not OK to use some statement that you cannot prove. It is a truth that on a sphere there
cannot be parallel geodesics. But it requires a lot to define what is a geodesic and to actually prove the proposition.
So if you want to use some fancy things in the homework, explicitly write down everything, every definition and
every proof.

Problem 7 (Exercise 2.1.3 (0 pts)). Other than the trivial group {1}, what is the smalest subgroup of SO(2)?

Solution. There are two kinds of elements in SO(2). Some z € SO(2) satisfy the property that there exists
some m € Z s.t. 2™ = 1 while some are not. Those elements with this property are called of finite order. To
form a subgroup, if z € H, we must have 2" € H for any n € Z. Thus, if z is of infinite order, H must be a
infinite subgroup. (Actually in this case Z is a subgroup of H.) There are finite subgroups of SO(2), hence H
cannot contain element of infinite order. To make the subgroup smallest, we find that {—1,1} is a nontrivial
subgroup and there does not exist nontrivial subgroup whose cardinality is strictly smaller than 2. O

Problem 8 (Exercise 2.1.5 (0 pts)). Show that the union R of all the finite subgroups of SO(2) is also a subgroup
(the group of "rational rotations”).



Solution. Suppose
R=Jz/nz

n=1
is the group of rational rotations. It suffices to prove that the multiplication is closed. For any z,w € R,
we have 2" = 1 and w™ = 1 for some n,m € Z. Notice SO(2) is an abelian group so that (zw)lm(mm) =
Zhemn,m)gylem(nm) — 1 - which means zw is also an element in R. O

Problem 9 (Exercise 2.1.6 (0 pts)). If z is a complex number not in the rational rotation group R described in

Exercise 2.1.5, show that all the numbers ---, 272,271 1, 2,22, .-+ are distinct, and that they form a subgroup of

S0(2).

m—n

Solution. Suppose z"" = z" for some n,m € Z, then z = 1. But z is not in the rational rotation group,
m —n must be 0. It suffices to verify the associativity, but it comes from the multiplicative associativity of
complex numbers. O



