
Math 4500 HW #01 Solutions

Instructor: Birgit Speh
TA: Guanyu Li

This solution set is not error-free. Please email me (gl479@cornell.edu) if you spot any errors or typos!

Problem 1 (Exercise 1.2.4 (5 pts)). Deduce, from the distributive law and multiplicative absolute value, that

|uv − uw| = |u||v − w|.

Explain why this says that multiplication of the whole plane of complex numbers by u multiplies all distances by
|u|.

Solution.

|uv − uw| = |u(v − w)| = |u||v − w|.[2]

Suppose v, w are two points in the complex plane, then |v−w| represents the distance between two points and
|uv− uw| represents the distance between points after the transformation that multiplying the whole plane by
u.[2] The equation means that the distance changes with a parameter |u|.[1]

Problem 2 (Exercise 1.2.5 (5 pts)). Deduce from Exercise 1.2.4 that multiplication of the whole plane of complex
numbers by cos θ + i sin θ leaves all distances unchanged.

Solution. Denote u = cos θ+ i sin θ then |u| = cos2 θ+ sin2 θ = 1.[2] Suppose v, w are two points in the complex
plane, then by previous exercise |uv − uw| = |u||v − w| = |v − w|,[1] where |v − w| represents the distance
between previous points and |uv − uw| means the distance between the new points. Hence the transformation
leaves all distances unchanged.[2]

Problem 3 (Exercise 1.3.6 (10 pts)). Show that the multiplicative property of determinants gives the real four-
square identity

(a21 + b21 + c21 + d21)(a22 + b22 + c22 + d22) = (a1a2 − b1b2 − c1c2 − d1d2)2 + (a1b2 + b1a2 + c1d2 − d1c2)2

+ (a1c2 − b1d2 + c1a2 + d1b2)2 + (a1d2 + b1c2 − c1b2 + d1a2)2

Solution. Let α :=

(
a1 + id1 −b1 − ic1
b1 − ic1 a1 − id1

)
and β :=

(
a2 + id2 −b2 − ic2
b2 − ic2 a2 − id2

)
. Then the determinants gives

|α||β| = |αβ|,[3]

where the left hand side is just

(a21 + b21 + c21 + d21)(a22 + b22 + c22 + d22).[2]

On the other hand, the right hand side is

|αβ| = det

((
a1 + id1 −b1 − ic1
b1 − ic1 a1 − id1

)(
a2 + id2 −b2 − ic2
b2 − ic2 a2 − id2

))
= det

(
(a1 + id1)(a2 + id2) + (−b1 − ic1)(b2 − ic2) (a1 + id1)(−b2 − ic2) + (−b1 − ic1)(a2 − id2)
(a1 + id1)(b1 − ic1) + (a1 − id1)(b2 − ic2) (−b2 − ic2)(b1 − ic1) + (a1 − id1)(a2 − id2)

)
= det

(
(a1a2 − a1d2 − b1b2 − c1c2) + i(a2d1 + a1d2 + c2b1 − c1b2) −(a1b2 + b1a2 + c1d2 − d1c2)− i(a1c2 − b1d2 + c1a2 + d1b2)
−(a1b2 + b1a2 + c1d2 − d1c2) + i(a1c2 − b1d2 + c1a2 + d1b2) (a1a2 − a1d2 − b1b2 − c1c2) + i(a2d1 + a1d2 + c2b1 − c1b2)

)
= RHS.[5]
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Problem 4 (Exercise 1.4.4 (10 pts)). Also deduce the Jacobi identity for the cross product:

u× (v × w) + w × (u× v) + v × (w × u) = 0.

The antisymmetric and Jacobi properties show that the cross product is not completely lawless. These properties
define what we later call a Lie algebra.

Solution. We first verify the identity

u× (v × w) = (w · u)v − (u · v)w.

Suppose that u = u1i + u2j + u3k, v = v1i + v2j + v3k and w = w1i + w2j + w3k. By definition, we have

u× (v × w) = u× ((v2w3 − v3w2)i + (v3w1 − v1w3)j + (v1w2 − v2w1)k)

= (u2(v1w2 − v2w1)− u3(v3w1 − v1w3))i

+ (u3(v2w3 − v3w2)− u1(v1w2 − v2w1))j

+ (u1(v3w1 − v1w3)− u2(v2w3 − v3w2))k

= ((u2w2 + u3w3)v1 − (u2v2 + u3v3)w1)i

+ ((u3w3 + u1w1)v2 − (u3v3 + u1v1)w2)j

+ ((u1w1 + u2w2)v3 − (u1v1 + u2v2)w3)k

= ((u1w1 + u2w2 + u3w3)v1 − (u1v1 + u2v2 + u3v3)w1)i

+ ((u2w2 + u3w3 + u1w1)v2 − (u2v2 + u3v3 + u1v1)w2)j

+ ((u3w3 + u1w1 + u2w2)v3 − (u3v3 + u1v1 + u2v2)w3)k

= (w · u)v − (u · v)w.[7]

Back to the problem,

u× (v × w) + w × (u× v) + v × (w × u)

= ((w · u)v − (u · v)w) + ((v · w)u− (w · u)v) + ((u · v)w − (v · w)u)

= 0.[3]

Remark. If your find Exercise 1.5.5 and 1.5.6 hard to guess/prove the answer, go to do Exercise 1.5.1-1.5.4. The
2-dimensional case would tell you everything.

Problem 5 (Exercise 1.5.5 (20 pts)). Adapt the argument of Exercise 1.5.3 to great circles L ,M ,N shown in
the picture. What is the conclusion?

Solution. Literally there are two conclusions: (i) any rotation can be decomposed as a composition of two re-
flections, and the composition of two reflections is a rotation; (ii) two rotations make a rotation (or all rotations
form a group with the multiplication being the composition of maps).[5]

Suppose A is a rotation about a line l through the origin. Let l∩S2 = {P,Q}, and let M be an ARBITRARY
great circle through P and Q. Also we use M to denote the plane through the line l. Let L be another great
circle through P and Q s.t. the angle between M and N is θ/2 where θ is the rotation angle. Let x be an
arbitrary point, and let x′ be the point of x reflected by the great circle L , and let x′′ be the point of x′

reflected by the great circle M . Then ∠xPx′′ = 2 θ2 = θ, and |xP | = |x′′P |. Hence A can be decomposed as the
composition of reflections, by the great circle M and by the great circle M respectively. The same argument
proves that the composition of two reflections is a rotation.[10]

Suppose A1, A2 are two given rotations, and P,Q are points fixed by A1, A2 respectively. As shown in the
picture, denote the great circle through points P,Q as M . Let L ,N are the great circles s.t. the angle from

2



Figure 1: Reflection in great circles on the sphere

L to M is θ
2 and the angle from M to N is ϕ

2 , where θ, ϕ are the angle of the rotations. By abuse of notation,
we also denote the reflection by great circles L ,M ,N as L ,M ,N . Hence by the first conclusion,

A1 = M ◦L , A2 = N ◦M .

Therefore
A2 ◦A1 = N ◦M ◦M ◦L = N ◦L ,

which implies A2 ◦A1 is again a rotation.[5]

Problem 6 (Exercise 1.5.6 (5 pts)). Explain why there is no exceptional case analogous to Exercise 1.5.4. Deduce
that the product of any two rotations of R3 about O is another rotation, and explain how to find the axis of the
product rotation.

Solution. Suppose we have three planes L ,M ,N in the space going through the origin, then any two of them
(w.l.o.g. assume they are L and M ) intersect, so their intersection is a line denoted by l. Suppose l intersects
the unit sphere at a point R, then R is an intersection point of the great circles which are the intersections
L ∩ S2 and M ∩ S2, where S2 denotes the sphere.[5]

Remark. Generally it is not OK to use some statement that you cannot prove. It is a truth that on a sphere there
cannot be parallel geodesics. But it requires a lot to define what is a geodesic and to actually prove the proposition.
So if you want to use some fancy things in the homework, explicitly write down everything, every definition and
every proof.

Problem 7 (Exercise 2.1.3 (0 pts)). Other than the trivial group {1}, what is the smalest subgroup of SO(2)?

Solution. There are two kinds of elements in SO(2). Some z ∈ SO(2) satisfy the property that there exists
some m ∈ Z s.t. zm = 1 while some are not. Those elements with this property are called of finite order. To
form a subgroup, if z ∈ H, we must have zn ∈ H for any n ∈ Z. Thus, if z is of infinite order, H must be a
infinite subgroup. (Actually in this case Z is a subgroup of H.) There are finite subgroups of SO(2), hence H
cannot contain element of infinite order. To make the subgroup smallest, we find that {−1, 1} is a nontrivial
subgroup and there does not exist nontrivial subgroup whose cardinality is strictly smaller than 2.

Problem 8 (Exercise 2.1.5 (0 pts)). Show that the union R of all the finite subgroups of SO(2) is also a subgroup
(the group of ”rational rotations”).
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Solution. Suppose

R =

∞⋃
n=1

Z/nZ

is the group of rational rotations. It suffices to prove that the multiplication is closed. For any z, w ∈ R,
we have zn = 1 and wm = 1 for some n,m ∈ Z. Notice SO(2) is an abelian group so that (zw)lcm(n,m) =
zlcm(n,m)wlcm(n,m) = 1, which means zw is also an element in R.

Problem 9 (Exercise 2.1.6 (0 pts)). If z is a complex number not in the rational rotation group R described in
Exercise 2.1.5, show that all the numbers · · · , z−2, z−1, 1, z, z2, · · · are distinct, and that they form a subgroup of
SO(2).

Solution. Suppose zm = zn for some n,m ∈ Z, then zm−n = 1. But z is not in the rational rotation group,
m − n must be 0. It suffices to verify the associativity, but it comes from the multiplicative associativity of
complex numbers.
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