
Math 4500 HW #01 Solutions

Instructor: Birgit Speh
TA: Guanyu Li

This solution set is not error-free. Please email me (gl479@cornell.edu) if you spot any errors or typos!

Problem 1 (Exercise 2.1.4 (12 pts)). Show that there exists exactly one n-element subgroup of SO(2), for each
natural number n, and list its members.

Solution. Existence is clear, since K =

{(
cos 2π

n sin 2π
n

− sin 2π
n cos 2π

n

)
, · · · ,

(
cos 2πn

n sin 2πn
n

− sin 2πn
n cos 2πn

n

)}
= {e 2πi

n , · · · , e 2πin
n }

is a subgroup of SO(2) consisting of exactly n element.[3]

To see the uniqueness, we first prove that for any g in a finite group G, g|G| = 1. Consider the subgroup
H = 〈g〉 generated by a single element g, if g1H and g2H are two cosets of H whose intersection is not empty,
then there is an x ∈ G s.t. x = g1h1 = g2h2 for some h1, h2 ∈ H, implying g1 = g2h2h

−1
1 . Thus for any

g1h ∈ g1H, g1h = g2h2h
−1
1 h ∈ g2H. This tells us g1H ⊆ g2H. Similarly, g2H ⊆ g1H. Hence G can be

partitioned as disjoint union of cosets of H. Hence |H| | |G|. Therefore g|G| = gk|〈g〉| = (g|〈g〉|)k for some
integer k. It then suffices to prove g|〈g〉| = 1. Suppose |〈g〉| = t then 〈g〉 = {g0, · · · , gt−1} where the elements
are all distinct. If gt 6= 1, one knows gt = gi for some 1 ≤ i ≤ t− 1. Thus gt−i = 1, which leads a contradiction
since g0, · · · , gt−1 are all distinct.[6]

Thus, if H is a subgroup of SO(2), then by previous conclusion, every element z ∈ H satisfies zn = 1.

Therefore z = e
2πik
n for some integer k, which means H is a subset of K. But |H| = |K| = n, implying H = K

as sets. Both multiplication of the two group comes from SO(2), hence H = K as subgroups.[3]

Problem 2 (Exercise 2.2.4 (5 pts)). Show that {±1} is a normal subgroup of S3.

Solution. It suffices to prove for any u ∈ S3, u−1(−1)u ∈ {±1}. But

u−1(−1)u = (−1)u−1u = −1,

hence {±1} is a normal subgroup of S3.

Problem 3 (Exercise 2.2.5 (5 pts)). Show that S1 is not a normal subgroup of S3.

Solution. It suffices to find an element z in S1, s.t. qzq−1 /∈ S1 for some q ∈ S3. Let z = i ∈ S1, and let
q = 1+j√

2
. Then q−1 = 1−j√

2
. Hence

qzq−1 =
1 + j√

2
i
1− j√

2
=
i− k√

2

1− j√
2

=
i− k − k − i

2
= −k /∈ S1.

Problem 4 (Exercise 2.4.4 (10 pts)). Show that reflection in the hyperplane orthogonal to a coordinate axis has
determinant -1, and generalize this result to any reflection.

Solution. W.l.o.g., we first assume that the reflection is about the hyperplane x1x2 · · ·Oxn−1, and assume we
have the standard basis {ei}i=1,··· ,n. Denote the reflection as rn, then the reflection about the hyperplane has
the matrix

R =


1

1
. . .

1
−1

 .
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Since the determinant is independent of the choice of orthonormal basis, we know det(rn) = −1.[5]

Consider reflecting about an arbitrary plane W in the space, suppose it passes through the origin. Then we
can find an orthonormal basis of this plane W , say {η1, · · · , ηn−1}. Suppose ηn is a unit vector perpendicular
to the space W and suppose {η1, · · · , ηn} form an orthonormal basis for the space. We assume that

ηj =

n∑
i=1

ai,jei,

i.e.
(η1, · · · , ηn) = (e1, · · · , en)A.

Thus the matrix of reflection rn under the basis {η1, · · · , ηn} is ATRA, hence the determinant is

det(ATRA) = det(AT ) det(R) det(A) = −1

since det(AT ) = det(A) = 1.[5]

Problem 5 (Exercise 2.6.3 (15 pts)). Observe that the rotations in Exercise 2.6.1 form an S1, as do the rotations
in Exercise 2.6.2, and deduce that SO(4) contains a subgroup isomorphic to T 2.

Solution. We construct the map to show they are isomorphic. Let

$ : S1 × S1 → SO(4)

((
cos 2πθ

n sin 2πθ
n

− sin 2πθ
n cos 2πθ

n

)
,

(
cos 2πφ

n sin 2πφ
n

− sin 2πφ
n cos 2πφ

n

))
7→


cos 2πθ

n sin 2πθ
n

− sin 2πθ
n cos 2πθ

n

cos 2πφ
n sin 2πφ

n

− sin 2πφ
n cos 2πφ

n

 .[5]

Suppose

((
cos 2πθ1

n sin 2πθ1
n

− sin 2πθ1
n cos 2πθ1

n

)
,

(
cos 2πφ1

n sin 2πφ1

n

− sin 2πφ1

n cos 2πφ1

n

))
and

((
cos 2πθ2

n sin 2πθ2
n

− sin 2πθ2
n cos 2πθ2

n

)
,

(
cos 2πφ2

n sin 2πφ2

n

− sin 2πφ2

n cos 2πφ2

n

))
are two elements in S1 × S1, then

$

(((
cos 2πθ1

n sin 2πθ1
n

− sin 2πθ1
n cos 2πθ1

n

)
,

(
cos 2πφ1

n sin 2πφ1

n

− sin 2πφ1

n cos 2πφ1

n

))((
cos 2πθ2

n sin 2πθ2
n

− sin 2πθ2
n cos 2πθ2

n

)
,

(
cos 2πφ2

n sin 2πφ2

n

− sin 2πφ2

n cos 2πφ2

n

)))
=$

(((
cos 2πθ1

n sin 2πθ1
n

− sin 2πθ1
n cos 2πθ1

n

)(
cos 2πθ2

n sin 2πθ2
n

− sin 2πθ2
n cos 2πθ2

n

)
,

(
cos 2πφ1

n sin 2πφ1

n

− sin 2πφ1

n cos 2πφ1

n

)(
cos 2πφ2

n sin 2πφ2

n

− sin 2πφ2

n cos 2πφ2

n

)))
=$

(((
cos 2π(θ1+θ2)

n sin 2π(θ1+θ2)
n

− sin 2π(θ1+θ2)
n cos 2π(θ1+θ2)

n

)
,

(
cos 2π(φ1+φ2)

n sin 2π(φ1+φ2)
n

− sin 2π(φ1+φ2)
n cos 2π(φ1+φ2)

n

)))

=


cos 2π(θ1+θ2)

n sin 2π(θ1+θ2)
n

− sin 2π(θ1+θ2)
n cos 2π(θ1+θ2)

n

cos 2π(φ1+φ2)
n sin 2π(φ1+φ2)

n

− sin 2π(φ1+φ2)
n cos 2π(φ1+φ2)

n

 ,

and

$

((
cos 2πθ1

n sin 2πθ1
n

− sin 2πθ1
n cos 2πθ1

n

)
,

(
cos 2πφ1

n sin 2πφ1

n

− sin 2πφ1

n cos 2πφ1

n

))
$

((
cos 2πθ2

n sin 2πθ2
n

− sin 2πθ2
n cos 2πθ2

n

)
,

(
cos 2πφ2

n sin 2πφ2

n

− sin 2πφ2

n cos 2πφ2

n

))

=


cos 2πθ1

n sin 2πθ1
n

− sin 2πθ1
n cos 2πθ1

n

cos 2πφ1

n sin 2πφ1

n

− sin 2πφ1

n cos 2πφ1

n




cos 2πθ2
n sin 2πθ2

n

− sin 2πθ2
n cos 2πθ2

n

cos 2πφ2

n sin 2πφ2

n

− sin 2πφ2

n cos 2πφ2

n



=


cos 2π(θ1+θ2)

n sin 2π(θ1+θ2)
n

− sin 2π(θ1+θ2)
n cos 2π(θ1+θ2)

n

cos 2π(φ1+φ2)
n sin 2π(φ1+φ2)

n

− sin 2π(φ1+φ2)
n cos 2π(φ1+φ2)

n

 .
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Hence $ is a group homomorphism.[5]

Suppose T 2 be the image of $, it suffices to prove $ is injective then T 2 is the subgroup contained in
SO(4). And it suffices to prove the kernel is trivial. Clearly, if

$

((
cos 2πθ

n sin 2πθ
n

− sin 2πθ
n cos 2πθ

n

)
,

(
cos 2πφ

n sin 2πφ
n

− sin 2πφ
n cos 2πφ

n

))
=


1

1
1

1

 ,

then we must have θ, φ = k for some integer k. Thus

((
cos 2πθ

n sin 2πθ
n

− sin 2πθ
n cos 2πθ

n

)
,

(
cos 2πφ

n sin 2πφ
n

− sin 2πφ
n cos 2πφ

n

))
is the

identity in S1 × S1.[5]

Problem 6 (Exercise 2.6.5 (8 pts)). Explain why S3 = SU(2) is not the same as S1 × S1 × S1.

Solution 1. First we project S3 ⊆ R4 onto the hyperplane perpendicular to z-axis, then the image is S2 ⊆ R3.
On the other hand, S1 × S1 is the torus T 2, we embed it into R3 via

f(x, y, z) = z2 + (
√
x2 + y2 − 1

2
)2 = 1.

Project it onto xOy plane, then we have the region

D := {(x, y) | 1

2
≤ x2 + y2 ≤ 3

2
}.

Therefore, D×S1 should be the projection of S1×S1×S1 ↪→ R4 onto the hyperplane perpendicular to z-axis
at the origin. But we can see there is a ”hole”, which cannot be the case of S2 ⊆ R3. Hence S3 = SU(2) and
S1 × S1 × S1 are different geometrical objects.

Remark. The real intuition of proving these two space are not the same thing comes from topology. Usually it is
extremely hard to say there is no homeomorphism (loosely some prerequisite to be an isomorphism of Lie groups)
between two spaces technically. However, some really smart guys said, well, we could do it in another way. We
could construct some invariant so that the same spaces, or equivalent spaces should have the same invariant, and
if we calculated that two spaces have two different invariant, then they must be different. Here in this situation,
a natural way to say is π1(S3) = 1 while π1(S1 × S1 × S1) = Z3. Also, the intuitive number of holes is also an
invariant, which should be defined as half of the dimension of H1 over R.

Solution 2. We know i, j ∈ S3 and ij 6= ji.
But for any a, b ∈ S1, ab = ba, we know

(a1, a2, a3)(b1, b2, b3) = (a1b1, a2b2, a3b3) = (b1a1, b2a2, b3a3) = (b1, b2, b3)(a1, a2, a3)

for any (a1, a2, a3), (b1, b2, b3) ∈ S1 × S1 × S1. Hence they are different groups.

Problem 7 (Exercise 2.2.3 (0 pts)). Show that the map z 7→ z2 is a well-defined map from G to S1, and that the
map is an isomorphism.

Solution. First we need to verify that the map is well-defined. Suppose we have two representatives +zα and
−zα, then it is clear (+zα)2 = (−zα)2, hence it is well-defined.

Suppose {±zα}, {±zβ} are two elements in G, then

({±zα}{±zβ})2 = ({±zαzβ})2 = z2αz
2
β = ({±zα})2({±zβ})2.

Hence it is a homomorphism.

Problem 8 (Exercise 2.4.2 (0 pts)). Using the fact that u + v is the midpoint of the line joining 2u and 2v, and
Exercise 2.4.2, show that f(u+ v) = f(u) + f(v).
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Solution. Suppose u, v are two vectors, then they are the midpoint of 2u and 2v respectively. Since f preserves
straight lines and midpoints of line segments, the midpoint of 2u and 2v is the midpoint of 2u joining the
midpoint of 2v, which means f(u+ v) = f(u) + f(v).

Problem 9 (Exercise 2.4.3 (0 pts)). Also prove that f(ru) = rf(u) for any real number r.

Solution. First by definition, f(ku) = kf(u) for all integer k. Suppose r ∈ Q s.t. r = a
b , then f(bru) = brf(u)

and f(bru) = bf(ru). Hence f(ru) = rf(u) for any rational number r. Finally, suppose t is an arbitrary real
number then we have a sequence of rational numbers {rn} s.t. rn → t. Therefore f(tu) = f(limn→∞ rnu) =
limn→∞ f(rnu) = limn→∞ rnf(u) = tf(u).
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