Math 4500 HW #03 Solutions

Instructor: Birgit Speh TA: Guanyu Li

This solution set is not error-free. Please email me (gl479@cornell.edu) if you spot any errors or typos!

Problem 1 (Exercise 2.5.4 (5 pts)). By the reflection formula, the product

$$q \mapsto u_4 \bar{u}_3 u_2 \bar{u}_1 q \bar{u}_1 u_2 \bar{u}_3 u_4$$

is a reflection in the hyperplanes orthogonal to u_1, u_2, u_3, u_4 respectively. Check that $u_4\bar{u}_3u_2\bar{u}_1=i$ and $\bar{u}_1u_2\bar{u}_3u_4=1$, so the product of the four reflections is indeed $q \mapsto iq$.

 $\textit{Solution}. \ \ \text{Here we know that} \ u_1=i, u_2=\tfrac{-1+i}{\sqrt{2}}, u_3=k, u_4=\tfrac{-j+k}{\sqrt{2}}, \text{hence} \ \bar{u}_1=-i, \bar{u}_2=\tfrac{-1-i}{\sqrt{2}}, \bar{u}_3=-k, \bar{u}_4=\tfrac{j-k}{\sqrt{2}}, \bar{u}_4=\tfrac{-j+k}{\sqrt{2}}, \bar{u}_4$ Thus

$$u_4\bar{u}_3u_2\bar{u}_1 = \frac{-j+k}{\sqrt{2}}(-k)\frac{-1+i}{\sqrt{2}}i = \frac{1+i}{\sqrt{2}}\frac{-1+i}{\sqrt{2}}i = i$$

and

$$\bar{u}_1 u_2 \bar{u}_3 u_4 = -i \frac{-1+i}{\sqrt{2}} (-k) \frac{-j+k}{\sqrt{2}} = \frac{j+k}{\sqrt{2}} \frac{-j+k}{\sqrt{2}} = 1.$$

П

Problem 2 (Exercise 2.7.1 (5 pts)). Check that $q \mapsto u^{-1}qu$ is an automorphism of \mathbb{H} for any unit quaternion u.

Solution. It suffices to check that $q \mapsto u^{-1}qu$ is an isomorphism from \mathbb{H} to \mathbb{H} .

For any two quaternion q_1, q_2 , we have

$$u^{-1}(q_1q_2)u = u^{-1}(q_1(uu^{-1})q_2)u = (u^{-1}q_1u)(u^{-1}q_2u)$$

and

$$u^{-1}(q_1 + q_2)u = (u^{-1}q_1 + u^{-1}q_2)u = u^{-1}q_1u + u^{-1}q_2u$$

since the multiplication is a homomorphism. These imply that $q \mapsto u^{-1}qu$ is a homomorphism $\mathbb{H} \to \mathbb{H}$. If

$$u^{-1}q_1u = u^{-1}q_2u$$

for two quaternion q_1, q_2 , then by multiplying u and u^{-1} , we know $q_1 = q_2$ and the map is injective. For any $q \in \mathbb{H}$, the map sends uqu^{-1} to q. Hence it is surjective.^[5] The continuity is derived from the fact that matrix multiplication is continuous.

Problem 3 (Exercise 3.1.2 (5 pts)). Give an example of a matrix in O(3) that is not in SO(3), and interpret it geometrically.

Solution. Consider

$$A = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}$$

is an element in O(n). But $\det(A) = -1$, which means $A \notin SO(3)$. Geometrically it is the reflection about the xOyplane.

Problem 4 (Exercise 3.2.1 (10 pts)). Bearing in mind that matrix multiplication is a continuous operation, show that if there are continuous paths in G from I to $A \in G$ and to $B \in G$ then there is a continuous path in G from A to AB.

Solution. Since I and B are path-connected, we have a path

$$\alpha:[0,1]\to G$$

s.t. α is continuous and $\alpha(0) = I$, $\alpha(1) = B$. Since the multiplication of matrix is continuous, we have another path

$$\bar{\alpha}: [0,1] \to G$$

$$t \mapsto A \cdot \alpha(t).$$

Since $\bar{\alpha}(0) = A$ and $\bar{\alpha}(1) = AB$, we know $\bar{\alpha}$ is a path connecting A and AB. Hence A and AB are path-connected.

Remark. Here it is not necessary to know the path-connectedness of I and B. However, the textbook did not give us the definition of path-connectedness, which made a lot of people confused. The formal definition is in a space X, two points x, yare said to be path-connected if there is a continuous map

$$\alpha:[0,1]\to X$$

s.t. $\alpha(0) = x$ and $\alpha(1) = y$.

Problem 5 (Exercise 3.2.2 (5 pts)). Similarly show that if there is a continuous path in G from I to C, then there is also a continuous path from C^{-1} to I.

Solution. By previous exercise, put B=C and $A=C^{-1}$.

Problem 6 (Exercise 2.7.2 (0 pts)). Prove that an automorphism ρ of \mathbb{H} preserves 0 and differences.

Solution. Consider

$$\rho(0) = \rho(0+0) = \rho(0) + \rho(0),$$

thus $\rho(0)=0$. For any two $p,q\in\mathbb{H}$, since ρ is an automorphism, $\rho(p)=\rho(p-q+q)=\rho(p-q)+\rho(q)$, thus it preserves the differences.

Problem 7 (Exercise 2.7.3 (0 pts)). Prove that an automorphism ρ of \mathbb{H} preserves 1 and quotients.

Solution. Similar to 2.7.2.

Problem 8 (Exercise 2.7.4 (0 pts)). Prove that an automorphism ρ of \mathbb{H} is a \mathbb{R} linear map.

Solution. First for any $m, n \in \mathbb{Z}$ s.t. $n \neq 0$, we have

$$\rho(mq) = \rho(q + \dots + q) = \rho(q) + \dots + \rho(q) = m\rho(q)$$

and

$$n\rho\left(\frac{m}{n}q\right) = \rho\left(n\frac{m}{n}q\right) = \rho\left(mq\right) = m\rho(q),$$

therefore $\rho\left(\frac{m}{n}q\right)=\frac{m}{n}\rho(q)$. For any real number r, there exists a sequence of rational numbers $\{r_k\}_{k\in\mathbb{N}}$ s.t. $r_k\to r$ as $k\to\infty$. Hence by the continuity of ρ ,

$$\rho(rq) = \rho\left(\left(\lim_{k \to +\infty} r_k\right)q\right) = \lim_{k \to +\infty} \rho(r_k q) = \lim_{k \to +\infty} r_k \rho(q) = r\rho(q).$$