
Math 4500 HW #05 Solutions

Instructor: Birgit Speh
TA: Guanyu Li

This solution set is not error-free. Please email me (gl479@cornell.edu) if you spot any errors or typos!

Problem 1 (35 pts). Suppose V is a finite dimensional vector space over R (or C), and suppose B is a function
V × V → R (or V × V → C). We say B is a bilinear form if for any u, v, w ∈ V and a ∈ R (or C)

B(u+ v, w) = B(u,w) +B(v, w)

B(u, v + w) = B(u, v) +B(u,w)

B(au, v) = aB(u, v)

B(u, av) = āB(u, v)

hold. We say a linear form B is symmetric if B(u, v) = B(v, u) for all u, v ∈ V , anti-symmetric if B(u, v) = −B(v, u)
for all u, v ∈ V , alternating if B(u, u) = 0 for all u ∈ V .

(i) Suppose B : Rn × Rn → R, defined as B(u,v) = u · v = uvT is a symmetric bilinear form over Rn.

(ii) Suppose H : Cn × Cn → C, defined as H(u,v) = uv̄T is a bilinear form over Cn but not symmetric.

(iii) Suppose ω is an anti-symmetric form defined on R4 as

ω(ei, ej) = 1 if i < j

ω(ei, ei) = 0

for all i, j = 1, · · · , 4. Then define group G := {A ∈ GL4(R) | ω(Ax,Ay) = ω(x, y) for all x, y ∈ R2}. Prove
that G is a group.

(iv) Show that for u,v ∈ R4,
B3,1(u,v) = u1v1 + u2v2 + u3v3 − u4v4

is a symmetric bilinear form. Is B3,1 an inner product? Define

G := {A ∈ GL4(R) | B3,1(Ax,Ay) = B3,1(x, y) for all x, y ∈ R2}.

Prove that G is a group. It is denoted by SO(3, 1) and is called the Lorentz group and it plays an important
role in physics.

Solution. I leave all the verifications in (i) to (iv) for you to check. They should be easy.

(i) B is a bilinear form.[4]. It is symmetric.[2]

(ii) B is a bilinear form.[4]. It is not symmetric simply because H(u, v) = i 6= −i = H(v, u) where
u = (1, 0, · · · , 0) and v = (i, 0, · · · , 0).[3]

(iii) ω is antisymmetric since it is antisymmetric on a basis.[4] The reason why there is a subgroup G ⊆
GL(V ) does not depend on the structure of the bilinear form. As long as there is a bilinear form ω (we do not
have any extra information on the bilinear form), there is a subgroup G of GL(V ) defined by

G := {A ∈ GL(V ) | B(Ax,Ay) = B(x, y) for all x, y ∈ V }.

To verify it is a group, it suffices to prove G is a subgroup of GL(V ). So we need to check that: (a) the identity
matrix I is contained in G, (b) if A,B are elements in G, then so is AB, (c) if A ∈ G, then A−1 ∈ G.
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(a) is clear. For A,B ∈ G, we know that

ω(ABx,ABy) = ω(A(Bx), A(By))

= ω(Bx,By)

= ω(x, y).

For A ∈ G, then

ω(x, y) = ω((AA−1)x, (AA−1)y)

= ω(A(A−1x), A(A−1y))

= ω(A−1x,A−1y).[6]

(iv) As we have mentioned, the reasons why G forms a group are the same as (iii).[3] It is symmetric because

B3,1(u,v) = u1v1 + u2v2 + u3v3 − u4v4 = v1u1 + v2u2 + v3u3 − v4u4 = B3,1(v,u).[6]

B3,1 is not an inner product, because B3,1(e4, e4) = −1 < 0.[3]

Problem 2 (Exercise 4.5.3 (13 pts)). Show, directly from the definition of matrix exponentiation, that

A =

(
−θ

θ

)
implies

eA =

(
cos θ − sin θ
sin θ cos θ

)
.

Solution. We first prove that

An =


(

(−1)
n+1
2 θn

(−1)
n−1
2 θn

)
if n is odd;(

(−1)
n
2 θn

(−1)
n
2 θn

)
otherwise.

.[3]

They are clear for n = 1 and n = 2. Suppose it is true for n. When n is odd, then

An+1 = AnA =

(
(−1)

n+1
2 θn

(−1)
n−1
2 θn

)(
−θ

θ

)
=

(
(−1)

n+1
2 θn+1

(−1)
n+1
2 θn+1

)
,

when n is even, then

An+1 = AnA =

(
(−1)

n
2 θn

(−1)
n
2 θn

)(
−θ

θ

)
=

(
(−1)

n+2
2 θn

(−1)
n
2 θn

)
.

Hence by induction, the conclusion is correct.[5]

Thus, by the definition,

eA = I +A+
A2

2
+ · · ·+ A2n

(2n)!
+

A2n+1

(2n+ 1)!
+ · · ·

=

(
1

1

)
+

(
−θ

θ

)
+ · · ·+

(
(−1)nθ2n

(−1)nθ2n

)
+

(
(−1)n+1θ2n+1

(−1)nθ2n+1

)
+ · · ·

=

( ∑∞
n=1(−1)nθ2n

∑∞
n=1(−1)n+1θ2n+1∑∞

n=1(−1)nθ2n+1
∑∞
n=1(−1)nθ2n

)
=

(
cos θ − sin θ
sin θ cos θ

)
.[5]
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Problem 3 (Exercise 4.5.4 (7 pts)). Suppose D is a diagonal matrix with diagonal entries λ1, λ2, · · · , λk. By
computing the powers Dn show that eD is a diagonal matrix with diagonal entries eλ1 , eλ2 , · · · , eλk .

Solution. We first prove that Dn = diag(λn1 , λ
n
2 , · · · , λnk ). First it is clear when n = 0. Suppose it is true for n,

then

Dn+1 = DnD =


λn1

λn2
. . .

λnk



λ1

λ2
. . .

λk

 =


λn+1
1

λn+1
2

. . .

λn+1
k

 .[4]

Thus by definition,

eD = I +D +
D2

2
+ · · · =


1

1
. . .

1

+


λ1

λ2
. . .

λk

+ · · ·+


λn
1

n!
λn
2

n!
. . .

λn
k

n!

+ · · ·

=


1 + λ1 + · · ·+ λn

1

n! + · · ·
1 + λ2 + · · ·+ λn

2

n! + · · ·
. . .

1 + λk + · · ·+ λn
k

n! + · · ·



=


eλ1

eλ2

. . .

eλk

 .[3]
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