Math 4500 HW #09 Solutions

Instructor: Birgit Speh TA: Guanyu Li

This solution set is not error-free. Please email me (gl479@cornell.edu) if you spot any errors or typos!

Problem 1 (7+15+3=25 pts). Recall the definition of a homomorphism of Lie algebras. We say two abstract Lie algebras are isomorphic if there is a bijective homomorphism $\varphi : \mathfrak{g} \to \mathfrak{h}$.

- 1. Prove that $\mathfrak{sl}_2(\mathbb{C}):=\{A\in M_2(\mathbb{C})\mid \operatorname{Trace} A=0\}$ is a linear Lie algebra with the bracket [A,B]=AB-BA. Also prove that $\mathfrak{sl}_2(\mathbb{C})$ admits a \mathbb{C} -linear basis $X=\begin{pmatrix} 1\\ 1 \end{pmatrix}, Y=\begin{pmatrix} 1\\ 1 \end{pmatrix}$ and $H=\begin{pmatrix} 1\\ -1 \end{pmatrix}$ with [X,Y]=H, [H,X]=2X, and [H,Y]=-2Y.
- 2. Bearing in mind that for any vector space V, $\mathfrak{gl}(V) := \{A \in \operatorname{End}(V)\}$ with the bracket [A, B] = AB BA is an abstract Lie algebra, prove that we have a Lie algebra homomorphism

ad:
$$\mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(\mathfrak{sl}_2(\mathbb{C}))$$

 $x \mapsto [x, -]$

which is injective but not surjective.

3. Find the eigenvalues of the linear map $ad(H) : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{sl}_2(\mathbb{C})$.

Solution. (i) If matrix $A \in \mathfrak{sl}_2(\mathbb{C})$, then $A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$. Thus

$$A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} = a \begin{pmatrix} 1 \\ & -1 \end{pmatrix} + b \begin{pmatrix} & \\ 1 \end{pmatrix} + c \begin{pmatrix} & 1 \\ & \end{pmatrix} = aH + bY + cX,$$

and clearly the expression is unique. Hence X,Y,H form a basis. By direct computations,

$$[X,Y] = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix},$$
$$[H,X] = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

and

$$[H,Y] = \begin{pmatrix} 1 & \\ & -1 \end{pmatrix} \begin{pmatrix} & \\ 1 & \end{pmatrix} - \begin{pmatrix} & \\ 1 & \end{pmatrix} \begin{pmatrix} 1 & \\ & -1 \end{pmatrix} = -2 \begin{pmatrix} & \\ 1 & \end{pmatrix}.$$

(ii) Since the Lie bracket of $\mathfrak{gl}(\mathfrak{sl}_2(\mathbb{C}))$ is bilinear, ad is a linear map. For any $z \in \mathfrak{sl}_2(\mathbb{C})$

$$\begin{aligned} \operatorname{ad}([x,y])(z) &= [[x,y],z] \\ &= -[[z,x],y] - [[y,z],x] \\ &= \operatorname{ad}(y)(-\operatorname{ad}(x)(z)) + \operatorname{ad}(x)(\operatorname{ad}(y)(z)) \\ &= (\operatorname{ad}(x) \circ \operatorname{ad}(y) - \operatorname{ad}(y) \circ \operatorname{ad}(x))(z) \\ &= [\operatorname{ad}(x),\operatorname{ad}(y)](z),^{[7]} \end{aligned}$$

where the second equation comes from Jacobi identity. Hence ad is a homomorphism. ad is apparently not surjective since $\mathfrak{sl}_2(\mathbb{C})$ is of dimension 3 but $\mathfrak{gl}(\mathfrak{sl}_2(\mathbb{C}))$ is of dimension 9.^[3] Finally to see ad is injective, it suffices to prove that $\mathrm{ad}(X)$, $\mathrm{ad}(Y)$, $\mathrm{ad}(H)$ are linearly independent. Suppose we have a linear combination

$$aad(X) + bad(Y) + cad(H) = 0,$$

then for any $A \in \mathfrak{sl}_2(\mathbb{C})$

$$aad(X)(A) + bad(Y)(A) + cad(H)(A) = 0.$$

Take A = X and A = H respectively, and by the linearly independence of X, Y, H, we have a = b = c = 0, which means ad(X), ad(Y), ad(H) are linearly independent.

(iii) By part (i), ad(
$$H$$
) has eigenvectors X, Y, H and eigenvalues $2, -2, 0$ respectively.

Problem 2 (Exercise 6.5.4 (10 pts)). Prove that each 4×4 skew-symmetric matrix is uniquely decomposable as a sum

$$\begin{pmatrix} -a & -b & -c \\ a & & -c & b \\ b & c & & -a \\ c & -b & a \end{pmatrix} + \begin{pmatrix} -x & -y & -z \\ x & & z & -y \\ y & -z & & x \\ z & y & -x \end{pmatrix}.$$

Solution. For any 4×4 skew-symmetric matrix $\begin{pmatrix} -\alpha & -\beta & -\gamma \\ \alpha & & -\delta & -\epsilon \\ \beta & \delta & & -\eta \\ \gamma & \epsilon & \eta \end{pmatrix}$, we have

$$\begin{pmatrix}
-\alpha & -\beta & -\gamma \\
\alpha & & -\delta & -\epsilon \\
\beta & \delta & & -\eta \\
\gamma & \epsilon & \eta
\end{pmatrix} = \begin{pmatrix}
-\frac{\alpha+\eta}{2} & -\frac{\beta-\epsilon}{2} & -\frac{\gamma+\delta}{2} \\
\frac{\alpha+\eta}{2} & & -\frac{\gamma+\delta}{2} & \frac{\beta-\epsilon}{2} \\
\frac{\beta-\epsilon}{2} & \frac{\gamma+\delta}{2} & -\frac{\beta-\epsilon}{2} & \frac{\alpha+\eta}{2}
\end{pmatrix} + \begin{pmatrix}
-\frac{\alpha-\eta}{2} & -\frac{\beta+\epsilon}{2} & -\frac{\gamma-\delta}{2} \\
\frac{\alpha-\eta}{2} & & \frac{\gamma-\delta}{2} & -\frac{\beta+\epsilon}{2} \\
\frac{\beta+\epsilon}{2} & -\frac{\gamma-\delta}{2} & \frac{\alpha-\eta}{2}
\end{pmatrix}. (1)$$

The uniqueness comes from the fact that writing into the form of a sum gives us a linear system of equations. \Box

Problem 3 (Exercise 6.5.6 (15 pts)). Deduce from Exercises 6.5.4 and 6.5.5 that $\mathfrak{so}(4)$ is isomorphic to the direct product $\mathfrak{so}(3) \times \mathfrak{so}(3)$ (also known as the direct sum and commonly written $\mathfrak{so}(3) \oplus \mathfrak{so}(3)$).

Solution. Let $I = -\mathbf{E}_{12} - \mathbf{E}_{34}$, $J = -\mathbf{E}_{13} + \mathbf{E}_{24}$, $K = -\mathbf{E}_{14} - \mathbf{E}_{23}$, and $L = -\mathbf{E}_{12} + \mathbf{E}_{34}$, $M = -\mathbf{E}_{13} - \mathbf{E}_{24}$, $N = -\mathbf{E}_{14} + \mathbf{E}_{23}$, we have that

$$\begin{pmatrix} -\alpha & -\beta & -\gamma \\ \alpha & -\delta & -\epsilon \\ \beta & \delta & -\eta \\ \gamma & \epsilon & \eta \end{pmatrix} = \frac{\alpha + \eta}{2} I + \frac{\beta - \epsilon}{2} J + \frac{\gamma + \delta}{2} K + \frac{\alpha - \eta}{2} L + \frac{\beta + \epsilon}{2} M + \frac{\gamma - \delta}{2} N.$$

And also by Exercise 6.5.5. and direct computation, [I,J]=2K, [J,K]=2I, [K,I]=2J and [L,M]=2N, [M,N]=2L, [N,L]=2M. But also we have that [I,L]=[I,M]=[I,N]=[J,L]=[J,M]=[J,N]=[K,L]=[K,M]=[K,N]=0, hence we have two copies of $\mathfrak{so}(3)$ in $\mathfrak{so}(4)$, and by the linear independence we know that $\mathfrak{so}(4)\cong\mathfrak{so}(3)\times\mathfrak{so}(3)$.

Problem 4 (Exercise 8.1.3 (5 pts)). Give an example of an infinite intersection of open sets that is not open.

Solution. Let $X = \mathbb{R}$ be the topological space with the Euclidean topology, and let $U_n := (-\frac{1}{n}, \frac{1}{n})$ be the sequence of open sets. Then

$$\bigcap_{n=1}^{\infty} U_n = \{0\},\,$$

which is a closed subset instead of an open set.

Problem 5 (Exercise 8.2.1 (15 pts)). Prove that U(n), SU(n) and Sp(n) are closed subsets of the appropriate matrix spaces.

Solution. Define the map

$$\varphi_1: M_n(\mathbb{C}) \to M_n(\mathbb{C})$$

$$A \mapsto A\bar{A}^T,$$

then φ_1 is obviously continuous and U(n) is the preimage of the point $\{I\}$, hence it is closed in $M_n(\mathbb{C})$. Similarly, define

$$\varphi_2: U(n) \to \mathbb{C}$$

$$A \mapsto \det A$$

and

$$\varphi_3: M_n(\mathbb{H}) \to M_n(\mathbb{H})$$

$$A \mapsto A\bar{A}^T,$$

where $SU(n)=\varphi_2^{-1}(1)$ and $Sp(n)=\varphi_3^{-1}(I)$, i.e. SU(n) and Sp(n) are preimages of two closed points. In conclusion, U(n) is closed in $M_n(\mathbb{C})$, SU(n) is closed in U(n) hence in $M_n(\mathbb{C})$, and Sp(n) is closed in $M_n(\mathbb{H})$.