Math 4500 HW #11 Solutions

Instructor: Birgit Speh TA: Guanyu Li

This solution set is not error-free. Please email me (gl479@cornell.edu) if you spot any errors or typos!

Problem 1 (Exercise 7.2.1 (10 pts)). Deduce from exponentiation of tangent vectors that

$$T_I(G) = \{X \mid e^{tX} \text{ for all } t \in \mathbb{R}\}.$$

Solution. For each $X \in T_I(G)$ and $t \in \mathbb{R}$, we know that $tX \in T_I(G)$. By the proof of the textbook, we know that e^{tX} is an element in G. Therefore

$$T_I(G) \subseteq \{X \mid e^{tX} \text{ for all } t \in \mathbb{R}\}.$$

Conversely, for each $X \in \{X \mid e^{tX} \text{ for all } t \in \mathbb{R}\}$, define $\alpha(t) = e^{tX}$, hence $\alpha(t)$ is a continuous path on G s.t. $\alpha(0) = I$. Take the derivative then $\alpha'(0) = X$. Hence

$$T_I(G) \supseteq \{X \mid e^{tX} \text{ for all } t \in \mathbb{R}\}.$$

Problem 2 (Exercise 7.2.2 (5 pts)). Given X as the tangent vector to e^{tX} , and Y as the tangent vector to e^{tY} , show that X+Y is the tangent vector to $A(t) = e^{tX}e^{tY}$.

Solution. Take A(t) as defined, then

$$A'(t) = \frac{\mathrm{d}}{\mathrm{d}t} (e^{tX} e^{tY})$$
$$= X e^{tX} e^{tY} + e^{tX} Y e^{tY},$$

hence
$$A'(0) = X + Y$$
.

Problem 3 (Exercise 7.2.3 (5 pts)). Similarly, show that if X is a tangent vector then so is rX for any $r \in \mathbb{R}$.

Solution. Similar to last problem, let $B(t) = e^{rtX}$, then

$$B'(t) = rXe^{rtX}$$

hence
$$B'(0) = rX$$
.

Problem 4 (Exercise 7.2.4 (10 pts)). Suppose that, for each A in some neighborhood N of I in G, there is a smooth function A(t), with values in G, such that $A(\frac{1}{n}) = A^{\frac{1}{n}}$ for $n \in \mathbb{N}^*$. Show that $A'(0) = \log A$, so that $\log A \in T_I(G)$.

Solution. Suppose we have a path A(t) s.t. A(0) = I with $A(\frac{1}{n}) = A^{\frac{1}{n}}$ for $n \in \mathbb{N}^*$, then

$$A'(0) = \lim_{n \to +\infty} \frac{A(\frac{1}{n} - I)}{\frac{1}{n}} = \lim_{n \to +\infty} n \log A(\frac{1}{n}) = \lim_{n \to +\infty} n \log A^{\frac{1}{n}}.$$

Since that A is commutative with itself, $n\log A^{\frac{1}{n}}=\log A^{\frac{1}{n}}+\cdots+\log A^{\frac{1}{n}}=\log (A^{\frac{1}{n}}\cdots A^{\frac{1}{n}})=\log A$. (Here is an issue of well-definedness. Instead of working for it, it is OK to just take that $\log A^{\frac{k}{n}}$ is well-defined for all $1\leq k\leq n$.)

Problem 5 (Exercise 7.2.5 (10 pts)). Suppose, conversely, that log maps some neighborhood N of I in G into $T_I(G)$. Explain why we can assume that N is mapped by log onto an ϵ -ball $N_{\epsilon}(0)$ in $T_I(G)$.

Solution. It suffices to find some $\epsilon > 0$ s.t. for any $|X| < \epsilon$, $|e^X - I| < 1$, so that by the textbook for any $X \in N_{\epsilon}(0)$,

$$\log e^X = X \in N_{\epsilon}(0).$$

Notice that

$$|e^{X} - I| = \left| \sum_{n=1}^{\infty} \frac{X^{n}}{n!} \right|$$

$$\leq \sum_{n=1}^{\infty} \frac{|X^{n}|}{n!}$$

$$\leq \sum_{n=1}^{\infty} \frac{|X|^{n}}{n!}$$

$$\leq \sum_{n=1}^{\infty} \frac{\epsilon^{n}}{n!} = e^{\epsilon} - 1$$

where the first inequality comes from the continuity of the norm (NOT JUST THE TRIANGLE INEQUALITY). Hence we can just take one $\epsilon < \ln 2$.

Problem 6 (Exercise 7.2.6 (5 pts)). Take N as in Exercise 7.2.4., and $A \in N$, show that $t \log A \in T_I(G)$ for all $t \in [0,1]$, and deduce that $A^{\frac{1}{n}}$ exists for $n \in \mathbb{N}^*$.

Solution. Directly from 7.2.3..