Math 4500 HW #12 Solutions

Instructor: Birgit Speh TA: Guanyu Li

This solution set is not error-free. Please email me (gl479@cornell.edu) if you spot any errors or typos!

Problem 1 (Exercise 7.6.3 (10 pts)). Suppose that $e^X e^Y = e^Y e^X$. Show that XY = YX.

Solution. Suppose that $X = \log(I + (e^X - I))$ and $Y = \log(I + (e^Y - I))$, then we know that

$$= \sum_{n=1}^{+\infty} (-1)^{n-1} (e^X - I)^n \sum_{n=1}^{+\infty} (-1)^{n-1} (e^Y - I)^n$$
$$= \sum_{n,m=1}^{+\infty} (-1)^{n+m} (e^X - I)^n (e^Y - I)^m.$$

Since that $e^X e^Y = e^Y e^X$, we have $(e^X - I)^n (e^Y - I)^m = (e^Y - I)^m (e^X - I)^n$, thus

$$\sum_{n,m=1}^{+\infty} (-1)^{n+m} (e^X - I)^n (e^Y - I)^m = \sum_{n,m=1}^{+\infty} (-1)^{n+m} (e^Y - I)^m (e^X - I)^n$$
$$= \log(I + (e^Y - I)) \log(I + (e^X - I)) = YX.$$

Problem 2 (Exercise 7.6.4 (8 pts)). Deduce from Exercise 7.6.3. that $e^X e^Y = e^{X+Y}$ if and only if XY = YX.

Solution. Since X + Y = Y + X, if $e^X e^Y = e^{X+Y}$ then

$$e^X e^Y = e^{X+Y} = e^{Y+X} = e^Y e^X.$$

and by previous problem, XY = YX. Converse proposition was proved in the text.

Problem 3 (Exercise 9.1.1 (7 pts)). Find algebraic properties showing that the groups O(2), SO(2), and \mathbb{R} are not isomorphic.

Solution. Notice that O(2) is not abelian and the other two are abelian. There are elements in SO(2) with finite orders, i.e. $\mathbb{Z}/n\mathbb{Z}$ is a subgroup of SO(2), but for any $0 \neq r \in \mathbb{R}$, if nr = 0 for some integer n, then n = 0.

Problem 4 (Exercise 9.1.2 (5 pts)). Explain why it is appropriate to call $S^1 \times S^1$, $S^1 \times \mathbb{R}$ and $\mathbb{R} \times \mathbb{R}$ the torus, cylinder, and plane respectively.

Solution. $S^1 \times S^1$ is gluing opposite sides of a square, say

If we find a representative of it in \mathbb{R}^3 , the gluing process gives us a torus. Similar to $S^1 \times \mathbb{R}$, this is the gluing of a infinitely long stripe, which gives us a(n) (infinitely long) cylinder. **Problem 5** (Exercise 9.1.3 (10 pts)). Show that the three groups have the same Lie algebra. Describe its underlying vector space and Lie bracket operation. Solution. By definition, the Lie algebra of a group is the set of the tangent vectors of all possible smooth paths going through the identity. But the tangent vector is a local notion, it suffices to prove that these three groups have the same local property at the identity. Notice that $S^1 \times S^1 \cong \mathbb{R}^2/\mathbb{Z}^2$ and $S^1 \times \mathbb{R} \cong \mathbb{R}^2/\mathbb{Z}$, so there are open neighborhoods of the identities of the three groups s.t. they are homeomorphic, hence they have the same Lie algebra. If we just compute the Lie algebra of $\mathbb{R} \times \mathbb{R}$, the underlying space is $\mathbb{R} \times \mathbb{R}$, with the trivial bracket. **Problem 6** (Exercise 9.1.4 (15 pts)). Distinguish the three groups algebraically and topologically. Solution. Algebraically, $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ is a subgroup of $S^1 \times S^1$, but not a subgroup of $S^1 \times \mathbb{R}$ nor $\mathbb{R} \times \mathbb{R}$. We only need to prove that $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ is not a subgroup of $S^1 \times \mathbb{R}$. Suppose not, then we have some injection $\varphi : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}$ $S^1 \times \mathbb{R}$, then since all elements in $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ are of finite order, so their image under φ . Thus Im $\varphi \subset S^1 \times \{0\}$. But $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ is not cyclic but all finite subgroup of S^1 is cyclic, a contradiction. Similarly, $\mathbb{Z}/n\mathbb{Z}$ is a subgroup of $S^1 \times \mathbb{R}$ but not of $\mathbb{R} \times \mathbb{R}$. Topologically, $S^1 \times S^1$ is compact but not simply connected, while $S^1 \times \mathbb{R}$ is noncompact but not simply connected. $\mathbb{R} \times \mathbb{R}$ is noncompact but simply connected.