Math 4500 HW #13 Solutions

Instructor: Birgit Speh TA: Guanyu Li

This solution set is not error-free. Please email me (gl479@cornell.edu) if you spot any errors or typos!

Problem 1 (Exercise 9.3.1 (10 pts)). Using the fact that Φ is a group homomorphism, show that we also have $(\Phi \circ C)'(0) = (\Phi \circ A)'(0) + (\Phi \circ B)'(0)$ where C(t) = A(t)B(t).

Solution. Since Φ is a homomorphism, we have

$$\begin{split} (\Phi \circ C(t))'(0) &= (\Phi \circ A(t)B(t))'(0) \\ &= ((\Phi \circ A(t))(\Phi \circ B(t)))'(0) \\ &= (\Phi \circ A(t))'(0)(\Phi \circ B(t))(0) + (\Phi \circ A(t))(0)(\Phi \circ B(t))'(0) \\ &= (\Phi \circ A(t))'(0) + (\Phi \circ B(t))'(0). \end{split}$$

Problem 2 (Exercise 9.3.2 (5 pts)). Deduce from Exercise 9.3.1 that $\varphi(A'(0) + B'(0)) = \varphi(A'(0)) + \varphi(B'(0))$.

Solution. Let C(t) = A(t)B(t), then C'(t) = A'(t) + B'(t). By previous problem, we are done.

Problem 3 (Exercise 9.3.3 (10 pts)). Let D(t) = A(rt) for some real number r. Show that D'(0) = rA'(0) and $(\Phi \circ D)'(0) = r(\Phi \circ A)'(0)$.

Solution. By the chain rule,

$$D'(t) = (A(rt))' = rA'(rt),$$

hence D'(0) = rA'(0). On the other hand, let $\Psi := \Phi \circ A$, then

$$(\Phi \circ D(t))'(0) = (\Psi \circ rt))'(0) = r(\Psi \circ t))'(0) = rD'(0).$$

Problem 4 (Exercise 9.3.4 (5 pts)). Deduce from Exercise 9.3.2 and 9.3.3 that φ is linear.

Solution. Directly from previous exercises.

Problem 5. Classify all the 2-dimensional Lie algebras and find their groups.

Solution. \mathbb{C}^2 with trivial Lie bracket, and its group can be \mathbb{C}^2 . The other one is \mathbb{C}^2 with Lie bracket defined in Page 89. Its group is Aff(1).

Problem 6 (Exercise 8.7.3 (0 pts)).

Solution.

Problem 7 (Exercise 8.7.4 (0 pts)).

Solution.

Problem 8 (Exercise 8.7.5 (0 pts)).

Solution.