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第一章 定义

定义. 二项运算(binary operation)

习题 1.1. 给定集合G和二项运算∗，满足

1. 二项运算满足结合律，即对任意g, h, k ∈ G，g ∗ (h ∗ k) = (g ∗ h) ∗ k；

2. 二项运算有左单位，即存在eL ∈ G满足对任意g ∈ G，eL ∗ g = g；

3. 二项运算有左逆，即对任意g ∈ G，存在g−1 ∈ G满足g−1 ∗ g = eL。

求证G是一个群，即左单位和左逆的存在性可以推出右单位和右逆的存在性.

证明. 注意到

g ∗ g−1 = eL ∗ (g ∗ g−1)

= ((g ∗ g−1)−1 ∗ (g ∗ g−1)) ∗ (g ∗ g−1)

= (g ∗ g−1)−1 ∗ ((g ∗ g−1) ∗ (g ∗ g−1))

= (g ∗ g−1)−1 ∗ (g ∗ (g−1 ∗ g) ∗ g−1)

= (g ∗ g−1)−1 ∗ (g ∗ g−1)

= eL,

并且

g ∗ eL = g ∗ (g−1 ∗ g) = (g ∗ g−1) ∗ g = g,

这就完成了证明.

9
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第二章 群作用

定义. G集合

2.1 Sylow定理

命题 2.1. 设G是有限群， H是G的子群， G包含有一个p-Sylow子群P， 则存在g ∈ G使得H ∩
gPg−1是H的p-Sylow子群.

证明. 令

X := G/P

是P在G中的左陪集的全体，G按照左乘作用在X上.注意到对任意x = gP ∈ X，由定义

Hx = {h ∈ H | hgP = gP}

= H ∩Gx
= H ∩ gPg−1,

于是我们只需要证明存在x ∈ X使得p ∤ [H : Hx]，这就意味着Hx是一个p-Sylow子群.如果不满足，则

|X| =
h∑
i=1

|Xi| =
h∑
i=1

|H · xi|

=
h∑
i=1

[H : Hx],

进而p | |X|，这与P是G的p-Sylow子群矛盾.

定理 2.2. 任意有限群G都有p-Sylow子群，其中p | |G|是一个素数.

证明. G ↪→ Sn ↪→

11
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定理 2.3. 任意有限群G都有p-Sylow子群，其中p | |G|是一个素数.

证明. G ↪→ Sn ↪→

2.2 两个特殊的单群

引理 2.1 (Iwasawa). 设群G作用在集合X上是双传递的，并且
(i) G是完备(perfect)的，即G没有非平凡的Abel商群；
(ii)存在x ∈ X，稳定子Gx包含一个Abel正规子群A，使得⋃

g∈G

gAg−1

生成G，

则G/H是单群，其中H是G作用在X上的核.

证明. 设N是G的真包含H的正规子群，我们希望证明N = G.

设x是条件中描述的元素，取M := Gx，由双传递知，M是极大子群，而且H ⊆M .于是，NM =M或G.若NM =

M，取h ∈ N, g ∈ G，那么g−1hg ∈ N ⊆ M，进而hgM = gM，这意味着h作用在G/M = G/Gx = X上是稳

定的，即h ∈ H，矛盾.于是，NM = G.

令G̃ := G/N，Ã是A在G̃下的像，那么映射

M → G→ G̃

是满射，于是Ã是G̃的正规子群.注意到
⋃
g∈G gAg

−1生成了G，我们自然有
⋃
g∈G gÃg

−1生成了G̃.这意味着Ã =

G̃，即G̃是Abel群，根据(i)我们有N = G.

定理 2.4. 设K是域，n是不小于2的整数，|K| > 3，则PSLn(K)是单群.

证明. 考虑G := SLn(K)作用在X := Pn−1(K)，我们需要验证：

(i) G作用在X上是双传递的.事实上，G作用在X上是n-传递的.

(ii)取x := [1, 0, · · · , 0]，于是

Gx =




a ∗ · · · ∗
0
... B

0




,
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其中

A :=




1 ∗ · · · ∗
0
... I

0




是我们希望的Abel正规子群.设1 ≤ i, j ≤ n是不同的整数，那么I + cEi,j ∈ SLn(K)，并且I + cEi,j与A中的某

个元素共轭.但是
SLn(K) = gen.I + cEi,j .

最后证明G是完备的.这只要证明{I + cEi,j}是交换子.

Group with operators:

定义. Fix a set Ω, an Ω−group (or a group with operator set Ω) is a group (G,−) s.t. for all x ∈ Ω and
g ∈ G, we have a gx ∈ G satisfying (g1g2)

x = gx1g
x
2 for all g1, g2 ∈ G.

Example: Ω = ∅ → usual groups
A Ω-subgroup is H of G is a subgroup is a subgroup stable under Ω actions.
设G是幂零群，H是G的真子群.那么H也是NG(H)的真子群.

证明. 对G的幂零长度进行归纳.
取A = Z(G)，于是G/A的幂零长度小于n.若A ⊆ H，则归纳假设说明.若A ⊊ H，则我们已经找到H之外

的元素.

设G是有限群，则下列描述等价：

(i) G是幂零的；
(ii) G是p群的积；
(iii)对任意素数p，G包含唯一的p-Sylow子群；
(iv) G中任意两个互素阶元素交换.
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第三章 群的构造

按照构造，自然地有集合之间的映射

ι : S → F (S)

s 7→ s,

其中F (S)中的元素s是s ∈ S对应的字符.明显地，这个映射是单射.

定理 3.1 (自由群的泛性质). 设S是集合，则对于任意群G和集合间的映射φ : S → G，都存在唯一的群同

态Φ : F (S)→ G满足

Φ ◦ ι = φ,

即有交换图

S F (S)

G.

ι

φ Φ

证明.

15
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第四章 习题

习题 4.1. 设S是一个半群，那么下面论断等价：

(i) ∀a, b ∈ S，ab = a或∀a, b ∈ S，ab = b；

(i) ∀a, b, c, d ∈ S，ac = bd⇒ a = b或c = d；

(i) 设f是S上的任意映射，f(ab) = f(a)f(b).

习题 4.2. 设G是一个半群.证明G是一个群当且仅当方程gx = h和xg = h对于任意g, h ∈ G成立.

证明. 只需要证明单位元的存在性即可.
若gx0 = g，取z ∈ G使得zg = h，于是hx0 = h对于任意h ∈ G成立.若gx1 = g = x2g，则x1 = x2x1 =

x2.

习题 4.3. 我们如此定义平面R2的旋转变换群G：它的元素是Rθ其中θ ∈ [0, 2π)，元素Rφ与Rθ的乘法定义为

Rφ ∗Rθ =

{
Rφ+θ 若φ+ θ < 2π

Rφ+θ−2π 若φ+ θ ≥ 2π
.

证明G ∼= S1 = C∗ ∼= SO(2).

习题 4.4. 任意给定群G和Abel群A，求证任意群同态φ : G→ A都有唯一的分解

φ = G
π−→ G′ φ̃−→ A,

其中π : G→ G′是自然的投影映射.

证明. 任取x, y ∈ G，那么根据φ是群同态且A是Abel群，

φ([x, y]) = φ(xyx−1y−1) = φ(x)φ(y)φ(x−1)φ(y−1) = 1 ∈ A,

于是如下定义的

φ̃ : G′ → A

x̄ 7→ φ(x)

是良定义的映射，这样就完成了证明.

习题 4.5. 设N是群G的正规子群，则G/N交换当且仅当G′ ⊆ N .

17
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习题 4.6. 设群G满足∀g ∈ G，g2 = 1.求证G是Abel群.

证明. 任取g, h ∈ G，由条件知(gh)2 = 1，于是ghgh = 1.但是g = g−1且h = h−1，于是g−1hgh−1 = 1，

即gh = hg.

习题 4.7. 设群G := ⟨a, b | a2 = 1, b3 = 1⟩.求证

G ∼= PSL2(Z) ∼= SL2(Z)/{I,−I}

[提示：a 7→

(
0 −1
1 0

)
, b 7→

(
1 −1
−1 0

)
.]

习题 4.8. 设G是有限群，群同态φ : G→ G满足φ(x) = xn.求证φ是自同构当且仅当(n, |G|) = 1.

证明. 一方面，若(n, |G|) = 1，任取g ∈ Ker φ，那么

1 = φ(g) = gn,

于是若g ̸= 1，则存在素数p | (n, |g|)，但p | |G|，因此与(n, |G|) = 1矛盾，故G = 1.由于G是有限的，故φ也是
满射，因此是自同构.

另一方面，若φ : G→ G是自同构，若(n, |G|) ̸= 1，则存在素数p | (n, |G|)，由Cauchy定理，存在g ∈ G使
得|g| = p，故

φ(g) = gn = gpt = (gp)t = 1,

与φ : G→ G是自同构矛盾.

习题 4.9. 给定群G和子群H,K，映射φ : G/H → G/K是G等变的，即对任意g ∈ G，φ(g · giH) = g ·φ(giH)，

其中G在左陪集G/H,G/K有左乘诱导的作用.求证φ满足

φ : G/H → G/K

giH 7→ gitK

其中t是G中的元素满足t−1Ht ⊆ K.

证明.

习题 4.10. (i)求证An作用在{1, · · · , n}是(n− 2)−传递的.

(ii)设群G作用在X上是2-传递的，则对任意x ∈ X，Gx是G的极大子群.

(iii)由前面的结果证明An是单群.

习题 4.11. 设G是一个有限群，H是G得一个真子群，证明存在G的一个等价类C使得H ∩ C = ∅.

证明. 由Jordan引理，存在一个G的元素g使得g左乘作用在X := G/H上无不动点，于是g·aH ̸= aH.故a−1ga /∈
H对任意a ∈ G成立，取C = G · g即可.

习题 4.12. 有限群G非平凡地作用在集合A上，满足|G| > |A|!，求证G存在非平凡的正规子群.
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证明. 考虑映射

φ : G→ SA

g 7→ σg

习题 4.13 (不动点定理(fixed points theorem)). 设G是一个p群，作用在一个有限集X上，令XG := {x ∈ X |
gx = x,∀g ∈ G}，求证

|X| ≡ |XG| (mod p).

证明. 令O是一个G-轨道，满足O ⊆ X −XG，于是存在x ∈ X使得O = G · x.由稳定子等式知|O| = |G · x| =
[G : Gx].但G是一个p群，故[G : Gx]是p的次方，故|O| ≡ 0 (mod p).注意到X −XG是这样一些轨道的无交并，

故

|X| − |XG| =

∣∣∣∣∣∣
∐

O⊆X−XG

O

∣∣∣∣∣∣ =
∑

O⊆X−XG

|O| ≡ 0 (mod p).

习题 4.14. 设G是一个有限群，素数p整除|G|.求证存在G的p阶元素.

证明. 定义
X := {(g1, · · · , gp)|gi ∈ G, g1 · · · gp = 1},

Z/pZ按照如下方式作用在X上：
1 · (g1, · · · , gp) = (gp, g1, · · · , gp−1).

注意到gpg1 · · · gp−1 = gp(g1 · · · gp−1gp)g
−1
p = 1，群作用是良定义的.注意到本质上这p个坐标中p − 1个是自由

的，于是|X| = |G|p−1 (mod p).考虑

XZ/pZ = {(g, · · · , g)|g ∈ G, gp = 1},

于是|XZ/pZ| = #{(g, · · · , g)|g ∈ G, gp = 1}.由不动点定理，

|XZ/pZ| ∼= |X| ∼= 0 (mod p).

但是(1, · · · , 1) ∈ XZ/pZ，故|XZ/pZ| ≥ p.

习题 4.15. 设p是一素数，G = GLn(Fp)，写出一个G的Sylow-p子群，算出它的阶并求出G中全部Sylow-p子
群的个数.

证明. |G| = (pn − 1)(pn − p) · · · (pn − pn−1)，于是p
n(n−1)

2 恰好整除|G|，因而Sylow-p子群阶数为p
n(n−1)

2 .由此，
显然所有对角元素为1的上三角矩阵组成的子群是G的Sylow-p子群，记为U .
由Sylow第二定理，为计算Sylow-p子群个数，我们只需要求得U的所有共轭子群的个数，设X是所有U的

共轭子群组成的集合，N = {g ∈ G|gUg−1 = U}是U的正规化子，于是由计数公式，我们有

|G| = |X||U |.

另一方面，容易验证N是所有上三角矩阵组成的子群，故|N | = (p− 1)np
n(n−1)

2 ，于是
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习题 4.16. 设21阶群G中元素g的等价类C(g)的阶为3,试求g的阶.

证明. 由计数公式，|Z(g)| = 7，故|g| ≠ 21，否则G为循环群.若|g| = 3，则除gn外，存在h ∈ G使得gh = hg，

由于h ∈ Z(g)因此|h| = 7，这样与|Z(g)| = 7矛盾，于是|g| = 7.

习题 4.17. 12阶群G含有一个4阶等价类，证明G的中心是平凡的.

证明. 反设Z(G)不平凡，则存在x ∈ G满足x ̸= 1且与G中所有元素交换.设g ∈ G的等价类是四阶，故Z(g)是G的
三阶循环子群；另一方面显然x ∈ Z(g)，因此x的阶恰为3，即Z(G)有3个不同的元素.考虑类方程

12 = 1 + 1 + 1 + |C1|+ |C2|+ 4

只能有|C1| = 2, |C2| = 3.但这导致存在元素的中心化子阶为4，从而Z(G)不能是其子群，矛盾.

习题 4.18. 设群G的自同构群Aut(G)是循环群，证明G是交换群.

习题 4.19. 设群G作用在集合X上，使得所有的轨道都是无限集.求证对X的任意有限子集A,B，存在g ∈ G使
得gA ∩B = ∅.

习题 4.20. 设H是有限群G的子群，G有p-Sylow子群S.求证存在g ∈ G使得H ∩ gSg−1是H的p-Sylow子群.

习题 4.21. 设B3 := ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩，PSL2(Z) := ⟨u, v | u2, v3⟩，验证

φ : B3 → PSL2

σ1 7→ v−1u

σ2 7→ u−1v2

是满射，并求它的核.求证Z(PSL2(Z))是平凡的.
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第五章 环的基本性质

5.1 环和理想

定义. 给定集合R和其上的二项运算+和·，若存在满足

1. (R,+, 0)是一个Abel群，

2. (R, ·, 1)是一个幺半群，

3. 对任意有分配律

则称(R,+, ·, 0, 1)为环(ring)，+被称为环R的加法，·被称为环R的乘法，0被称为加法零元，1被称为乘法

单位元.

含幺环

定义. 给定环(R,+, ·, 0, 1)和(S,+, ·, 0, 1)，同态(ring homomorphism)

5.1.1 环同态

定义.

例 5.1. 任意给定含幺环R，考虑环同态f : Z→ R.

习题 5.1. 记i : Z → Q是自然的嵌入，这明显是一个环同态.求证任意给定含幺环R和环同态f, g : Q ⇒ R，

若f ◦ i = g ◦ i则f = g.

证明. 对任意自然数n，
f(n) = f

(n
1

)
= g

(n
1

)
= g(n).

于是对任意p
q
∈ Q，

f

(
p

q

)
=
f(p)

f(q)
=
g(p)

g(q)
= g

(
p

q

)
,

23
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即f = g.

5.2 主理想整环



第六章 环的因子分解

6.1 Euclid整环和主理想整环

引理 6.1. 设R是主理想整环，则∀a, b ∈ R，存在u, v ∈ R使得ua+ vb = (a, b).

证明. 令I = {ra + sb | r, s ∈ R}，显然I是R的理想，且I ⊆ ((a, b))，存在f ∈ R使得I = (f)，其中((a, b))是

由a, b的最大公约数生成的理想，f | a且f | b.反设I ⫋ ((a, b))，那么(a, b) | f但f ∤ (a, b)，这与(a, b)是a, b的最

大公因数矛盾.

引理 6.2. 设R是主理想整环，f(x) ∈ R[x]，若α ∈ Frac(R)满足f(α) = 0，则α ∈ R.

6.2 唯一分解整环

命题 6.1. 设R是整环，且任意元素a ∈ R都可以被分解为不可约元素的成绩，那么R是唯一分解整环当且
仅当所有R的不可约理想都是素理想.

例 6.1. 求方程y2 = x3 − 1的所有整数解.

证明. 我们考虑环Z[i]中的分解

x3 = y2 + 1 = (y + i)(y − i),

注意到y + i和y − i是互素的.这因为，如若不然，我们可以找到Gauss整数π使得π | (y + i, y − i).于是π |
(y + i)− (y − i) = 2i，故不妨设π = 1 + i.同时注意到π | x3，因此在整数环中

2 = ππ̄ | x3x̄3 = x6,

故x是偶数.但这意味着y2 = x3 − 1 ≡ 7 (mod 8)，这就导致了矛盾.

25



26 第六章 环的因子分解

由于环Z[i]是唯一分解整环，因此我们假设y + i = uπf11 · · ·π
ft
t ，其中u是单位，πi(i = 1, · · · , t)是素数，

fi(i = 1, · · · , t)是整数.再由唯一分解和之前证明的互素性，存在整数ei(i = 1, · · · , t)使得fi = 3ei成立，这意

味着存在α = a+ bi满足

v(y + i) = α3 = (a+ bi)3 = (a3 − 3ab2) + (3a2b− b3)i.

分别讨论v = ±1,±i的情形，我们得到要么a = ±1, b = 0要么a = 0, b = ±1，但总有y + i = i.于是整数
为(1, 0)和(−1, 0).



第七章 环

求证交换环的极大理想一定是素理想. [假设环R中的极大理想m不是素理想，则存在ab ∈ m满足a /∈ m, b /∈
m.构造I = {c+ ra|c ∈ m, r ∈ R}.证明m & I & R.]

Solution 设m是环R中的极大理想，且不是素理想，于是存在ab ∈ m满足a /∈ m, b /∈ m.令I = {c+ ra|c ∈
m, r ∈ R}，显然m & I.任取c1+ r1a, c2+ r2a ∈ I，于是(c1+ r1a)+ (c2+ r2a) = (c1+ c2)+ (r1+ r2)a，由m是

理想c1 + c2 ∈ m，因而(c1 + r1a) + (c2 + r2a) = (c1 + c2) + (r1 + r2)a ∈ I；再任取c+ ra ∈ I, s ∈ R，由m是理

想可知sc ∈ m，故s(c+ ra) = sc+(sr)a ∈ I，即I是理想.最后证明I & R.否则，存在c+ ra ∈ I使得c+ ra = 1，

于是cb + rab = b，注意到c, ab ∈ m，这导致了b ∈ m，矛盾.于是理想I满足m & I & R，这与m是极大理想矛

盾，因此m素理想.

习题 7.1. 证明 {(
a −b
b a

)∣∣∣∣∣ a, b ∈ R

}
⊆ M2(R)

作为环同构于C.

习题 7.2. 证明 {(
a −b
b a

)∣∣∣∣∣ a, b ∈ R

}
⊆ M2(C)

作为环同构于H.

试说明任意交换环都是某个集合上的映射. [考虑环R中元素在Spec R上的映射，f 7→ f + p.]

习题 7.3. 设k是域，求k[x]/(x2)的所有素理想.

证明. 显然(0)不是素理想.由于k[x]主理想整环，故k[x]/(x2)也是主理想整环，因此其中的理想都是形如(p(x))/(x2)的.由
于在k[x]/(x2)中x2 = 0，故(p(x))/(x2)由一个零次或一次多项式生成，记为(p(x))/(x2) = (ax+ b)/(x2).若b ̸=
0，则在k[x]/(x2)中

(ax+ b)
ax− b
−b2

=
a2x2 − b2

−b2
= 1

因此(ax+ b)/(x2)是单位理想，故只有素理想(x).

求证整环R上的齐次多项式的因子必为齐次多项式.
设f(x1, · · · , xn)是R上的多项式，考虑f̂(x1, · · · , xn, t) = f(tx1, · · · , txn) ∈ R[x1, · · · , xn, t]，则f(x1, · · · , xn)是

齐次多项式当且仅当f̂(x1, · · · , xn, t) = tdf(x1, · · · , xn).
设f(x1, · · · , xn) = g(x1, · · · , xn)h(x1, · · · , xn)，于是

f̂(x1, · · · , xn) = ĝ(x1, · · · , xn)ĥ(x1, · · · , xn) = g(tx1, · · · , txn)h(tx1, · · · , txn)

27
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另一方面，

ĝ(x1, · · · , xn) = g0 + g1t+ · · ·+ gat
a

ĥ(x1, · · · , xn) = h0 + h1t+ · · ·+ hbt
b

其中gi, hj ∈ R[x1, · · · , xn]且ga, hb ̸= 0.由f(x1, · · · , xn)是齐次多项式知

f(x1, · · · , xn)td = ĝ(x1, · · · , xn)ĥ(x1, · · · , xn) = (g0 + g1t+ · · ·+ gat
a)(h0 + h1t+ · · ·+ hbt

b)

看作整环R[x1, · · · , xn]上关于t的多项式展开并对比系数，可以递归地得到gj = hj = 0, i ̸= a, j ̸= b.

习题 7.4. 求证有限整环R必为除环.

Solution 任取s ∈ R，构造环同态

φs : R −→ R (7.1)

r 7−→ sr (7.2)

由R是整环知，φs是R到自身的单同态，但R是有限的，故φs必然也是满同态，故存在v ∈ R使得sv = φs(v) =

1.同理，存在u ∈ R使得us = 1，故R是除环.

习题 7.5. 求证若交换环R是整环且仅有有限多个理想，则R必为域.

Solution. 任取0 ̸= u ∈ R，考虑理想

(u) ⊇ (u2) ⊇ · · · (un) ⊇ · · ·

是无穷多个理想，故存在正整数m使得(um) = (um+1)，因此存在v ∈ R使得

um = cum+1.

根据消去律1 = uv，因此R中任意非零元素可逆，是域.

设R是一个带单位元的环，f : R → R是R上Abel群的自同态.求证∀a, b ∈ R, f(ab) = f(a)f(b)或∀a, b ∈
R, f(ab) = f(b)f(a)当且仅当∀a, b ∈ R，f(ab) = f(a)f(b)或f(ab) = f(b)f(a).

Solution 令Sa = {b ∈ R|f(ab) = f(a)f(b)}, Tb = {a ∈ R|f(ab) = f(a)f(b)}，容易证明Sa和Tb是R的子
群.但是Sa ∪ Tb = R，故仅有平凡的情况.

求证Z[
√
−2]是唯一分解整环.

证明. 任取α = a + b
√
−2, β = c + d

√
−2 ∈ Z[

√
−2]，在C中计算α

β
= ac+2bd

c2+2d2
+ bc−ad

c2+2d2

√
−2 = q + r

√
−2，其

中q, r ∈ Q.取e = [q + 1
2
], f = [r + 1

2
]，则|q − e| ≤ 1

2
, |r − f | ≤ 1

2
，进而

α− (e+ f
√
−2)β = (q + r

√
−2)β − (e+ f

√
−2)β

= [(q − e) + (r − f)
√
−2)]β,



29

故

|α− (e+ f
√
−2)β| = |(q − e) + (r − f)

√
−2)||β|

= (|q − e|2 + 2|r − f |2)|β|

≤ 3

4
|β| < |β|.

于是Z[
√
−2]是Euclid整环，进而是唯一分解整环.

习题 7.6. 设R是交换环，F是R的分式域.f(x), g(x) ∈ R[x]，于是f(x), g(x)自然地可以看作F [x]中的元素.证
明f(x), g(x)在R[x]中的最大公因式同于在F [x]中的最大公因式.

习题 7.7. 设整环R不是主理想整环.求证R中存在极大的不能由一个元素生成的理想.

证明. 我们将用Zorn引理来证明这个事实.令P为R中非主理想的全体，I1 ⊆ I2 ⊆ · · · In ⊆ · · ·是P中的一条链，
我们需要证明I :=

⋃∞
n=1 In是理想，且不是主理想.

任取a, b ∈ I和r, s ∈ R，由定义存在m,n使得a ∈ Im, b ∈ In.假设m ≤ n，则a, b ∈ In，因而ra + sb ∈
In ∈ I，故I是理想.若I是主理想，那么存在a ∈ R使得I = (a).但是根据定义，存在自然数n使得a ∈ In，这
样In ⊆ I = (a) ⊆ In，In也是主理想，矛盾.故I不是主理想.

习题 7.8. 正文中我们证明了

习题 7.9. 设F是域，R是×ni=1F的子环，且R作为Abel群是有限生成的.若R是整环，求证任意非零元素(a1, · · · , an) ∈
R满足

∏n
i=1 ai ̸= 0 ∈ F .
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第八章 模的基本理论

8.1 环上的模

为简化记号，给定左R模M，我们也常用rm表示R中元素r和M中元素m的数乘，即rm := r ·m.对偶地，
给定右R模M，mr := m · r.

定义. 给定环R和左R模M,N，若映射

f :M → N

满足对任意的r1, r2 ∈ R和m1,m2 ∈M，

f(r1m1 + r2m2) = r1 · f(m1) + r2 · f(m2),

其中rm表示M中的数乘，·表示N中的数乘，则称f : M → N是一个左R模同态(homomorphism of left
R-modules).

习题 8.1. 给定环R,S和环同态φ : R→ S，证明定义

r · s := φ(r)s, ∀r ∈ R, s ∈ S

给出的数乘使得S成为左R模，并且φ由此是一个R模同态.

解答. 为验证φ : R→ S是（左）R模同态，任取r1, r2 ∈ R和t1, t2 ∈ R，由于φ本身是环同态，

φ(r1t1 + r2t2) = φ(r1)φ(t1) + φ(r2)φ(t2) = r1 · φ(t1) + r2 · φ(t2),

刚好满足定义.

习题 8.2. 给定环R,S和(R,S)模M，求证对任意左R模N，HomR(M,N)是右S模.

解答. 只需要验证HomR(M,N)上有右乘结构即可，任取s, t ∈ S,m ∈ M和f ∈ HomR(M,N)，定义(f ·
s)(m) := f(ms)，那么

((f · t) · s)(m) := (f · s)(mt) = f(mts) = (f · (ts))(m).
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8.2 直和与直积

8.2.1 自由模

定义. 给定环R，

命题 8.1. 给定环R和自由模Rn, Rm，则存在R模的同构

HomR(R
n, Rm) ∼=Mm×n(R).

证明.

习题 8.3. 给定环同态α : R→ A，f : Rm → Rn是R模同态，那么

1. f由一个矩阵
(
fi,j

)
i=1,··· ,m,
j=1,··· ,n

决定，其中

2. A模同态f ⊗ id : Am → An由矩阵
(
α(fi,j)

)
i=1,··· ,m,
j=1,··· ,n

决定.

8.3 Hom函子

定理 8.2.

HomR

(⊕
i∈I

Mi, N

)
∼=
∏
i∈I

HomR (Mi, N)

并且，如果我们有一族模同态fi :Mi → N，那么有如下交换图

8.4 向量空间与矩阵

引理 8.1. 线性映射完全由基上的取值决定.准确地说，

定理 8.3. 给定含幺环R，则
Z(Mn×n(R)) = {r · I | r ∈ Z(R)},

其中I是Mn×n(R)中的单位矩阵.
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证明. 对任意A ∈Mn×n(R)，AEi,i = Ei,iA意味着A是对角矩阵，AEi,j = Ei,jA意味着ai,i = aj,j，最后
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第九章 PID上的模

9.1 Smith标准型

定理 9.1. 设F是域，R = F [x]，矩阵A ∈Mm,n(R).则存在P ∈ GLm(R)和Q ∈ GLn(R)使得

PAQ =



a1
. . .

ar

0
. . .



证明.

设F是域，V是F上的有限维线性空间，T : V → V是线性映射，于是V自然地是一个F [x]模，其中x ·α =

T (α).选取V的一组基{ϵ1, · · · , ϵn}，并且定义矩阵A使得

x · ϵj =
n∑
i=1

ai,jϵi,

再定义B = xI −A ∈Mn(R)，那么作为R模，V ∼= Rn/BRn.
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第十章 函子与正合列

定理 10.1. 任意给定环R和R模M，函子HomR(M,−)是左正合的，即对任意R模短正合列

0→ A→ B → C → 0,

有正合列

0→ HomR(M,A)→ HomR(M,B)→ HomR(M,C).

10.1 张量积

定义. 设R是含单位元的（不必要交换的）环，M,N分别是左右R模.给定Abel群L（用加法记号），
若Abel群同态

φ :M ×N → L

满足对任意的r ∈ R都有
φ(mr, n) = φ(m, rn),

则称φ是R平衡的(R balanced).

定理 10.2. 给定含单位元的（不必要交换的）环R和左右R模M,N .那么存在Abel群M ⊗R N和R平衡

的Abel群同态ι :M ×N →M ⊗R N，满足

• 对任意的R平衡的Abel群同态φ : M × N → L，都存在唯一的Abel群同态φ̃ : M ⊗R N → L，满

足φ̃ ◦ ι = φ，即有交换图

M ×N M ⊗R N

L.

ι

φ
φ̃
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定义. 假定R,S是含单位元的（不必要交换的）环，若Abel群M同时有左R模和右S模结构，满足对任意
的m ∈M, r ∈ R, s ∈ S都有

(r ·m) · s = r · (m · s),

则称M是(R,S)双模((R,S)-bimodule).

习题 10.1. 给定环R,S，给定R− S双模N和右S模L，求证HomS(N,L)有自然的左R模结构.

证明.

定理 10.3. 给定含幺环R,S，假设M是右R模，N是(R,S)双模，L是右S模，那么存在自然的同构

HomS(M ⊗R N,L) ∼= HomR(M,HomS(N,L)).

证明. 构造

α : HomS(M ⊗R N,L)⇆ HomR(M,HomS(N,L)) : β

f 7→ f ♭ : (m 7→ f(m⊗−))

g♯ :

(∑
i

mi ⊗ ni 7→
∑
i

g(mi)(ni)

)
←[ g,

10.1.1 基变换和系数的扩张



第十一章 特殊的R模

11.1 投射模

定义. 设R是含幺环.若左R模P满足对任意满同态g : M → N和任意模同态h : P → N，都存在h̃ : P →
M使得g ◦ h̃ = h，即有如下交换图

P

M N 0,

h

g

h̃

则称P是投射模(projective module).

定理 11.1. 给定R模P，那么P是投射模当且仅当HomR(P,−)是正合函子.

定义. 设R是含幺环.若任意左投射R模P的子模还是左投射R模，则称R是左承袭环(left hereditary ring)；
若任意左投射R模P的有限生成子模还是左投射R模，则称R是左半承袭环(left semi-hereditary ring)

命题 11.2. 给定R模P，则P是投射模当且仅当P是（某个）自由模的直和项.

证明. 设{xi}i∈I是P的一组生成元，取F :=
⊕

i∈I R · xi是这些生成元张成的自由模，那么

projective modules are flat

41
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第十二章 模

习题 12.1. 求证R模M的零化子annM是同构不变的，即若R模N与M同构，则annM = ann N .

习题 12.2. 设m,n是两个不同的正整数.求证Rm和Rn是同构的Abel群.

证明. 我们只需要证明作为Q-向量空间Rm ∼= Rn，进而我们需要的结果是自然的.
我们可以找到Rm的一组基{ϵi}i∈I（作为Q-向量空间）和Rn的一组基{ηj}j∈J .这样我们只要证明I与J有相

同的集合势即可.

习题 12.3. 求证任给定环R中的理想I, J，

R/I ⊗R R/J ∼= R/(I + J).
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第四部分

域和Galois理论
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第十三章 域理论和Galois理论

习题 13.1. 设F (α)是域F的扩张，[F (α) : F ]是奇数.求证[F (α2) : F ] = [F (α) : F ].

习题 13.2. 设F是域，A,B ∈Mn(F ).求证AB和BA有相同的特征多项式.

证明. 考虑扩域F (y)，则det(yI − A) ̸= 0，故yI − A可逆，于是(yI − A)B = (yI − A)(B(yI − A))(yI −
A)−1与B(yI −A)相似.

习题 13.3. 如果域F满足−1不能写成平方和的形式，即不存在ai ∈ F, 1 ≤ i ≤ n使得−1 =
∑n

i=1 a
2
i，则称F是

形式实数域(formally real).求证如下论断是等价的：

(i) F是形式实数域；

(ii) F是有序域；

(iii)
∑n

i=1 a
2
i = 0意味着ai = 0对任意i成立.

习题 13.4. 设F是域，且E是F上多项式f(x) ∈ F [x]的分裂域.求证

(i) Show that for any element α of some extension of F , E(α) is a splitting field of f over F (α).

(ii) Show that every irreducible polynomial g ∈ F [X] with a root in E has all roots in E.

习题 13.5. 1. 设G是循环群，并且我们用乘法记号.设g, h ∈ G都不是平方元素，即不存在x ∈ G使得x2 =

g或x2 = h.求证gh−1是平方元素.

2. 设K/F是域扩张，a是F中的非零元素.假设s, t是⟨a⟩ ∈ F×中的元素，且满足在F中s和t都不是平方元素，

但存在α, β ∈ K使得s = α2, t = β2.证明K的子域F (α) = F (β).

3. 证明若F是有限域且特征不为2，那么F的任意扩域K都包含且仅包含一个阶数为2的F的扩域.

习题 13.6. 题目中我们将证明，存在不可约多项式f(x) ∈ Z[x]满足它在Fp[x]中的像不都是不可约的.

(i) 求证f(x) = x4 + 1在Z[x]中不可约.

(ii) 求证f(x) = x4 + 1在Fp[x]中可约.

习题 13.7. Let K 1 and K 2 be finite extensions of F contained in the field K, and assume both are splitting
fields over F .

1. Prove that their composite K 1 K 2 is a splitting field over F .
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2. Prove that K 1 ∩ K 2 is a splitting field over F .

习题 13.8. Let α, β be two algebraic elements over a field F . Assume that the degree of the minimal polynomial
of α over F is relatively prime to the degree of the minimal polynomial of β over F . Prove that the minimal
polynomial of ゲ over F is irreducible over F (α).

习题 13.9. Let E and K be finite field extensions of F such that [EK : F ] = [E : F ][K : F ]. Show that
K ∩ E = F .



第五部分

范畴论
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第十四章 作为语言的范畴

数学家们最重要的武器是抽象化.最初，人们从日常生活中抽象出了数、点、平面、直线等概念，进而我
们有了加法、乘法、有理数，和相交、平行，甚至有了函数、微分和积分.后来数学家们发现这些概念依然可
以抽象，于是有了集合、映射、向量空间、群环域、流形和代数簇.

抽象化方法的本质是发现不同事物之间共同的特征，进而把满足这些共性的对象归为一类，研究它们

的性质.比如，空间中自由向量的全体和R上实值函数的全体都具有一些特征：它们中的元素都可以进行“加
法”，关于R中元素都有“数乘”，并且数乘与加法之间也满足一定关系.我们把这样满足这些性质的对象成为
向量空间，进而发现向量空间都有一组基，它们之间保持结构的映射具有很好的特性.这样的性质是自由向量
全体和实值函数全体所共有的.抽象化方法可以帮助我们忽略无关信息，更好地把我本质的结构.

我们已经学过许多数学对象，包括群环域这样的代数结构，也包括拓扑空间，流形等其他对象.如果把同
类对象看成一个族，不仅族内对象有许多共性，不同族与族之间也有相同的结构或特点：给出一个群可以考

虑它的子群和商群，已知的群可以由直积生成新的群，不同群之间可以由同态相互联系.如果把前面叙述中的
群改成环或者模，相应的结论仍然有效.像这样由同类对象构成的族的共性抽象出来的结构即是范畴.利用范
畴的语言，我们可以对数学系统及系统内特有的映射作一般性的描述，从而给大的数学系统的研究提供一个

粗糙的框架.可以说范畴是数学对象中最高层次的抽象.

自S.Zilerberg（）和S.Maclane（麦克莱恩）为研究代数拓扑于1942年引入范畴和函子的概念以来，范畴
理论本身已成为了一个独立的研究领域并对绝大多数的数学产生了深远影响.一个重要例子即是代数几何，它
主要归功于A.Grothendieck.就现代数学而言，范畴更像是一门语言，为我们提供了描述数学结构与对象的工
具.

14.1 定义和基本概念

简言之，范畴的概念由两部分组成：一族对象与它们之间的态射，定义把对象和对象之间的态射列于同

等地位，这与我们通常认知的对象第一态射第二的想法并不相同，甚至当我们有更多结构后，可以说箭头比

对象重要，箭头的箭头比箭头重要.

定义. 范畴(category)是一个数学对象，记为C，有下列要素构成：

(i) 一些对象(object)（通常用大写字母A,B,C表示）构成的族ob C，

(ii) 对任意的有序对象二元组(A,B)，存在被称为态射集(hom set)集合homC(A,B)，其中的元素f称为以A为

定义域(domain)，以B为余定义域(codomain)的态射(morphism)，或简称为从A到B(morphism from A

to B)的态射，记为f : A→ B.当范畴C明确时，可简记为hom(A,B)，
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(iii) 对任意的有序对象三元组(A,B,C)，存在映射

homC(B,C)× homC(A,B)→ homC(A,C)

(g, f) 7→ g ◦ f,

其中g ◦ f被称为态射g与f的乘积(product)或复合(composition).

这些要素必需满足如下公理：

C1). 当二元数组(A,B)不等于(C,D)时，homC(A,B)与homC(C,D)互不相交；

C2). (结合律，associativity)，若f ∈ homC(A,B), g ∈ homC(B,C), h ∈ homC(C,D)，则有(h ◦ g) ◦ f =

h ◦ (g ◦ f)；

C3). (单位态射，identity)对每个对象A都有一个属于homC(A,A)的态射idA使得对任意的f ∈ homC(A,B)有f◦
idA = f，以及对任意的g ∈ homC(B,A)，有idA ◦ g = g.

在用范畴的语言描述数学实体时，图（同时包含了对象，箭头与复合关系）可以帮助我们更清晰直观地

理解对象与态射之间的关系.例如，g ◦ f = h等价于图

A B

C

f

h g

是交换的，而g ◦ f = k ◦ h意味着

A B

C D

f

h g

k

是交换的.结合律(h ◦ g) ◦ f = h ◦ (g ◦ f)可表达为如下图

A B

C D

f

g◦f h◦g

h

的交换性，单位态射idA的性质也可这样刻画

A

A B A

A,

idA
f

f

g

g

idA

其中f, g是homC(A,B)与homC(B,A)中的任意元素.更抽象一点，如同定义我们把复合看成hom集合之间的映

射，结合性是说图

homC(C,D)× homC(B,C)× homC(A,B) homC(B,D)× homC(A,B)

homC(C,D)× homC(A,C) homC(A,D)

◦×idhomC(A,B)

idhomC(C,D)×◦ ◦

◦
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是交换的，其中第一行的映射表示对前两项取复合并取后一项不动，第一列的映射是取第一项不动但对后两

项取复合.类似地，记{∗}是只包含一点的集合，idA : {∗} → homC(A,A), idB : {∗} → homC(B,B)是确定了单

位态射idA, idB的映射，那么单位态射的相容性就是图

{∗} × homC(A,B) homC(A,B) homC(A,B)× {∗}

homC(B,B)× homC(A,B) homC(A,B) homC(A,B)× homC(A,A)

idB×id id×idA

◦ ◦

的交换性.

另一方面，公理中第一条的不相交性质实际不是必需的.当它不满足时，我们可以作如下技术性处理：对
于任意homC(A,B)中的态射f，规定其为三元组(A,B, f)，这样即使存在f ∈ homC(C,D) ∩ homC(A,B)，三

元组不同也将其视为不同的态射.

下面的这些例子将会不断在后面出现.

例 14.1. 集合的范畴Set：其中，ob Set是所有集合构成的类，homSet(A,B)是所有从集合A到集合B的集合

间映射构成的集合，态射的复合恰是集合间映射的复合，idA是集合A上的恒等映射.三条公理是显然满足的.

例 14.2. 群的范畴Gp：其中，ob Gp是所有的群构成的类，homGp(G,H)是所有从群G到群H的群同态，态
射的复合是群同态的复合，idG是G上的恒等映射.

例 14.3. Abel群范畴Ab：obAb群，态射和态射的复合含义同于群范畴.

容易观察到，例14.2中的Gp与例14.1中的Set有一定“子结构”关系：obGp是obSet的子类，而且对Gp中

的任意两个对象G，H，hom Gp （G，H）属于 hom Set（G，H）。我们把这种关系抽象出来，行程如下概
念：C，D是两个范畴，满足ob C是ob D的子族，且对C的任意对象A，B， homC（A，B）属于homD（A，
B），则称C是D的子范畴（subcategory）。若homC（A，B）=homD（A，B）对任意C中对象A，B成立，则
称C是D的满子范畴(fully subcategory).显然，Ab是Gp的满子范畴，而Cp仅是Set的子范畴非满子范畴。

例 14.4. 环的范畴Ring：obRing是所有的含幺（结合）环，对于任意对象R,S，homRing(R,S)是所有R到S将

单位元映到单位元的环同态.

有时候

例 14.5. 环R上的模范畴R−Mod：对象是所有R上的（左）模，对于任意R模M,N，homR−Mod(M,N)是R模

同态的全体，同样地可以定义环R上的右模范畴Mod−R.

例 14.6. 拓扑空间的范畴Top：对象是所有拓扑空间，任意两个拓扑空间X,Y，homTop(X,Y )是X到Y的连

续映射全体.

以上范畴都是以集合为基础的（更准确的定义出现在？？节），具体来说，这些范畴中的对象都是集合，

态射也是集合间的映射，但并不是所有的范畴都是这样的.

例 14.7. 设(P,≤)是一个偏序集，定义如下范畴P：ob P = P，对于任意P中元素a, b，homP (a, b)有唯一一个

元素当且仅当a ≤ b.于是，态射的合成也只有唯一合理的定义.

例 14.8. 设M是一个幺半群，由此可以定义范畴M：ob M = {∗}是含有一个元素的集合.homC({∗}, {∗}) =

M，id{∗}是M中的单位元，态射的复合是半群乘法.反过来，若M是对象唯一的范畴，则homC({∗}, {∗})是一
个幺半群，其中{∗}是M中唯一的对象，幺元是id{∗}，半群乘法是态射的复合.于是，我们建立了幺半群与仅
含一个对象的范畴的一一对应，从这个意义上来讲范畴可以看作幺半群的推广.
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特别地，当我们选取的幺半群是群时，所得到的范畴通常很有用：

例 14.9. 给定群G，BG定义如下：ob BG = ∗，homBG(∗, ∗) = G.

将这个例子与之前的对比，我们发现，例7和例8的对象全体是一个集合，像这样对象全体是集合的范畴
成为小(small)范畴.在更一般的情况下我们并不要求homC(A,B)是集合，故相对应的定义14.1中给出的homC(A,B)的

范畴称为局部小(locally small)范畴，我们所涉及的范畴都是局部小的范畴.

前面的6个例子中态射都是集合间的映射，我们可以利用元素来对这些态射进行讨论（如），但对于例7和
例8和一般范畴当中，对于态射的讨论我们不能借助元素的概念，这是极为重要的.

通过已知的范畴，我们可以构造新的范畴.下面两个例子是很重要的，本节习题中还会出现几种不同的构
造范畴的方法，它们更多地应用在范畴中特殊对象的描述.

设C是范畴，我们可以按如下方式构造它的对偶范畴(dual category)，记为C◦：它与C有相同的对象，即ob C◦ =

ob C，有时为区分C中的对象A在C◦中记为A◦；homC◦(A◦, B◦) = homC(B,A)，即f : A→ B与f : B◦ → A◦一

一对应.此外，f ◦ g◦ = (gf)◦，idA◦ = id◦
A换言之，对偶范畴中对象不变箭头反向.用图对偶范畴可表示为

若f : A→ B在C中则
（图）在C◦中，若
（图）在C中交换，则（图）在C◦中交换
再设C和D是两个范畴，于是它们的乘积范畴(product category)C ×D包含如下信息：C ×D的对象全体是

所有的二元组(A,B)，其中A ∈ ob C，B ∈ ob D，即ob(C ×D) = ob C × ob D；若A,C ∈ ob C，B,D ∈ ob D，
则（一个集合），并且id(A,B) = (idA, idB)；若f属于homC(A,B)，g属于hom C（B，C），h属于homD （D，
E），k属于homD(E,F )，则ΦgfikΨΦffihΨ = ΦgffikhΨ

此外，范畴中可能存在一些具有特殊性质的对象或态射，它们不一定存在，但在一些范畴中是结构研究

的核心.

定义. 若范畴C中的对象I满足对C的任意对象A，homC(I, A)都只含一个元素，则称这样的对象I为始对

象(initial object).对偶地，若范畴C中的对象T满足对C的任意对象B，homC(B, T )只含一个元素，则称这

样的对象为终对象(terminal object).

容易验证，Set中空集是始对象，单点集是终对象；Gp中{e}既是始对象也是终对象；环R上的模范畴R−
Mod中0既是始对象也是终对象.

定义. A,B是范畴C中的对象，若对于态射f : A → B，存在g : B → A使得g ◦ f = idA, f ◦ g = idB，则

称f是范畴C中的一个同构(isomorphism)，g是f的逆(inverse)，对象A与对象B是同构的(isomorphic).

在范畴Gp,Ring, R −Mod中同构的含义与代数结构中同构的含义相同；Set中同构的含义就是集合间

的一一映射.同构是描述对象唯一性的基础，也是描述范畴间相似结构的工具.
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命题 14.1. 1. 同一态射的左右逆相同，特别地同构态射的逆唯一.

2. 同一范畴中的始（终）对象是同构的.

证明. 设C是一范畴，A,B ∈ ob C.态射f : A → B, g, h : B → A满足fh = idB, gf = idA.于是g = gidB =

gfh = idAh = h.唯一性得证.
设C是一范畴，A1，A2是C中的始对象。于是存在唯一的f属于hom（A1，A2），g属于hom（A2，A1），

故fg属于hom（A2，A2）。gf属于hom（A1，A1），但A1，A2是始对象。hom（A1，A1）与hom（A2，A2）
中都只含有唯一的元素，因此gf=1A1，fg=1A2。
终对象同构的证明同上

若对同构的概念稍作一般化，可以得到特殊的态射.同时这两类态射也可以看作Set中单映射和满映射的

推广：

定义. 设f : A → B是范畴C中的态射，C是C中的对象.若对于任意满足gf = hf的态射g, h ∈ hom(B,C)，

都有g = h，则称f是满态射(epimorphism)或满的(epic).
对偶地，若f : B → C是范畴C中的态射，A是C中的对象，若对于任意满足fg = fh的态射g, h ∈

hom(A,B)，都有g = h，则称f是单态射(monomorphism)或单的(monic).

从定义中很明显能看出来，Set中的单态射是单射，满态射是满射，但这对于其他范畴并不成立.

例 14.10. 考虑在范畴Ring中，习题5.1事实上证明了i : Z → Q是满态射，但明显地，这不是一个集合层面的
满射.

例 14.11. 本节最后一个例子是14.9的推广.给定群G，可以定义它的轨道范畴(orbit category)Orb(G)，其中Orb(G)的

对象囊括了G的左陪集G/H，H是任意给定的子群，对任意的对象G/H,G/K，homOrb(G)(G/H,G/K)是所

有G等变的映射，习题4.9给出了态射的具体描述.
给定域F及其扩域E，定义范畴FieldEF是

于是Galois理论基本定理说明函子是范畴的等价.

我们以如下的结果结束本节：

命题 14.2. 设f : A→ B和g : B → C都是范畴C中的态射：

1. 若f和g都是单态射，则gf也是单态射；

2. 若gf是单态射，则f也是单态射；

3. 若f和g是满态射，则gf也是满态射；

4. 若gf是满态射，则g也是满态射；

5. 同构同时是单态射也是满态射.
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定义. 设f : A → B是范畴C中的态射.若存在态射g ∈ hom(B,A)满足fg = idA，则称f是分裂满态射(split
epimorphism).
对偶地，若存在态射g ∈ hom(B,A)满足gf = idA，则称f是分裂单态射(split monomorphism).

习题 14.1. 给定C中的态射f : A→ B，求证对任意的对象C，

1. f是单态射当且仅当f∗ : homC(C,A)→ homC(C,B)是集合之间的单射.

2. f是满态射当且仅当f∗ : homC(B,C)→ homC(A,C)是集合之间的单射.

3. f是分裂单态射当且仅当f∗ : homC(B,C)→ homC(A,C)是集合之间的满射.

4. f是分裂满态射当且仅当f∗ : homC(C,A)→ homC(C,B)是集合之间的满射.

习题 14.2. 给定范畴C中的态射f : A→ B，求证

1. 若f同时是单态射和分裂满态射，则f是同构.

2. 对偶地若f同时是分裂单态射和满态射，则f是同构.

3. f是同构当且仅当f∗是同构，当且仅当f∗是同构.

习题 14.3. 设X是一个拓扑空间，证明X可以成为一个范畴，记为Open(X)，其中X的对象是所有的开集，

homOpen(X)(U, V )是单点集当且仅当U ⊆ V，否则homOpen(X)(U, V ) = ∅.若U ⊆ V，我们称homOpen(X)(U, V )中

的元素为包含映射，记为i : U → V .

习题 14.4. 设C是范畴，A ∈ ob C.定义A的自同构群是homC(A,A)中的所有同构态射组成的集合，群的乘法是

态射的复合，即Aut(A) = {f : A→ A | f 是同构}.求证同构对象的自同构群是同构的.

14.2 范畴中的泛性质对象

14.2.1 积和余积

定义. 给定范畴C中的一族对象{Ai}i∈I，若对象
∏
i∈I Ai和一族态射{πi :

∏
i∈I Ai → Ai}i∈I

Aj
∏
i∈I Ai Ai

B

πiπj

f
fifj

则称对象为积(product).特别地，两个对象A,B的积记为A×B.

下面的命题
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命题 14.3.

作为对偶，还有如下的定义：

定义. 给定范畴C中的一族对象{Ai}i∈I，若对象
∐
i∈I Ai和一族态射{ιi : Ai →

∐
i∈I Ai}i∈I

Aj
∐
i∈I Ai Aj

B

ιi ιj

则称

例 14.12. 集合范畴Set中的积就是集合的笛卡尔积，可用如下方式构造：若{Si}i∈I是一族集合，定义

P = {φ : I →
⊔
i∈I

Si | φ(i) ∈ Si}

和πi : P → Si, φ 7→ φ(i)，则(P, {πi})是{Si}在Set中的积.对偶地，Set中的余积是不交并，即
∐
i∈I Si =

{(i, x) | i ∈ I, x ∈ Si}.

习题 14.5. 求证
(f ◦ g)× h = (f × id) ◦ (g × h).

14.2.2 自由对象

定义. 给定范畴C，若对任意一个对象A都存在一个集合σ(A)，满足

1. 每个态射f : A→ B都对应一个集合间的映射σ(f) : σ(A)→ σ(B)，

2. σ(idA) = idσ(A)，且

3. C中态射的复合与对应集合上的复合一致，

则称C是一个具体范畴(concrete category)，对象A对应的集合σ(A)称为底集(underlying set).

定义. 给定具体范畴C及其中的对象F，若存在集合X和映射i : X → σ(F )，使得对C中的任意对象A和集
合之间的映射g : X → σ(A)，都存在态射f : F → A使得g = σ(f) ◦ i，即有如下交换图

σ(F )

X σ(A),

σ(f)

g

i
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则称F是自由对象(free object).

14.2.3 泛性质对象

例 14.13. 纤维积

X

A×C B B

A C

习题 14.6. 设f : B → A和g : C → A是两个集合间的映射，求证Set中存在纤维积B ×A C.

证明. 令B ×A C := {(b, c) | f(b) = g(c)}，我们要证明这样定义的纤维积满足相应的泛性质.

习题 14.7. 设{∗}是范畴C中的终对象，A,B是C的对象，求证

A×B ∼= A×{∗} B.

任意给定态射f : A→ B，求证

A ∼= A×B B.

证明. 1. 我们来验证A×{∗} B满足A×B的泛性质即可.

2. 同样地验证

习题 14.8. 在习题14.3中我们对任意拓扑空间X定义了一个范畴Open(X)，设U, V是范畴中的两个对象，即

两个开集，证明 U ×X V存在.此外，对任意一族开集{Ui}i∈I，证明
∐
i∈I Ui存在，且

∐
i∈I Ui是U的开覆盖当且

仅当
∐
i∈I Ui

∼= U .

习题 14.9. 给定范畴C中的态射f, g : X ⇒ Y，若它们的余等值子c : Y → C存在，则c是满态射.

证明. 任取h, k : C ⇒W满足h ◦ c = k ◦ c，那么由余等值子的定义h ◦ c ◦ f = h ◦ c ◦ g = k ◦ c ◦ g.于是余等
值子的泛性质存在唯一的C 99KW满足交换图

X Y C,

Z.

f

g

c

h◦c=k◦c

但h, k : C → Z都满足交换图，因此由唯一性h = k.

习题 14.10. 设范畴C中存在任意两个对象的乘积，则纤维积

K A

B B ×B

k

(f,g)

(id,id)
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给出了态射f, g : A⇒ B的等值子K.

习题 14.11. 求证C中的态射f : A→ B是单态射当且仅当图

A A

A B

f

f

是拉回图.

证明. 任意给定态射g, h : C ⇒ A满足gf = hf，于是存在交换图

C A

A B.

g

h f

f

习题 14.12. 给定范畴C中的交换图

X A B

Y C D,

求证左侧方块是拉回图当且仅当复合图是拉回图.

习题 14.13. 求证单态射的拉回是单态射，具体而言，给定范畴C和态射f : A → C, g : B → C，其中g是单态

射，求证拉回给出的结构态射p1 : A×C B → A也是单态射.

证明. 考虑态射h, k : X → A ×C B，满足p1 ◦ h = p1 ◦ k，那么f ◦ p1 ◦ h = f ◦ p1 ◦ k，根据交换
性g ◦ p2 ◦ h = g ◦ p2 ◦ k，再根据g的单性，p2 ◦ h = p2 ◦ k，因此有交换图

X

A×C B B

A C.

h

k

p2◦h=p2◦k

p1◦h=p1◦k

p2

p1

根据拉回的泛性质，存在唯一的X → A×C B满足交换图，但h, k都满足，故h = k.

习题 14.14. 设C是范畴，A,B是C的对象，若存在态射s : A → B和r : B → A使得rs = idA，则称r是s的收

缩(retract)或者左逆(left inverse)，s是r的截面(section)或右逆(right inverse)，A是B的一个收缩(retract).一个
简单的例子是在R模范畴R−Mod中，N是M的收缩当且仅当存在R模P使得M = N⊕P .如果f : X1 → Y1, g :

X2 → Y2是范畴C的态射，且满足以下交换图

X1 Y1 X1

X2 Y2 X1,

s1

f

r1

g f

s2 r2

其中Xj是Yj的收缩，sjrj = idXj
（j = 1, 2），则称f是g的收缩(retract).求证：若f是g的收缩，g是同构，

则f也是同构.
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14.3 函子与自然变换

14.3.1 函子

定义.

例 14.14. covariant hom functor

显然函子性保证了一个函子将同构映为同构，但不是所有的函子将单（满）态射映为单（满）态射.

定义. 给定函子F : C → D，若对C中的任意对象A,B，

1. 若FA,B : homC(A,B)→ homD(F (A), F (B))都是单射，则称函子F是忠实的(faithful).

例 14.15. 若函子F : C → D是忠实的函子，C中的态射f : A→ B满足F (f)是单（满）态射，则f也是单（满）

态射.

14.3.2 自然变换

14.3.3 积的函子性和抽象无意义的自然性

给定范畴C和D，中我们定义了乘积范畴

命题 14.4. 范畴的乘积给出了函子

−×− : CAT×CAT→ CAT,

习题 14.15. 设C,J是范畴，A是C的对象，证明下面的定义构成一个函子

ConstA : J → C

j 7→ A

(a : i→ j) 7→ idA

我们称之为常值函子(constant function).

1. 证明，任意C中的态射f : A −→ B可以诱导一个自然变换

f∗ : ConstA ⇒ ConstB.

2. 证明存在函子∆ : C → Funct(J , C)，把对象A映为ConstA，态射f : A→ B映为f∗ : ConstA ⇒ ConstB.
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3. 证明(−)∗ : homC(A,B)→ Nat(ConstA,ConstB)是双射.

习题 14.16. 设X是一个集合，定义F (X)是以X为基生成的自由群.给出合理的定义说明F : Set → Gp是一个

函子，这个函子被称为自由函子(free functor).

习题 14.17. 设G是一个群，例14.9中定义了范畴BG.

(i) 证明函子F : BG→ Set定义了G在集合F (∗)上的一个（左）群作用.
在(ii)中我们并没有必要限定构造的函子的值域为Set.函子F : BG → Veck定义了一个k线性表示，函

子F : BG→ Top定义了一个G空间.

(ii) 假定我们有两个函子F,G : BG → C，显式地写出自然变换所满足的交换条件.由这样自然变换所确定的
范畴C中的态射称为G-等变的(G-equivariant).

习题 14.18. 设n是任意一个自然数.定义[n]是有n + 1个对象的小范畴，且其中的箭头是序列{0 → 1 → · · · →
n}.设∆是所有[n]组成的范畴，态射是[n]到[m]的函子.

(i) 求证：与范畴[0]等价的范畴当且仅当每个hom集合都仅有一个元素.

(ii) 定义[n]′是n+1元的全序集，其元素记为{0 ≤ 1 ≤ · · · ≤ n}.设∆′是所有[n]′组成的范畴，态射是[n]′到[m]′的

保序映射，即f : [n]′ → [m]′满足i ≤ j必有f(i) ≤ f(j).证明∆′是一个范畴，且存在一个范畴的同

构∆′ ⇒ ∆.于是我们无意区分两个范畴，都称为单纯范畴(simplicial category)或者全序范畴(ordering
category)，也无意区分两个范畴不同的对象.

(iii) 证明
di[n+1] : [n]→ [n+ 1]

0 1 · · · i− 1 i · · · n

0 1 · · · i− 1 i i+ 1 · · · n+ 1

和

sj[n] : [n+ 1]→ [n]

0 1 · · · j − 1 j j + 1 · · · n+ 1

0 1 · · · j − 1 j · · · n

都是范畴∆中的态射，且满足余单纯关系

dj[n+1]d
i
[n] = di[n+1]d

j−1
[n] , ∀ i < j

sj[n]s
i
[n+1] = si[n]s

j+1
[n+1], ∀ i ≤ j

sj[n]d
i
[n+1] = di[n]s

j−1
[n−1], ∀ i < j

sj[n]d
i
[n+1] = id[n], i = j 或 i = j + 1

sj[n]d
i
[n+1] = di−1

[n] s
j
[n−1], ∀ i > j + 1.

其中，di称为第i个对偶面映射(coface map)，sj称为第j个对偶退化映射(codegeneracy map).
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(iv) 证明∆中所有的态射都可以由di和sj生成.更准确地说，任意f ∈ hom∆([n], [m])有唯一的分解

f = di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs ,

其中m = n+ r − s，m ≥ i1 > · · · > ir ≥ 0且0 ≤ j1 < · · · < js < n.

证明. 1.

2.

3.

4. 首先证明唯一性.我们先说明id[n]只存在唯一一种表示方式.假设存在非平凡的分解id[n] = di[n+1]s
j
[n]，

根据命题14.2，di[n+1]是满态射且s
j
[n]是单态射，这与定义矛盾，因此id[n]只存在唯一一种表示方式.

假设f ∈ hom∆([n], [m])存在分解

f = di1 ◦ · · · ◦ dir ,

满足m = n+r,m ≥ i1 > · · · > ir ≥ 0，则f是单射；若还有其他的分解f = dk1◦· · ·◦dku◦sl1◦· · ·◦slv使
得v ≥ 1，则f(lv) = f(lv + 1)，这与f是单态射矛盾，因而f的分解中只能存在di.若有两个不同的分
解

f = di1 ◦ · · · ◦ dir = dk1 ◦ · · · ◦ dku

m = n+ r, i1 > · · · > ir和m = n+ u, k1 > · · · > ku，于是r = u，即有相同数目的对偶面映射复合而

成；不妨设i1 > k1是二者第一个不同的指标，那么等式

di1 ◦ · · · ◦ dir = dk1 ◦ · · · ◦ dku

左右两边同时左复合sk1−1可以得到

dk2 ◦ · · · ◦ dku = sk1−1 ◦ di1 ◦ · · · ◦ dir = di1−1 ◦ sk1 ◦ · · · ◦ dir ,

继续用余单纯关系sj[n]d
i
[n+1] =


di[n]s

j−1
[n−1], ∀ i < j

id[n], i = j 或 i = j + 1

di−1
[n] s

j
[n−1], ∀ i > j + 1

，dk1可以向右移动sk1，最终要么对

偶退化态射sk1与某个对偶面映射复合为id要么可以换到最右侧（指标k1可能发生变化），但已经证

明了后者不可能，因此

dk2 ◦ · · · ◦ dkr = di1−1 ◦ · · · ◦ dir = di1−1 ◦ · · · ◦ d̂it ◦ · · · ◦ dir .

但是i1 > k1意味着i1 − 1 ≥ k1 > k2，因此对r = u的归纳法可以导出矛盾，于是这样的分解只有唯一

一种方式.

一般情况下，对s做归纳法，s = 0的情形已经完成证明.任给定f ∈ hom∆([n], [m])，若有两个分解

f = di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs = dk1 ◦ · · · ◦ dku ◦ sl1 ◦ · · · ◦ slv ,
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满足m = n+ r − s, i1 > · · · > ir, j1 < · · · < js和m = n+ u− v, k1 > · · · > ku, l1 < · · · < lv.左右两边
同时右复合djs可以得到

di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs−1 = dk1 ◦ · · · ◦ dku ◦ sl1 ◦ · · · ◦ slv ◦ djs ,

根据余单纯关系可以向左移动djs，要么与某个slt复合为id要么可以换到左侧（指标js可能发生变化）

并且最终得到

di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs−1 = dk1 ◦ · · · ◦ dj
′
s ◦ · · · ◦ dk

′
u ◦ sl

′
1 ◦ · · · ◦ sl

′
v

（其中a′ = a± 1）.

(a) 若djs与某个slt复合为id，则必然有js ≤ lv +1，否则根据余单纯关系djs无法复合；若js < lv，则

复合后有

di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs−1 = dk1 ◦ · · · ◦ dku ◦ sl
′
1 ◦ · · · ◦ slv−1,

但归纳假设说明s = v且js−1 = lv − 1，与js < lv矛盾.于是这种情况下js = lv或js = lv + 1，再根

据归纳假设r = u, s = v且it = kt, jw = lw，w < s；此时只要js = lv就完成了证明.否则，有等式

di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs = di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs−1,

并且js−1 < js − 1.这样左侧的复合将j, j + 1映到相同的值，但右侧并不满足，矛盾.

(b) 若换到左侧（指标js可能发生变化）并且最终得到

di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs−1 = dk1 ◦ · · · ◦ dj
′
s ◦ · · · ◦ dk

′
u ◦ sl

′
1 ◦ · · · ◦ sl

′
v

那么根据归纳假设r = u + 1, s = v + 1，且对应的指标都相同，特别地js > js−1 = l′v，于

是lv ≥ js > lv − 1，但这种情况下slv与djs复合为id，矛盾.

综上我们完成了归纳.

然后证明存在性.任意一个映射f : [n]→ [m]给出了有序组(f0 = f(0), · · · , fn = f(n))，满足0 ≤ f0 ≤
f1 ≤ · · · ≤ fn ≤ m，假定该序列(f0, · · · , fn)相比于(0, 1, · · · ,m)缺少了0 ≤ ir < · · · < i1 < m，并且

重复了fj1 = fj1+1, · · · , fjs = fjs+1（0 ≤ j1 < · · · < js < n），那么根据定义

f = di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs .

习题 14.19. (i) 设C是范畴，A,B是C的对象，f ∈ homC(A,B).证明f诱导了自然变换

f∗ : homC(−, A)⇒ homC(−, B)

和

f∗ : homC(B,−)⇒ homC(A,−).

(ii) 在(i)的记号下，证明f是一个同构当且仅当f∗是同构，当且仅当f∗是同构.
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习题 14.20. 给定范畴C,D和函子F,G : C → D.求证给定自然变换α : F ⇒ G等同于给定函子

H : C × [1]→ D

满足交换图

C

C × [1] D.

C

id×d1 F

H

id×d0
G

证明. 一方面给定自然变换α : F ⇒ G，定义函子H满足

1. 将对象(A, 0)映到G(A)，将对象(A, 1)映到F (A)，

2. 将态射(f : A → B, id0)映到G(f)，将态射(f : A → B, id1)映到F (f)，将态射(f : A → B, 0 → 1)映

到αB ◦ F (f) = G(f) ◦ αA.

习题 14.21. 设F1, F2是函子C → D，η : F1 ⇒ F2.

1. 若G是函子D → E，证明Gη : GF1 ⇒ GF2，(Gη)A := G(ηA)是自然变换.

2. 若G是函子B → C，证明ηG : F1G⇒ F2G，(ηG)A := ηG(A)是自然变换.

证明.

习题 14.22. 给定范畴C,D, E , T和函子F : C → D, G : D → T，求证

1. 当C是小范畴时Nat(F,−),Nat(−, F ) : Funct(C,D)→ Set可以自然地成为函子.

2. − ◦ F : Funct(D, E)→ Funct(C, E)和F ◦ − : Funct(E , C)→ Funct(E ,D)在习题14.21的意义下是函子，分
别记为F ∗和F∗.

3. (G ◦ F )∗ = G∗ ◦ F∗，(G ◦ F )∗ = F ∗ ◦G∗.

证明.

习题 14.23. 给定范畴C,D, E和函子F,G : C → D，

1. 由习题14.22存在函子Nat(−, F ),Nat(−, G),Nat(F,−),Nat(G,−) : Funct(C,D) → Set，求证任意自然

变换η : F ⇒ G诱导了自然变换

Nat(−, η) : Nat(−, F )⇒ Nat(−, G)

和

Nat(η,−) : Nat(G,−)⇒ Nat(F,−).
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2. 由习题14.22存在函子−◦F,−◦G : Funct(D, E)→ Funct(C, E)和F ◦−, G◦− : Funct(E , C)→ Funct(E ,D)，
求证任意自然变换η : F ⇒ G诱导了自然变换

η∗ : − ◦ F ⇒ − ◦G

和

η∗ : F ◦ − ⇒ G ◦ −.

3. (Hη)∗ = H∗η∗，(ηK)∗ = η∗K∗，(Hη)∗ = η∗H
∗且(ηK)∗ = K∗η∗.

证明.

习题 14.24 (Categories for the Working Mathematician, P37). 设C,D和E是范畴，如果F是函子C×D → E，则
称F是定义在(C,D)上的双函子(bifunctor)，其中函子性条件显式地写为：对任意C中的态射f : A → B和D中
的态射g : C → D .如果对于任意C中的对象A和D中的对象C，都有证明存在(C,D)上的双函子F : C ×D → E，
满足

F (−, C) = LC

且

F (A,−) = RA.

习题 14.25. F : C × D → E，α : F ⇒ G

习题 14.26. 给定范畴C,D, E和函子F : D → C, G : E → C.构造范畴M和函子P :M→ D, Q :M→ E使得对
任意范畴N和函子K : N → D, G : N → E，若有图

N E

D C

K

H G

F

交换，都有唯一存在的函子: N →M.这个范畴M同构意义下是唯一的，我们记为E ×C D.

证明. 定义范畴E ×C D包含对象

习题 14.27. 给定群G，设U是自然的忘却函子U : G− Set→ Set，即忘却掉群作用的函子.定义

Aut(U) := {α : U → U | αA ∈ Aut(A)对任意的对象A都成立},

即U的自同构群是所有可逆自然变换α : U → U的全体(习题14.4).求证Aut(U) ∼= G.

证明. 定义

φ : G⇆ Aut(U) : ψ

g 7→ φ(g)A : a 7→ g · a

αG(1G)←[ α,

其中ψ的定义中我们将G视为有左作用的G集.我们需要验证

1. φ是良定义的，这是因为G− Set中的态射都是G等变的.

2. ψ ◦ φ = id.只需要注意到φ(g)G(1G) = g · 1G = g即可.
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3. φ ◦ ψ = id，结合前一条我们只需要证明ψ是单射即可.假设αG(1G) = 1G ∈ G，对任意的G集X和x ∈
X，存在G− Set中的态射tx : G→ X, g 7→ g · x，依据α的自然性我们有

αX ◦ U(tx) = U(tx) ◦ αG = U(tx),

于是αX(x) = x对任意x ∈ X都成立，因此α = id.

14.4 范畴的等价与同构

例 14.16. 给定局部小的范畴C，考虑协变函子homC(A,−) : C → Set和任意其他的函子F : C → Set，给

定F (A)中的元素a，那么自然地可以给定一个自然变换

ηa : homC(A,−)⇒ F

ηaB : homC(A,B)→ F (B)

h 7→ F (h)(a),

由于F是函子，如上明显是良定义的；自然性交换图

homC(A,B) F (B)

homC(A,C) F (C)

homC(A,f)

ηaB

F (f)

ηaC

由计算

F (f)(ηaB(h)) = F (f)(F (h)(a)) = F (fh)(a) = ηaC(fh) = ηaC(homC(A, f)(h))

给出.

定理 14.5.

14.4.1 范畴的高阶结构

引理 14.1 (纵向复合). 给定范畴C,D和函子F,G,H : C ⇒ D，若有自然变换η : F ⇒ G和ξ : G⇒ H

引理 14.2 (横向复合). 给定范畴C,D, E和函子F,G : C ⇒ D, H,K : D ⇒ E.若有自然变换η : F ⇒ G和ξ :

H ⇒ K，则对于任意C中的对象A存在交换图
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HF (A) KF (A)

HG(A) KG(A),

ξF (A)

H(ηA) K(ηA)

ξG(A)

这于是定义了自然变换α ∗ β : H ◦ F ⇒ K ◦G.

证明. 首先证明图的交换性.ξ的自然性说明对任意D中的对象B,D和态射g : B → D，存在交换图

H(B) K(B)

H(D) K(D),

ξB

H(g) K(g)

ξD

于是取B := F (A), D := G(A)和g := ηA就得到了需要的图.因而可以定义

α ∗ β : H ◦ F ⇒ K ◦G

(α ∗ β)A : HF (A)→ KG(A)

(α ∗ β)A := K(ηA) ◦ ξF (A) = ξG(A) ◦H(ηA).

再证明如上定义的自然性.任意给定C中的对象A,C和态射f : A→ C，ξ和η的自然性说明存在交换图

HF (A) KF (A) KG(A)

HF (C) KF (C) KG(C),

HF (f)

ξF (A)

KF (f)

K(ηA)

KG(f)

ξF (C) K(ηC)

这即是所要的自然性.

引理14.2可以借由下图表述

C D E C Eα β α∗β

F

G

H

K

HF

KG

引理 14.3 (四项交换(middle four interchange)). 给定范畴C,D, E和函子F,G,H : C → D和J,K,L : D →
E.

C D E
α γ

F

G

H

β

J

K

L

δ

那么，即有交换图
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C D E C Eβ◦α δ◦γ α∗β

F

H

J

L

HF

KG

定义. 2范畴C是一个数学对象：

(i) 一些对象(object)（通常用大写字母A,B,C表示）构成的族ob C，

(ii) 对任意的有序对象二元组(A,B)， 存在被称为态射集(hom set)集合homC(A,B)， 其中的元

素f称为以A为定义域(domain)， 以B为余定义域(codomain)的态射(morphism)， 或简称为

从A到B(morphism from A to B)的态射，记为f : A→ B.当范畴C明确时，可简记为hom(A,B)，

(iii) 对任意的有序对象三元组(A,B,C)，存在映射

homC(B,C)× homC(A,B)→ homC(A,C)

(g, f) 7→ g ◦ f,

其中g ◦ f被称为态射g与f的乘积(product)或复合(composition).

这些要素必需满足如下公理：

C1). 当二元数组(A,B)不等于(C,D)时，homC(A,B)与homC(C,D)互不相交；

C2). (结合律，associativity)，若f ∈ homC(A,B), g ∈ homC(B,C), h ∈ homC(C,D)，则有(h ◦ g) ◦ f =

h ◦ (g ◦ f)；

C3). (单位态射， identity)对每个对象A都有一个属于homC(A,A)的态射idA使得对任意的f ∈
homC(A,B)有f ◦ idA = f，以及对任意的g ∈ homC(B,A)，有idA ◦ g = g.

习题 14.28. 设C与D是等价的范畴.若C中存在始对象，证明D也存在始对象.

习题 14.29. 求证范畴C中的对象I是始对象当且仅当存在自然变换α : ConstI ⇒ idC满足αI : I → I是同构.

证明. 若I是始对象，则α的存在性是显然的.反过来，任意给定f : I → A，由α的自然性我们有图

I I

I A,

αI

f

αA

这意味着αA = f ◦ αI .已知αI是同构因此f = αAα
−1
I ，这意味着态射I → A是唯一的，因而αI = idI .

习题 14.30. 若函子F : C → D是范畴间的等价，求证对任意C中的态射f, g : A→ B，

F (f) = F (g)
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意味着f = g.

习题 14.31. 给定函子F : D → C和G : E → C，我们称如下构造是D, E的纤维范畴(comma category)，记
为(F,G)或者F/G：

1. 它的对象是三元组(A,B, f)，其中A是D的对象，B是E的对象，f ∈ homC(F (A), G(B))；

2. 二元组(h : A1 → A2, k : B1 → B2)是(A1, B1, f1)到(A2, B2, f2)的态射当且仅当

G(k)f1 = f2F (h),

即有如下C中的交换图

F (A1) G(B1)

F (A2) G(B2),

f1

F (h) G(k)

f2

其中，h ∈ homD(A1, A2)，k ∈ homE(B1, B2).

证明：

(i) 验证如此构造的F/G是一个范畴，特别地，当F是ConstA时，该范畴记为A/G，也称为G在A下的范畴(the
category of G under A)（对偶地当G是ConstA时，该范畴记为F/A，也称为F在A上的范畴(the category
of G over A)）；特别地当G还是IdC时范畴记为F/C（对偶地进一步当F还是IdC时范畴记为C/G）.具体
地写出它们的对象和态射.

(ii) 考虑G是ConstA的情形，若F是满忠实的，那么对任意D中的对象X存在范畴的同构D/X ∼= F/F (X).

(iii) 求证存在范畴的拉回图

F/A C/A

D C.F

这意味着范畴F/A应当视为函子F : D → C在对象A处的“纤维”.

证明. 1. F/C的对象是三元组(A,B, f)，其中A是D中的对象，B是C中的对象，f是态射f : F (A) →
B；

2. 一个态射(h, k) : (A1, B1, f1)→ (A2, B2, f2)是交换图

F (A1) G(B1)

F (A2) G(B2),

f1

F (h) G(k)

f2

其中，h ∈ homD(A1, A2)，k ∈ homE(B1, B2).
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接下来的习题中我们将详细地用范畴的语言讨论范畴当中“图”的概念，并讨论追图（diagram chasing）
和用图表示交换性的技术.

定义. 设C是一个范畴，则C的一个图(diagram)是一个函子F : J → C.其中，J是一个小范畴，被称为指
标范畴(indexing category).

习题 14.32. 设F : C → D是忠实函子.求证任意在D中交换的C中的图都在C中交换.

习题 14.33. 任意给定集合X，X可以看作一个离散范畴Xδ，其中对象的全体是X，且态射只有恒等态射.求
证如此的对应

X 7→ Xδ

给出了范畴间的嵌入

Set ↪→ Cat.



第十五章 范畴中的泛性质

15.1 Yoneda引理

15.1.1 函子的可表性

定义. 给定局部小的范畴C和协变函子F : C → Set，若存在C中的对象A和自然同构α : hA :=

homC(A,−)⇒ F，则称函子F是可表的(representable)，称A是F的表示对象.

对偶地还有反变函子的可表性：

例 15.1. 这里我们给出几个反变可表函子的例子：

1. 反变幂集函子P : Set→ Set构造如下：

(a) 对任意集合X，P (X)是X的幂集，即P (X) := {W |W ⊆ X}，

(b) 对任意集合间的映射f : X → Y，P (f) := f−1定义为原象，即对任意Z ∈ P (Y )，P (f)(Z) :=

f−1(Z)为Z在f下的原象集.

我们需要说明存在反变函子的同构P ∼= homSet(−, [1]δ)，其中集合[1]δ包含两个元素，记为{0, 1}.注意到
对任意集合S，集合间自然的同构

αS : P (S)→ homSet(S, [1]
δ),

定义为将子集A ⊆ S映到

χA : S → [1]δ

x 7→

{
1 x ∈ A
0 x ̸∈ A.

自然性可以由交换图

P (T ) homSet(T, [1]
δ)

P (S) homSet(S, [1]
δ)

αT

f−1 f∗

αS

71
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来体现.

2. 拓扑空间的开集的全体是函子τ : Top → Set Sierpinski（谢尔宾斯基）空间S := {0, 1}，其中{0}是闭
集，{1}是开集.

15.1.2 Yoneda引理

定理 15.1 (Yoneda). 任意给定局部小的范畴C，则对任意的协变函子F : C → Set，存在关于C中对象A的
自然同构

Nat(hA, F ) ∼= F (A),

并且可以构造使得该同构关于函子F和对象A都是自然的.

对偶地，对于局部小的范畴C和反变函子G : C◦ → Set，则存在的自然同构

Nat(hA, F ) ∼= G(A).

证明. 考虑如下定义的映射

Φ : Nat(hA, F )⇆ F (A) : Ψ

α 7→ αA(idA)

ηa ←[ a,

其中ηa是例14.16中定义的自然变换.

习题 15.1. 设k − Vec是域k上向量空间全体组成的范畴，k − FinVec是k上有限维向量空间全体组成的满子

范畴，U是有限维k向量空间，求证函子F : k − FinVec → k − FinVec, V 7→ V ⊗k U是可表的，其代表元素
为(U∗, idU ∈ F ((U∗) = U∗ ⊗k U).

习题 15.2. 设R是交换环，φ :M → N是R模同态φ :M → N，定义函子K : R−Mod→ Ab，满足对任意对

象P，

K(P ) := Ker(HomR(P,M)
f∗−→ HomR(P,N)),

对任意R模同态f : P → Q

K(f) := hM |K(P )

求证函子K是可表的.

习题 15.3. 求证反变幂集函子是可表的.

习题 15.4. 证明以下函子是不可表的：

1. F : Ring→ Set，R 7→ {r2 | r ∈ R}；

2. G : Ring→ Set，其中G把环R映到R的所有幂零元素组成的集合；

3. O : Top→ Set，其中O把Hausdorff空间X映到X的所有开集组成的集合；



15.2 元素范畴与泛性质 73

4. P : Set→ Set，；

5. S : Gp→ Set，其中S把群G映到G的所有子群组成的集合.

证明. 反设函子F是可表的，于是存在环R使得η : F ∼= homRing(R,−).特别地，F (R) ∼= homRing(R,R).取F (R)中
的在这个同构下对应到idR的元素u，由F的构造，存在r ∈ R使得u = r2.我们将会证明u具有如下泛性质：对
任意环S和任意S中的平方元素s2，存在唯一的同态f : R→ S使得f(u) = s2.这是因为我们有如下交换图

homRing(R,R) homRing(R,S)

F (R) F (S),

g∗

ηR ηS

F (g)

并且对于任意g ∈ homRing(R,S)↭ s2，存在唯一的g∗使得g∗(idR) = g，具体来说，令g := η−1
S (s2)，那么

F (g)(u) = F (g)(ηR(idR)) = ηS(g
∗(idR)) = ηS(g) = s2.

假设还有一个态射h满足条件，那么

h∗(idR) = (η−1
S ◦ F (h) ◦ ηR)(idR) = (η−1

S ◦ F (h))(u) = η−1
S (s2) = g,

于是我们的论断得证.

考虑S = Z[x]，s = x，根据刚刚所证明的，存在唯一的环同态g : R → Z[x]使得g(u) = x2.零m : Z[x] →
Z[x]，x 7→ −x，那么m ◦ g也是将u映到x2的态射.故矛盾.

15.2 元素范畴与泛性质

定义. 给定局部小的范畴C和协变函子F : C → Set，如下范畴

1. 对象包含了所有的有序对(A, a)，其中A是C中的对象，a是F (A)中的元素，

2. hom((A, a), (B, b)) := {f ∈ homC(A,B) | F (f)(a) = b}

被称为F的元素范畴(category of elements)，记为
∫
C F .

命题 15.2. 协变函子F : C → Set是可表的当且仅当其元素范畴
∫
C F有始对象.

证明.

习题 15.5. 设函子F,G : C → Set是自然同构的.证明自然同构η : F ⇒ G诱导了它们元素范畴的同构：∫
C
F ∼=

∫
C
G.
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习题 15.6. 证明反变函子F : C◦ → Set可表当且仅当其元素范畴
∫
C◦ F存在终对象.

14.2节中我们讨论了泛性质对象，下个习题中我们会解释可表函子的表示和之前泛性质对象的关系：

习题 15.7. 给定集合之间的映射f : X → Z, g : Y → Z，我们知道纤维积X ×Z Y存在，定义为

X ×Z Y = {(x, y) ∈ X × Y | f(x) = g(y)}.

求证：给定范畴C中的态射f : A→ C, g : B → C，若对任意对象T，函子

T 7→ hA(T )×hC(T ) hB(T )

都是可表的，则纤维积A×C B存在.

证明.

习题 15.8. 回顾习题14.31中的定义，求证对任意协变函子F : C → Set存在范畴的同构

(y, F ) ∼=
∫
C
F,

其中y是Yoneda嵌入.

习题 15.9 (Grothendieck构造). 给定局部小的范畴C和协变函子F : C → Cat，如下范畴

1. 对象包含了所有的有序对(A, a)，其中A是C中的对象，a是F (A)中的对象，

2. hom((A, a), (B, b)) := {(f, g) | f ∈ homC(A,B), g ∈ homF (B)(F (f)(a), b)}，

3. 复合满足(h, k) ◦ (f, g) = (h ◦ f, k ◦ F (f)(g))

被称为F的Grothendieck构造(Grothendieck construction)，记为
∫
C F .求证任意给定函子G : C → Set，存在范

畴的同构

i∗ :

∫
C
G

∼=−→
∫
C
i∗(G),

其中，i : Set ↪→ Cat是习题14.33给出的嵌入，前者是元素范畴，后者是Grothendieck构造.由此，我们并不
在记号上实际区分元素范畴和Grothendieck构造.

证明. 只要证明存在g ∈ homF (B)(F (f)(a), b)}当且仅当F (f)(a) = b

习题 15.10. 给定群K,N和群作用φ : K → Aut(N).定义函子

Φ : BK → Cat

{∗} 7→ N,

求证Grothendieck构造 ∫
BK

Φ

恰好是半直积K

习题 15.11. 给定函子F : C → Set，求证
∫
C F是图

Set∗

C Set

U

F
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的拉回范畴，其中函子U : Set∗ → Set是自然的忘却函子.

习题 15.12. 给定范畴C，它的分解范畴(category of factorisation)（或者叫扭曲箭头范畴(twisted arrow cate-
gory)）Tw(C)是

1. 对象是C中的态射f : A→ B，

2. 态射是目标沿源的分解

homTw(C)(f : A→ B, g : C → D) :=

(p, q)

∣∣∣∣∣∣∣∣∣
A C

B D

f g

p

q

, g = q ◦ f ◦ p

 ,

求证

Tw(C) ∼=
∫
C◦×C

hom.

15.3 伴随函子

在第一节中，我们引入了对偶范畴的概念。一个自然的想法是，对一个给定的函子，我们是否也能找到

一个类似对偶的构造？我们类比一个具体的情形，考虑两个有限维实向量空间V，W带有内积... 是线性映射。
若存在线性映射... 使得 ....
则称...是T的伴随映射。
如果我们将范畴类比为空间，将函子类比为映射，这样只要能构造合适的“内积”就可以得到函子的伴

随。事实上，这样的“内积”不需要构造，存在自然的结构使定义是合适的。

定义. 给定范畴C,D和函子F : C → D, G : D → C，若对任意C中的对象A和D中的对象B，都存在自然的
集合之间的同构

homD(F (A), B) ∼= homC(A,G(B)),

则称F是G的左伴随，G是F的右伴随函子(right adjoint functor).

首先我们解释一下如上定义中的自然性.记自然同构为

αA,B : homD(F (A), B) ∼= homC(A,G(B))

f ♯ : F (A)→ B 7→ f ♭ : A→ G(B),

那么对D中的任意态射h : B → D，有如下交换图

homD(F (A), B) homC(A,G(B))

homD(F (A), D) homC(A,G(D)),

αA,B

h∗ G(h)∗

αA,D

具体来说，对任意f ♯ : F (A)→ B都有交换图
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A G(B)

G(D).

f♭

(h◦f♯)♭
G(h)

对偶地，还有对C中的态射的自然性，即对任意C中态射k : A→ C，有交换图

homD(F (A), B) homC(A,G(B))

homD(F (C), B) homC(C,G(B)),

αA,B

F (k)∗ k∗

αC,B

或者是如先前相同的图

F (A)

F (C) D.

F (k)
(g♭◦k)♯

g♯

自然性来源于定义的要求.

例 15.2. 考虑忘却函子U : Top → Set，它将拓扑空间(X, τ)映到它的底集X，我们可以证明U同时有左伴随

和右伴随.考虑D : Set→ Top，其中对任意集合S，拓扑空间D(S)的底集是S，它具有离散拓扑，即任意S的

子集都是开集，为证明

homTop(D(S), X) ∼= homSet(S,U(X)),

显然有homTop(D(S), X) ⊆ homSet(S,U(X))，但D(S)有离散拓扑说明任意集合间的映射都是连续的，故D是U的

左伴随.
再考虑I : Set→ Top，它把集合S映为具有底集S和开集∅的拓扑空间I(S).为证明

homSet(U(X), S) ∼= homTop(X, I(S)),

只要说明任意U(X)到S的集合间映射都是连续的，但∅的原象必然为∅, S的原象必然是X，故任意集合的映
射f : X → I(S)是连续的.

由于以上的同构都是恒等，故自然性显然.

例 15.3. 考虑忘却函子U : Gp → Set，将群G映到它自身的集合，将群同态映到它本身作为集合间的映射，

我们将说明它具有左伴随函子.
考虑函子

F : Set→ Gp

S 7→ ⟨S⟩,

其中⟨S⟩是由集合S生成的自由群，于是

αS,G : homGp(⟨S⟩, G) ∼= homSet(S,U(G))

是f 7→ f ◦ ι，其中ι : S → F (S)定理3.1中的嵌入，泛性质说明这是集合间的同构，只要证明自然性即可.

如上的伴随实际上是一组被称为“自由-忘却伴随”(free-forgetful adjunction)的特例，常见的许多伴随都
可以归到这一类.
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例 15.4. 给定含幺环R,S，假设M是右R模，N是(R,S)双模，L是右S模，定理10.3给出了自然的同构

αM,L : HomS(M ⊗R N,L)
≃−→ HomR(M,HomS(N,L)),

这意味着函子对

−⊗R N : R−Mod⇆Mod− S : HomS(N,−)

是伴随，这个伴随被称为“张量-态射伴随”(tensor-hom adjunction).

下面的引理给出了同构自然性的一个等价定义，在通常伴随性的证明中它都是有用的.

引理 15.1. 给定一组函子F : C ⇆ D : G，且给定一族同构

αA,B : homD(F (A), B) ∼= homC(A,G(B)), ∀A ∈ C, B ∈ D,

则F,G是伴随函子当且仅当图

F (A1) B1

F (A2) B2

f♯

F (h) k

g♯

在D中交换等价于图

A1 G(B1)

A2 G(B2)

f♭

h G(k)

g♭

在C中交换，其中A,C是C中的对象，B,D是D中的对象.

证明. 证明中我们依旧使用♯, ♭来表示D中和C中的对应的态射.
假设F : C ⇆ D : G是伴随，且图

F (A1) B1

F (A2) B2

f♯

F (h) k

g♯

交换，即k ◦ f ♯ = g♯ ◦ F (h)，则由D中的自然性

G(h) ◦ f ♭ = (h ◦ f ♯)♭ = (g♯ ◦ F (h))♭

但C中的自然性说明

F (A)

F (C) D

F (k)
(g♭◦k)♯

g♯
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是交换的，故(g♯ ◦ F (h))♭ = (g♭ ◦ k)♭♯ = g♭ ◦ k，即第二幅图交换.同理，若第二幅图交换等价于第一幅图.
另一方面，若两幅图交换性等价，取A1 = A2 = A,B1 = B,B2 = D,h = idA, g

♯ = k ◦ f ♯，那么第一幅
图交换，等价性说明第二幅图交换，这意味着G(h) ◦ f ♭ = (h ◦ f ♯)♭，即D中的自然性.同理，可以证明C中自然
性。

命题 15.3. 协变函子G : D → C有左伴随函子当且仅当对C中的任意对象A，函子homC(A,G(−))可表.

证明. 证明：必要性。设... 是G的左伴随函子。固定... 中的对象A，我们证明... 是函子... 的代表。但... 是
自然态射且对任意... 中的对象B，... 都是同构，故得证。充分性。我们将构造G的左伴随。对任意... 中的
对象A，由于... 可表，故可以找到其代表，记其中的一个对象为F (A)。若... 是... 中的任意态射，于是f诱
导了一个自然态射 ... 根据函子的可表性， ... 且..., 于是... 在这两个自然同构下是自然变换 ... 我们记为...
，由Yoneda引理 ... 故存在... 是该同构下... 的对应，为证明这样的定义构成函子，若... 都是... 中的态射，
则... 的函子性说明... 于是函子的可表性说明... 这样F的函子性就归结为在Yoneda引理中的自然同构 ... 将...
映到... ，我们再来考虑定义 Yoneda引理中 ... 定义为 ... 故 ... 由于... 关于对象的自然性，我们有 (图) 这意
味着 ... 但同时，... 这证明了F是函子，最后我们需要说明同构是自然的。任取... 中的态射... 则... 是自然态
射意味着图 (图) 是交换的，这是第一个自然性。对于反变的自然性，我们考虑... 是... 中的态射，则
由于Yoneda中的定义... 故要说明... 即可，我们知道... ，故... ，于是... 。但Yoneda引理中的定义... ...

这就完成了证明.

15.3.1 单位和余单位

在上一小节的讨论中，我们知道，对任意的对象A ∈ ob C，若F是G的左伴随，则有自然同构

αA,− : homD(F (A),−)⇒ homC(A,G(−)),

而Yoneda引理说明
homD̂(hF (A),homC(A,G(−))) ∼= homC(A,GF (A)),

因而自然变换αA,−对应到唯一的态射ηA : A→ GF (A)，具体而言，在Yoneda引理的映射下ηA = αA,F (A)(idF (A))，

于是当存在态射f : A→ C时，根据α的自然性

αC,F (C)(idF (C)) ◦ f = (αC,F (C)(idF (C)) ◦ f)♯
♭

= (idF (C) ◦ F (f))♭

= (F (f) ◦ idF (C))
♭

= GF (f) ◦ αA,F (A)(idC),

这意味着存在交换图

A GF (A)

C GF (C),

ηA

f GF (f)

ηC
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即η是自然变换idC ⇒ GF，它被称为伴随对(F,G)的单位(unit).

例 15.5. 考虑例15.3中给出的伴随
F : Set⇆ Gp : U,

按照上面的讨论，自然变换η : idSet ⇒ UF定义为对任意集合S，

ηS(x) := αS,F (S)(idF (S))(x) = idF (S) ◦ ι(x) = ι(x) = x,

它是单位映射，因而η被称为单位.

例 15.6. 考虑例15.4中给出的伴随

−⊗R N : R−Mod⇆Mod− S : HomS(N,−),

按照上面的讨论，自然变换η : idR−Mod ⇒ HomS(N,−⊗R N)定义为，对任意左R模M，

ηM (m) := αM,M⊗RN (idM⊗RN )(m) = m⊗−.

对偶地，ϵB = αG(B),B(idG(B)) : FG(B)→ B关于D中的对象也具有类似的自然性，用图表示就是

FG(B) B

FG(D) D,

ϵB

FG(g) g

ϵD

因此这得到了另一个自然变换ϵ : FG⇒ idD，称为伴随对(F,G)的余单位(counit)，或赋值(evaluation).

例 15.7. 接例15.5中的讨论，伴随
F : Set⇆ Gp : U,

的余单位是

ϵG(g
δ1
1 · · · gδmm ) = αU(G),G(idU(G))(g

δ1
1 · · · gδmm ) = gδ11 ∗ · · · ∗ gδmm ,

其中∗是G中的乘法.

例 15.8. 接例15.6中的讨论，伴随

−⊗R N : R−Mod⇆Mod− S : HomS(N,−)

的余单位是

ϵL

(∑
i

fi ⊗ ni

)
= αHomS(N,L),L(idHomS(N,L))

(∑
i

fi ⊗ ni

)
=
∑
i

fi(ni),

这解释了为何ϵ被称为赋值.

任意给C中的对象A，η : A → GF (A)是C中的态射，因而F (η) : F (A) → FGF (A)是D中的态射；同
理ϵF (A) : FGF (A)→ F (A)也是D中的态射，我们尝试求得它们的复合.交换图

A GF (A)

GF (A) GF (A)

ηA

ηA idGF (A)

idGF (A)
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根据引理15.1知等价于

F (A) F (A)

FGF (A) F (A),

idF (A)

F (ηA) idF (A)

ϵF (A)

即ϵF (A) ◦ F (ηA) = idF (A)，用交换图表示是

F FGF

F.

Fη

id
ϵF

对偶地，交换图

FG(B) FG(B)

FG(B) B

idFG(B)

idFG(B)

ϵB

ϵB

等价于

G(B) GFG(B)

G(B) G(B),

ηG(B)

idG(B) G(ϵB)

idG(B)

即G(ϵB) ◦ ηG(B) = idG(B)，用交换图表示是

G GFG

G.

ηG

id
Gϵ

定理 15.4. 给定函子对F : C ⇆ D : G，则二者是伴随当且仅当存在自然变换η : idC ⇒ GF, ϵ : FG ⇒
idD满足如下两幅交换图

F FGF G GFG

F, G.

Fη

id
ϵF

ηG

id
Gϵ

证明. 之前的讨论我们已经证明了伴随可以给出单位和余单位，且满足交换图.
另一方面，给定C中的对象A和D中的对象B，我们需要证明满足交换图的自然变换η, ϵ给出了集合间的同

构

αA,B : homD(F (A), B) ∼= homC(A,G(B))

且满足在C和D中的自然性.习题15.17第一部分给出了想法.给定f ♯ : F (A)→ B，定义

αA,B(f
♯) = f ♭ := G(f ♯) ◦ ηA : A→ GF (A)→ G(B),
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和

homD(F (A), B)←homC(A,G(B)) : βA,B

g♯ := ϵB ◦ F (g♭)←[g♭,

我们需要验证二者互逆和（任意一个的）自然性.

注意到

βA,B ◦ αA,B(f ♯ : F (A)→ B)

=βA,B(G(f
♯) ◦ ηA)

=ϵB ◦ FG(f ♯) ◦ F (ηA),

根据ϵ的自然性我们有

FGF (A) FG(B)

F (A) B,

FG(f♯)

ϵF (A) ϵB

f♯

即ϵB ◦ FG(f ♯) = f ♯ ◦ ϵF (A)，于是

ϵB ◦ FG(f ♯) ◦ F (ηA) = f ♯ ◦ ϵF (A) ◦ F (ηA) = f ♯,

这样βA,B ◦ αA,B = id.同理可以证明αA,B ◦ βA,B = id.

αA,B关于D的自然性是交换图

A G(B)

G(D).

f♭

(h◦f♯)♭
G(h)

15.3.2 反变伴随和多变量伴随

命题 15.5. 给定协变函子F : C → D，满足对任意D中的对象B，都能找到C中的对象G(B)，满足

homD(F (A), B) ∼= homC(A,G(B))

对任意C中的对象A成立且关于A自然，则存在唯一的方式使得对应B 7→ G(B)扩张为一个函子G : D →
C，右伴随于F .

证明.
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定理 15.6. 若双函子F : C × D → E满足对任意C中的对象A，函子F (A,−) : D → E都有一个右伴随函
子GA : E → D，那么存在唯一一个双函子

G : C◦ × E → D

满足G(A,−) = GA，且同构

homE(F (A,B), C) ∼= homD(B,G(A,C))

关于对象A ∈ ob C, B ∈ ob D, C ∈ ob E都自然.
若对D中的任意对象B，函子F (−, B)还存在右伴随HB : E → C，那么

1. 存在唯一的双函子H : D◦ × E → C满足H(B,−) = HB且同构

homE(F (A,B), C) ∼= homD(B,G(A,C)) ∼= homC(A,H(B,C))

关于对象A ∈ ob C, B ∈ ob D, C ∈ ob E都自然，

2. 对任意对象C ∈ ob E，G(−, C) : C◦ → D和H(−, C) : D◦ → C互为右伴随.

定义. 给定双函子F : C × D → E , G : C◦ × E → D, H : D◦ × E → C，若存在关于对象A ∈ ob C, B ∈
ob D, C ∈ ob E都自然的同构

homE(F (A,B), C) ∼= homD(B,G(A,C)) ∼= homC(A,H(B,C))

则称(F,H,G)组成双变量伴随(two-variable adjunction).

15.3.3 一些计算

命题 15.7.

命题 15.8.

习题 15.13. 给定伴随F : C ⇆ D : G，求证存在范畴的同构F/D ∼= C/G（见习题14.31），且这个同构和二者
到C × D的忘却函子交换.
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证明. 构造函子

L : F/D → C/G

(A,B, f ♯) 7→ (A,B, f ♭)

(h, k) 7→ (h, k)

和

习题 15.14. 求证函子C ← D : G存在左伴随当且仅当对任意C中的对象A，范畴A/G（见习题？）存在始对象.

解答.

习题 15.15. 求证嵌入函子
U : Gp ↪→Mon

同时有左右伴随.

证明. 对于函子U的左伴随，这是一个自由-遗忘伴随

L : Mon⇆ Gp : U,

其中函子L给出幺半群M的局部化（或者称为完备化），具体而言

对于函子U的右伴随，

U : Gp⇆Mon : (−)×

习题 15.16. 设范畴C,D间的函子F : C ⇄ D : G为左右伴随，证明

1. 余单位ϵ : FG⇒ idD是自然同构当且仅当G是满忠实的，

2. 单位η : GF ⇒ idC是自然同构当且仅当F是满忠实的，

3. C ≃ D当且仅当这个伴随给出的单位η和余单位ϵ都是自然同构.

证明.

习题 15.17. 给定范畴C,D和它们之间的函子F : C ⇄ D : G.

1. 若F,G为左右伴随，伴随给出了单位η和余单位ϵ，求证对任意C中的对象A和D中的对象B，复合映射

homC(A,G(B))
F−→ homD(F (A), FG(B))

ϵB◦−−−−→ homD(F (A), B)

恰好是α−1
A,B.对偶地，复合映射

homD(F (A), B)
G−→ homC(GF (A), G(B))

−◦ηA−−−→ homC(A,G(B))

是αA,B.

2. 若存在自然变换η : idC ⇒ GF, ϵ : FG ⇒ idD满足定理15.4中的两幅交换图，则定理15.4给出的伴随恰好
是η, ϵ.
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证明. 1. 我们只证明前半部分.伴随在C中的自然性说明存在交换图

F (A)

F (C) D,

F (k)
(g♭◦k)♯

g♯

其中k : A → C是C中的态射，g♯ : F (C) → D是D中的态射.取C = G(B), D = B且g♯ : A → G(B)，

则对于任意C中的态射k = f ♭ : A→ G(B)，交换图为

F (A)

FG(B) B,

F (f♭)
(idG(B)◦f♭)♯

ϵB

这就是所需要的.

2. 我们需要证明习题第一部分定义的αA,B满足ηA = αA,F (A)(idF (A)) : GF (A)→ A和ϵB = αG(B),B(idG(B)) :

FG(B)→ B，但这根据定义是明显的.

习题 15.18. 给定伴随F : C ⇆ D : G，η, ϵ分别是其单位和余单位，求证

1. (a)

(b)

(c)

2. 对偶地，

(a) F是忠实的当且仅当对任意对象A，ηA是单态射.

(b) F是满的当且仅当对任意对象A，ηA是分裂满态射.

(c) F是满忠实的当且仅当对任意对象A，ηA是同构.

证明. 根据习题15.17，

homC(A,C)
ηC◦−−−−→ homD(A,GF (C))

α−1
A,F (C)−−−−−→ homD(F (A), F (C))

=homC(A,C)
ηC◦−−−−→ homD(A,GF (C))

F−→ homD(F (A), FGF (C))
ϵF (C)◦−−−−−−→ homD(F (A), F (C))

=f 7→ ϵF (C) ◦ F (ηC) ◦ F (f) = F (f),

其中最后一个等式用到了定理15.4.

习题 15.19. 给定范畴C,D和函子F : C → D, L,R : D → C，如下图

C

D,

U
L R

给出了伴随L : D ⇆ C : U和U : C ⇄ D : R，求证LU : C ⇄ C : RU也是伴随.

证明.
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习题 15.20. 给定伴随F1 : C1 ⇆ D1 : G1和F2 : C2 ⇆ D2 : G2，若函子H : C1 → C2和K : D1 → D2满

足KF1 = F2H,G2K = HG1，即有交换图

C1 C2 C1 C2

D1 D2 D1 D2,

F1

H

F2

H

K K

G1 G2

求证如下条件等价

1. Hη1 = η2H，其中ηi是伴随对应的单位，

2. Kϵ1 = ϵ2K，其中ϵi是伴随对应的余单位，

3. 态射的换位与H,K是交换的，即有交换图

homD1
(F1(A), B) homC1

(A,G1(B))

homD2
(KF1(A),K(B)) homC2

(H(A), HG1(B))

homD2
(F2H(A),K(B)) homC2

(H(A), G2K(B))

αA,B

K H

βH(A),K(B)

称满足这样条件的一对函子(H,K)是伴随的态射(morphism of adjunctions)(F1, G1)→ (F2, G2).

证明. 这是习题15.17的直接应用，我们将证明1与3等价，另一部分是完全对偶的.

根据习题15.17，αA,B : f 7→ G(f) ◦ ϵB且βH(A),K(B) : g 7→ G(g) ◦ ϵK(B)，于是

homD1
(F1(A), B)

αA,B−−−→ homC1
(A,G1(B))

H−→ homC2
(H(A), HG1(B)) = homC2

(H(A), G2K(B))

将f : A→ B映到HG1(f) ◦H(η1,A)，另一方面

homD1
(F1(A), B)

K−→ homC1
(A,G1(B)) = homD2

(F2H(A),K(B))
βH(A),K(B)−−−−−−−→ homC2

(H(A), G2K(B))

将f : A → B映到G2K(f) ◦ η2,H(A) = HG1(f) ◦ η2,H(A).一方面，若Hη1 = η2H，则如上计算的两种不

同的映射相同，即有3中的交换图；另一方面，若有交换图，取B = F1(A)且f = idF1(A)，则图交换说

明H(η1,A) = η2,H(A)，由于A是任意的，Hη1 = η2H.

习题 15.21. 设范畴C,D间的函子F : C ⇄ D : G互为左右伴随，对任意给定的函子H : J → C,K : J → D，构
造自然的同构

Nat(F ◦H,K) ∼= Nat(H,G ◦K).

结合习题这实际上说明了F : C ⇄ D : G诱导了伴随函子

F∗ : Funct(J , C)⇄ Funct(J ,D) : G∗.

证明. 分别记η : idC ⇒ GF和ϵ : FG ⇒ idD为伴随的单位和余单位，那么对任意α : F ◦ H ⇒ K，Gα是

自然变换GF ◦H ⇒ GK，复合ηH得到Gα ◦ ηH : H ⇒ GF ◦H ⇒ GK.对偶地任意给定ξ : H ⇒ G ◦K，
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Fξ是自然变换FH ⇒ FG ◦K复合ϵK得到ϵK ◦ Fξ : FH ⇒ FG ◦K ⇒ K.这样有映射

Nat(F ◦H,K)⇄ Nat(H,G ◦K)

α 7→ Gα ◦ ηH

ϵK ◦ Fξ ←[ ξ.

接下来只要验证二者互逆.
根据ϵ : FG⇒ idD的自然性，对任意D中的对象A,B和态射f : A→ B，有交换图

FG(A) A

FG(B) B,

ϵA

FG(f) f

ϵB

对任意E中的对象X，取上图中A = FH(X), B = K(X), f = αX : FH(X)→ K(X)，那么有交换图

FGFH(X) FH(X)

FGK(X) K(X),

ϵFH(X)

FG(αX) αX

ϵK(X)

根据对象选取的任意性，即交换图

FH FGFH FH

FGK K.

FηH ϵFH

FGα α

ϵK

因此之前构造映射的复合给出

α 7→ Gα ◦ ηH 7→ ϵK ◦ F (Gα ◦ ηH)

= ϵK ◦ FGα ◦ FηH

= α ◦ ϵFH ◦ FηH

= α,

其中倒数第二步的等号用到了刚刚证明的交换图，最后一步用到了15.3.1节中单位和余单位的性质.这证
明了一方面的逆，另一方面的对偶地可证.
如上构造的自然性是明显的.

习题 15.22. 设范畴C,D间的函子F : C ⇄ D : G互为左右伴随，利用单位η : idC ⇒ G ◦ F和余单位ϵ : F ◦G⇒
idD（定理15.4，而不是如习题15.21中的直接构造）证明

1. 对任意指标范畴J，F,G诱导了伴随F∗ : Funct(J , C)⇄ Funct(J ,D) : G∗，

2. 对任意局部小范畴E，F,G诱导了伴随G∗ : Funct(C, E)⇄ Funct(D, E) : F ∗.

证明. 根据习题14.23，存在自然变换

η∗ : idFunct(J ,C) ⇒ G∗ ◦ F∗

和

ϵ∗ : F∗ ◦G∗ ⇒ idFunct(J ,D),

于是单位和余单位关系
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15.4 极限和余极限

范畴理论始终希望统一地解决结构性的问题。在15.1节中我们讨论了Yoneda引理，它提供了一种途径。
但是它始终需要借助外部范畴来讨论。我们希望用范畴内部的语言建立统一的框架来描述结构。首先我们还

是考虑简单的情形：假设有一个两边无界的集合列那么集合范畴中，有两个对象是特殊的，分别是.......和........。
首先它们两个与这个集合列是相容的——对任意i < j，有..... 并且任意被所有Xi包含的集合都被...包含，且
任意包含所有Xi的集合都包含... 这可以说......是该列的上下界，是集合范畴中距离该列“最近”的对象。当
我们把包含用单射代替时，之前的观察恰好是某一种泛性质。更广泛地说，如果存在范畴当中一族相容的箭

头，那么从这族箭头映出或映入的所有具有泛性质的对象就是我们所想研究的，这也就是极限和余极限。本

节我们会给出定义，说明只要给出适当的一族箭头，它可以几乎包含所有的有用的结构。之后，会讨论极限

和余极限的函子性和它们与其他函子的关系.

15.4.1 由图确定的极限和余极限

我们首先回顾之前在习题14.32中提到的一些术语：一个图是一个函子F : J → C，其中范畴J称为图
的形状(shape)，任取...中的对象A，存在常值函子ConstA将任意J中的对象映为A，任意J中的态射映为idA；

对范畴C我们有对角嵌入

∆ : C → Funct(J , C), (15.1)

将对象A映射到常值函子ConstA，映射f : A→ B映为自然同态f∗ : ConstA ⇒ ConstB.

定义. 给定图F : J → C，称自然变换λ : ConstA ⇒ F为图F上的锥(cone over the diagram F )，其中对
象A称为锥的顶点(summit, apex)，对于J中的对象j，λj : A→ F (j)称为锥的支架（leg）.

我们尝试把一个锥的信息具体地写出来.当给定自然变换λ后，考虑到函子ConstA只能映到对象A与态射idA，

故一个自然变换交换图即为

A

F (i) F (j),

λi λj

F (f)

其中f : i→ j是J中的态射.因而，一个锥给出的信息就是一族态射{λi : A→ F (i)}i∈J满足与F的“象”相容.

对偶地，我们可以定义图J下的锥(cone under the diagram F )（或者叫做余锥(cocone)），这是一个自
然变换λ : ConstA ⇒ F，其中对象A称为底点(nadir).同前，图下的锥包含的信息是一族被称为支架(legs)的态
射{µi : F (j)→ A}j∈J满足如下

F (j) F (k)

A

µj

F (g)

µk

对任意J中的态射g : j → k都成立的相容性.
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Cone(F ) Funct(J × [1], C)

C Funct(J , C)× Funct(J , C)(∆,F )

Cone(F )/(L, λ) Funct([1],Cone(F ))

∗ Cone(F )λ

现在我们限制考虑的对象与态射——它们组成...的子范畴...，对象A在范畴中当且仅当存在图F上的锥....
，.... 在范畴中当且仅当f与两个锥相容。具体来说，若... 和... 是两个锥，则有

（图）

即交换图（右）对所有... 成立。假设我们定义函子

...

把对象A映到所有的以A为顶点的F上的锥的集合，将... 映到 ... 。这个集合间的映射将... 映为 ... 。这
样刚刚描述的范畴同构于 ...

定义. 给定图F : J → C，范畴
∫ C

Cone(−, F )的终对象（若存在）称为图F的极限(limit)，记为limF .

具体地说，图F的极限是...中的一个对象 lim F 和 ...的态射，使得它们构成图...上的锥，且对于任意图上
的锥... 都只有唯一的态射... 使得所有的图都相容。

对偶地，给定图F : J → C，我们可以考虑函子
将... 中的对象A映为以A为底点的F下的锥的集合，将态射... 映到... 。于是称范畴

∫ C
Cone(F,−)的始对

象（若存在）称为图F的余极限(colimit)，记为colim F .

如上定义意味着limF存在当且仅当Cone(−, F )是可表函子（命题15.2），其代表元恰是limF .

例 15.9. 设J是空范畴，F是... 的函子，于是... 即为... 本身。因而，lim F 即是... 的终对象。对偶地 F的余
极限 colim是... 的始对象。

例 15.10. 设J是小范畴，且对任意... 这样的范畴被称为离散范畴（discrete category)。如前例，我们只有唯
一的函子... 考虑lim F是... 中的元素。满足对任意... 中的对象B，若有... 则有唯一的态射... 相容。这恰是...
的泛性质，故... 同理，

例 15.11. 38) 设J是范畴... 那么取定... 即是... 中的元素 A, B, C 和 ... 于是，F中的锥X是一个交换图

（图）

故lim F满足纤维积（拉回）的泛性质，因而 ... 。对偶地，若... 是反变函子，colim G是推出。

例 15.12. 38) 设J是范畴 ... ，那么函子... 给出的信息是范畴中的两个对象 A=F(0) 和 B=F(1)，和两个态射
... ，我们称函子F的极限lim F （若存在）为f与g的等值子（equalizer）。它满足对任意... 和 ... ，若... 则存
在唯一的分解... 。对偶地，F的余极限被称为余等值子（coequalizer)。关于极限与余极限，它们还具有函子
性。但更多地我们可以在证明中发现，函子性由定义轻松地保证，可以理解为函子性意味着部分极限与整体

极限相容。
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命题 15.9. 设F，G是范畴...中以J为形状的图... 是自然变换，则存在... 与图都相容。

证明. ：任取J中的对象i,j，我们有交换图

（图）

故lim F是一个G上的锥。由lim G的定义，存在唯一的态射... 与所有的图相容，这即是要找的。

对偶地，对于余极限colim，一个自然变换... 给出lim G是F下的锥，由colim F定义存在唯一的... 于是我
们证明了... 与... 都是协变函子。

当J取为所有小基数的范畴... 时（这是个偏序集），极限也被称为逆极限(inverse limit)或投影极限(projective
limit).余极限也被称为正极限(direct limit)或诱导极限(inductive limit).

例 15.13. 给定群G和集合X，假定σ : G×X → X是一个群作用，图

X G×X(1,idX)

σ

πX

的余极限是X/G.

定理 15.10. 设J是小范畴， F : J → C是范畴C上的图.若C中的任意等值子存在且
积
∏
j∈J F (j)和

∏
f∈mor J F (codom f)，那么极限limJ F存在.

证明. 考虑如下交换图

F (codom f)

limJ F
∏
j∈J F (j)

∏
f∈mor J F (codom f)

F (dom f) F (codom f),

h

g

πcodom f

πdom f πf

πf

F (f)

其中根据积的泛性质，h由自然的投影hf :
∏
j∈J F (j)

pr−→ F (codom f)诱导，g由复合gf :
∏
j∈J F (j)

F (f)◦πcodom f−−−−−−−−−→
F (codom f)诱导.

推论 15.10.1. 集合全体的范畴Set是完备和余完备的.

定理 15.11.
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F (dom f)

∐
f∈mor J F (dom f)

∐
j∈J F (j) colimJF

F (dom f) F (codom f)

ιf
ιdom f

ιf

F (f)

ιcodom f

命题 15.12. 设J是小范畴，则对任意图F : J → C，只要limJ F存在，那么对任意的A ∈ ob C，存在自
然同构

homC(A, lim
J
F ) ∼= lim

J
homC(A,F ).

对偶地，

命题 15.13.

定理 15.14.

定理 15.15.

例 15.14. 根据习题14.11，右伴随保单态射.

定理 15.16. 给定指标小范畴J和范畴C，那么C中的任意J图都存在余极限当且仅当对角函子∆ : C →
Funct(J , C)存在左伴随，任意J图都存在极限当且仅当对角函子存在右伴随，即

证明.
homFunct(J ,C)(∆(A), F ) ∼= homC(A, limF )

习题 15.23. 给定图F : J → C，求证
lim
J
F ∼= colimJ ◦F ◦.

习题 15.24. 给定图F : J → C和函子G : C → D，求证存在自然的态射

colimJGF → GcolimJF,

满足G保这个余极限当且仅当该态射是同构.
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习题 15.25. 求证若J中含有终对象{∗}，则对任意图F : J → C，

colimJF ∼= F ({∗}).

习题 15.26. 求证若C中的态射f, g : A⇒ B有余等值子h : B → C，那么h× h : B ×B → C × C是

A×A B ×B
f×f

g×g

的余等值子.

习题 15.27. 给定一个小范畴J，回顾练习14.18，记i0是自然的嵌入函子J → J × [1]，将对象j映到(j, 0)，求

证推出图

J [0]

J × [1] Cone(J )

i0

定义的范畴Cone(J )给出了以J为图的锥，准确地说对任意图F : J → C，满足F̃◦i0 = F的函子F̃ : Cone(J )→
F给出了F上的锥，且F上的所有锥都由此给出.
如果取嵌入i1则得到范畴Cocone(J )，它的图与J下的锥对应.

习题 15.28. 给定指标范畴J，证明若范畴C满足对任意图F : J → C极限limJ F都存在，那么任意图G :

j\J → C的极限也都存在.

习题 15.29. 任意给定小范畴J和局部小范畴C，那么任意给定的两个函子F,G : J ⇒ C都有等值子图

homC(F (codom f), G(codom f)) homC(F (dom f), G(codom f))

Nat(F,G)
∏
j∈J homC(F (j), G(j))

∏
f∈mor J homC(F (dom f), G(codom f))

homC(F (dom f), G(dom f)) homC(F (dom f), G(codom f)).

F (f)∗

πcodom f

πdom f πf

πf

G(f)∗

习题 15.30. 这个习题中我们给出Yoneda引理的另一个表述.
给定协变函子F : C → Set，我们有自然的函子Q :

∫
C

F → Funct(C,Set), (a,A) 7→ hA := homC(A,−).给

定
∫
C
F中的对象(a,A)，存在态射hA ⇒ F，满足对任意对象B和f ∈ homC(A,B)，λ(a,A) : f 7→ F (f)(a) ∈

F (B).

1. 求证如此给出了范畴Funct(C,Set)中F上的一个锥λ : Q⇒ ConstF .

2. 求证对任意函子G : C → Set，存在双射

Φ : {自然变换α : F ⇒ G} ←→ {Funct(C,Set)中G上的锥} : Ψ.

其中，φ定义为将自然变换α : F ⇒ G映为α ◦ λ.

Ψ是双射意味着对任意的锥µ : Q ⇒ ConstG，存在唯一的自然变换α̃ : ConstF ⇒ ConstG满足α = α̃ ◦ λ（由
于14.15，不区分F ⇒ G和ConstF ⇒ ConstG），即λ : Q⇒ ConstF是一个余极限锥，我们记为

F = colim∫
C
F h

A,

或者“任意预层都是可表预层的余极限”.这个表述与Yoneda引理的关系在20.25中.
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证明. 我们需要构造Ψ并且证明二者是互逆的.

1. 我们定义

Ψ : Nat(Q,ConstG)→ Nat(ConstF ,ConstG)

α 7→ α̃ : ConstF ⇒ ConstG

满足

α̃∗
B : F (B)→ G(B)

b 7→ α
(b,B)
B (idB).

为验证这是良定义的，我们需要验证α̃的自然性.任意给定C中的态射f : B → D和b ∈ F (B)，

G(f)αB(b) = G(f)α
(b,B)
B (idB)

= α
(b,B)
B homC(B, f)(idB)

= αDF (f)(b),

其中第二个等号是由于α的自然性，这就完成了验证.

2. 在验证互逆性之前我们首先考虑如下事实：任意给定α : Q ⇒ ConstG和态射f : A → B，α的自然性

意味着图

homC(B,B) G(B)

homC(A,B) G(B)

f∗

α
(F (f)(a),B)
B

α
(a,A)
B

交换，于是

α
(F (f)(a),B)
B (idB) = α

(a,A)
B (f).

3. 任意给定α : Q⇒ ConstG和态射f : A→ B，

(Φ ◦Ψ(α))
(a,A)
B = (Ψ(α) ◦ λ)(a,A)

B

= Ψ(α)
(a,A)
B ◦ λ(a,A)

B

= homC(A,B)
λ
(a,A)
B−−−−→ F (B)

Ψ(α)
(a,A)
B−−−−−−→ G(B),

满足f 7→ F (f)(a) 7→ α
(F (f)(a),B)
B (idB) = α

(a,A)
B (f)，于是Φ ◦Ψ(α) = α.

4. 另一方面，任意给定α : ConstF ⇒ ConstG和态射f : A→ B，

(Ψ ◦ Φ(α))∗B = (Ψ(α ◦ λ))∗B

= F (B)
Ψ(α)

(a,A)
B−−−−−−→ G(B),

满足b 7→ (α ◦ λ)(b,B)
B (idB) = α

(b,B)
B (b)，于是Φ ◦Ψ(α) = α.
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习题 15.31. 设C是一个小范畴，D是一个上完备的局部小范畴，考虑2函子

S : C◦ × C → D,

那么我们称f∗与f
∗的上等值子 ∏

f :A0→A1

S(A0, A1)⇒
∏

A∈ob C

S(A,A)

为S的上终止(co-end)，其中f∗是复合S(A0, A1)
S(f,id)−−−−→ S(A1, A1) ↪→

∏
A∈ob C S(A,A)，f

∗是复合S(A0, A1)
S(id,f)−−−−→

S(A0, A0) ↪→
∏
A∈ob C S(A,A)，记为

∫
A∈ob C S(A,A).

1. 求证
∫ A∈ob C

S具有如下泛性质：对任意C中的态射f : A1 → A0，存在唯一的φA0
和φA1

使得下图交换

S(A0, A1) S(A1, A1)

S(A0, A0)
∫
A∈ob C S(A,A),

S(A0,f)

S(f,A1) φA0

φA1

并且对满足如此交换图性质的所有对象，
∫
A∈ob C S(A,A)是始对象.

2. 求证 ∫
A∈ob C

S(A,A) ∼= colim∫
Tw(C)

hom π∗(S),

其中Tw(C)是C的扭曲箭头范畴（习题15.12），π : Tw(C) → C◦ × C是自然的忘却函子(f : A → B) 7→
(t(f), s(f))，这里s : Tw(C)◦ → C和s : Tw(C)◦ → C◦分别是.

3. 求证Tw(C) =
∫
C Hom.

4. 证明上终止的Fubini定理：若C = A× B且函子S : C◦ × C → Funct(J ,D)，则(∫
C◦×C

S

)
(j) ∼=

∫
C◦×C

S(j).
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第六部分

线性空间和表示理论
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第十六章 线性形式

习题 16.1. 设V是有限维的F向量空间，且char F ̸= 2.对域扩张F/F，定义二次型q : V → F的基变换为

qE : E ⊗F V → E

a⊗ v 7→ a2q(v).

1. 若q是迷向的，且[E : F ]是奇数，求证qE也是迷向的.

2. 以上叙述在[E : F ]是偶数时是否成立？

16.1 外形式
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第十七章 有限群的表示理论

17.1 群作用

设G是一个群.

定义. G空间

17.1.1 G模

定义. 给定Abel群A，若G在A上右一个（左）作用，则称A是一个G模(G-module).

注意到给定G模A等价于给定Abel群A和群同态G→ Aut(A).由于Abel群等同于Z模，因而G模等同于Z[G]模.

定义. 给定G模A，记
AG := {a ∈ A | g · a = a对所有g ∈ G成立}

是A中被G作用不变的元素的全体.

引理 17.1. 给定G模A和具有平凡作用的G模Z，则

AG ∼= HomZ[G](Z, A).

证明. 任意给定α ∈ HomZ[G](Z, A)，由于G在Z上的作用是平凡的，α(1) = α(g · 1) = gα(1)，于是映射

HomZ[G](Z, A)→ AG

α 7→ α(1)

是良定义的，这显然是一个Abel群同态.注意到α ∈ HomZ[G](Z, A)完全由α(1)决定，因此这是一个单射；同时
该映射是满射，得证.
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第十八章 代数理论

18.1 代数及其范畴

我们首先用范畴的方式重述环的定义.注意到含幺环(R,+, ·, 0, 1)首先是一个Abel群(R,+, 0)，并且带有一

个乘法结构，乘法的分配律说明乘法实际上是一个满足一定性质Abel群同态

R×R→ R

(r, s) 7→ r · s,

根据张量积的泛性质，这对应到Abel群同态

µ : R⊗Z R→ R

r ⊗ s 7→ r · s.

此时，结合律可以描述为交换图

R⊗Z R⊗Z R R⊗Z R

R⊗Z R R,

(µ,idR)

(idR,µ) µ

µ

单位元可视作环同态η : Z → R，因为规定中同态必将单位元映到单位元（在此情形下有唯一一个同态），明

显地单位元的性质给出了交换图

Z⊗Z R = R = R⊗Z Z R⊗Z R

R⊗Z R R.

(id,1)

(1,id) µ

µ

Z−Alg ∼= Ring

在本章和之后的内容中，代数都特定指代结合代数，其他类型的代数（如李代数）都会特别指出.

定理 18.1. 给定R模M，存在R代数TRM和模的嵌入ι :M → TRM，满足对任意的R代数A和R模同态

φ :M → A,

都存在唯一的R代数同态φ̃ : TRM → A满足交换图
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M TRM

A.

ι

φ
φ̃

证明. 构造

TRM :=
∞⊕
n=0

TnRM =
∞⊕
n=0

M⊗n,

其中

18.1.1 增广代数

定义. 给定R代数A，若存在R代数同态ϵ : A→ R，则称A是增广R代数(augmented R-algebra)

任意给定增广R代数A，Ker ϵ称为A的增广理想(augmentation ideal)，记为Ā.反过来，对任意的（可能不
包含单位的）R代数I，存在对应的增广R代数

I+ := R⊕ I

满足乘法

(a, x)(b, y) := (ab, ay + bx+ xy),

我们有

命题 18.2. 存在伴随
(−)+ : R−Algnon ⇆ R−Alg/R : −

证明. 我们需要证明

homR−Alg/R
(I+, A) ∼= homR−Algnon(I, A)

习题 18.1. 这个习题中我们对范畴R−Alg稍作推广，得到新的范畴R−ALG，满足ob R−ALG := ob R−
Alg，给定R代数A,B，

homR−ALG(A,B) := {AMB | AMB是(A,B)双模且作为右B模是投射且有限生成的},

求证复合BNC ◦AMB给出一个范畴结构.
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定理 18.3. 给定有限生成的自由R模M := Rn，则存在范畴的等价

R−Alg⇆EndR(M)\ R−Alg.

证明. 给定

定理8.3

18.1.2 余代数和双代数

定义.

18.1.3 Hopf代数

例 18.1. 定理18.1中构造的TRM上有两个自然的余代数结构：

1. 第一个

∆ : TnRM →
n⊕
k=0

T kRM ⊗R Tn−kR M

∆ : TRM → TRM ⊗R TRM,

1 7→ 1⊗ 1

m1 ⊗ · · · ⊗mn 7→

例 18.2. 1. 任意给定群G和域k，群代数k[G]是一个Hopf代数

引理 18.1. 给定交换环R和R-Hopf代数H1, H2，则H1 ⊗R H2也是Hopf代数，其中

∆(α⊗ β) = ∆(α)⊗∆(β).

18.2 Morita理论

给定右R模M，记

M∗ := HomR(M,R).

此时，M∗不仅是左R模，同时也是右EndR(M)模.



104 第十八章 代数理论

引理 18.2. 给定R− S双模M，M∗是S −R双模.

定义. 给定右R模M，称
Tr(M) :=

∑
f∈M∗

f(M) ⊆ R

为M的迹理想(trace ideal).

由于M是右模，Tr(M)也是一个右理想，但它同时还是一个左理想：

考虑

φ :M∗ ⊗EndR(M) M → R

(f,m) 7→ f(m),

显然这是一个同态，按定义Tr(M) = Im φ.对偶地，同态

ψ :M ⊗RM∗ → EndR(M)

(m, f) 7→ (x 7→ x · f(m))

的像被称为对偶迹理想(dual trace ideal).

定义. 范畴C中的对象P若满足hP := homC(P,−)是忠实的，则称P是C的一个生成元(generator).

命题 18.4. 范畴Mod−R中的模P是生成元当且仅当P ∗P = Tr(P ) = R.

推论 18.4.1. 若R是单环，则任意R模都是生成元.

例 18.3. A1 =
k⟨x,y⟩
[x,y]=1

是单环.

习题 18.2. R模P是生成元当且仅当存在R模Q使得

P ⊕Q ∼= P⊕N .

引理 18.3. 范畴Mod−R中的投射模P是生成元当且仅当hP将非零对象映为非零对象.
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18.2.1

我们的想法来自于如下事实：任意给定有限生成的投射模P，存在自然的同构

αP : P
∼−→ P ∗∗

x 7→ (P ∗ → R, f 7→ f(x)).

引理 18.4. 1. (−)∗是左正合的反变函子，

2. 若R是左Noether的且M是有限生成的右R模，则M∗是有限生成的左R模.

命题 18.5. 给定左右Noether环R上的有限生成模M，那么自然的映射

αM :M
∼−→M∗∗

x 7→ (M∗ → R, f 7→ f(x))

是单射当且仅当M是有限生成自由模的子模.

Hom(P,R)⊗R→ EndR(P )

定理 18.6 (对偶基引理(Dual basis lemma)). 给定有R模P，那么

1. P是投射的当且仅当存在{xi}i∈I ⊆ P和{fi}i∈I ⊆ P ∗，满足对任意的x ∈ P，只有有限多个i ∈ I满
足fi(x) ̸= 0，并且

x =
∑
i∈I

xifi(x).

若满足|I| < +∞，则也有对任意f ∈ P ∗，

f =
∑
i∈I

f(xi)fi.

2. P是有限生成的投射模当且仅当PP ∗ = EndR(P ).

例 18.4. A1 =
k⟨x,y⟩
[x,y]=1

中的P := ⟨xn+1, xy + n⟩ = ⟨( ∂
∂z
)n+1, ∂

∂z
z + n⟩.

18.2.2
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定理 18.7 (Watt). 给定环R,S，F : Mod−R→Mod− S是正合函子，且F保直和，那么

F ∼= −⊗R Q,

其中Q := F (RR)是R− S双模.

定理 18.8 (Morita). 函子F : Mod−R→Mod− S是范畴的等价当且仅当存在R− S双模Q，使得

F ∼= −⊗R Q,

满足

1. Q是有限生成的投射生成元，

2. EndS(QS) ∼= R是环同态.

证明. 考虑伴随⊗
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19.1 根系

19.1.1 向量空间的对称

定义. 给定一个有限维R线性空间V，α是V中的向量，s是V的线性自同构，满足

1. s(α) = −α，

2. V的子集H := {v ∈ V | s(v) = v}是V的超平面，

则称s是V沿α的对称(symmetry with vector α).

引理8.1说明若存在分解V = H ⊕ Rα，V ∗是V的对偶空间，存在唯一的α∗ ∈ V ∗使得⟨α∗, α⟩ := α∗(α) =

2且α∗(H) = 0.我们希望说明，沿向量α的对称完全由α∗（按引理8.1一一对应于H）决定.
一方面，给定一个沿α的对称s，令H := Ker s− id，α∗是满足⟨α∗, α⟩ := α∗(α) = 2和α∗(H) = 0的线性函

数，那么

s(x) = x− α∗(x)α

对任意x ∈ V成立.事实上，取H的一组基{δ1, · · · , δn−1}，那么S = {δ1, · · · , δn−1, δn = α}则组成了V的一组
基，容易验证δi − α∗(δi)α = δi, i = 1, · · · , n− 1且δn − α∗(δi)α = −δn. 反过来，任给定向量α和线性函数α∗满

足⟨α∗, α⟩ := α∗(α) = 2（不唯一！），那么

sα : V → V

x 7→ x− α∗(x)α

是沿α的对称.线性性是显然的，取H := Ker α∗和如前H的一组基{δ1, · · · , δn−1}，那么明显sα|H = idH，并

且sα(α) = −α.
根据上面的讨论，我们记

sα = id− α∗ ⊗ α (19.1)

引理 19.1. 给定一个有限维线性空间V和其中的非零向量α，设R是V的有限集且张成V，那么至多存在
唯一的V关于α的对称s使得s(R) = R.
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证明. 设s1, s2是两个满足要求的对称，令u := s−1
1 ◦ s2，那么u是V的自同构且u(α) = α, u(R) = R.

19.1.2 根系

定义. 给定有限维R向量空间V和它的子集R，满足

1. R是有限集，不包含0且R关于R张成了V，

2. 对任意的α ∈ R，存在关于α的对称sα使得R是不变的，

3. 对任意的α, β ∈ R，sα(β)− β是α的整数倍，

则称R是V的一个根系(root system).

根据之前的讨论等式19.1，对称sα可以写为id− α∗ ⊗ α，此时性质3等价于

⟨α∗, β⟩ ∈ Z.

这是因为，按定义

sα(β)− β = β − α∗(β)α− β

= −⟨α∗, β⟩α,

根据线性性等价性是明显的.我们称α∗ ∈ V ∗为α的逆根(inverse root).

此外，由性质2立即得到−α = sα(α) ∈ R.

定义. (reduced)

定义. 给定向量空间V和根系R，

1. 称R生成的格为R的根格(root lattice)，记为ΛR，

2. 称{β ∈ V | ⟨β, α∗⟩ ∈ Z, ∀α ∈ R}为R的权格(weight lattice)，记为ΛW .

显然，R ⊆ ΛW因此ΛR ⊆ ΛW .但这个包含可以是真包含，我们将在例19.1中讨论.

19.1.3 几个例子

例 19.1.
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19.1.4 Weyl群和不变二次型

定义. 给定V中的根系R，称
⟨sα⟩α∈R ≤ GL(V )

为R对应的Weyl群(Weyl group).

命题 19.1. 给定V中的根系R，W是R的Weyl群，那么存在W不变的V的内积(−,−)W .

证明.
(x, y)W :=

∑
w∈W

(wx,wy),

对任意x ∈ V，
sα(x) = x− 2

(x, α)W
(α, α)W

α

另一方面，我们知道若给定了V上的一个内积，实际就确定了一个同构

V → V ∗

v 7→ (−, v)

19.1.5 单根

定义. (simple roots)∆

定义. 给定V中的根系R，设W是其Weyl群，∆是给定的一组基，对任意w ∈W，分解

w = sα1
· · · sαl

, αi ∈ ∆

的最小长度被称为元素w的长度(length).

Define n(ッ) to be the number of positive roots ゲ > 0 for which ッ(ゲ) < 0.

引理 19.2. Given any ッ∈ W, we have n(ッ) = l(ッ).
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第二十章 进阶范畴理论

20.1 范畴中的群对象

20.1.1 群对象的结构

我们还是从具体的例子来考虑.假设G是一个群，那么G本身作为一个集合也就是集合范畴中的对象.我们
想用范畴的语言描述G的群结构时，自然的想法是G作为一个群，它的结构性质是否可以被范畴中的信息所刻

画.这样我们无外乎要处理G中的单位元、乘法和求逆，而它们刚刚好可以从态射和它们的交换性得出.假设范
畴C满足：

1. 存在终对象E；

2. 对对象G，G×G和G×G×G都存在.

如果我们有三个态射

µ : G×G→ G (multiplication)

i : G→ G (inversion)

e : E → G (identity)

满足以下交换图，分别被称为：结合性(associativity)

G×G×G G×G

G×G G,

(µ,idG)

(idG,µ) µ

µ

左右单位(left and right identity)

G G×G

G×G G

(id,1)

(1,id) µ

µ

和左右逆(left and right inverses)

G G×G

G×G G,

(id,i)

(i,id) µ

µ

113
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其中1 : G → G是复合G → E
e−→ G，则称G是范畴C中的群对象(group object)，三个态射称为G上的群结

构(group structure).下面的命题说明这样的定义是合理的，于是在不同的范畴中我们有了群结构的推广：

命题 20.1. 集合范畴Set中的对象G是群对象当且仅当G是一个群.

证明. 范畴Set中的终对象是{∗}，因而对任意集合S，态射{∗} → S等同于确定S中的一个元素.

定义. 若G,H是范畴C中的群对象，态射f : G→ H满足

G×G G

H ×H H

µG

f×f f

µH

是交换图，则称f是一个同态(homomorphism).

定理 20.2. 设G是范畴C中的对象，那么G是群对象当且仅当函子hG := homC(−, G)有分解

C Set

Gp,

hG

U

其中U : Gp→ Set是自然的忘却函子.

证明. 假定G是群对象，则对任意C中的对象A，可以定义homC(A,G)上的群结构

1. 乘法

∗ : homC(A,G)× homC(A,G)→ homC(A,G)

(g, h) 7→ µ ◦ (g × h),

其中用到了同构homC(A,G)× homC(A,G) ∼= homC(A,G×G), (g, h) 7→ g × h（命题15.12）.

2. 单位
e∗ : homC(A,E)→ homC(A,G),

由于E是终对象，该映射确定了homC(A,G)中的唯一元素，记为eA.

3. 左逆

−−1 : homC(A,G)→ homC(A,G)

g 7→ i ◦ g.
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接下来需要验证相应的性质.

1. 结合律

(f ∗ g) ∗ h := (µ ◦ (f × g)) ∗ h

= µ ◦ ((µ ◦ (f × g))× h)

= µ ◦ ((µ× idG) ◦ ((f × g)× h))

↭ µ ◦ ((idG × µ) ◦ (f × (g × h)))

= µ ◦ (f × (µ ◦ (g × h))

=: f ∗ (g ∗ h)

其中第三个等式用到了习题14.5，第四个对应用到了G定义的结合性与同构(G×G)×G ∼= G× (G×G).

2. 左单位

eA ∗ f := µ ◦ (eA × f)

= µ ◦ ((e× id) ◦ (∗ × f))

= (µ ◦ (e× id)) ◦ (∗ × f)

↭ id ◦ f = f

其中最后一行的对应是左单位的定义.如上计算对应了交换图

G E ×G G×G G

A.

(e×id) µ

f
eA×f

3. 左逆

f−1 ∗ f := µ ◦ ((i ◦ f))× f)

= µ ◦ ((i× id) ◦ (f × f))

= (µ ◦ (i× id)) ◦ (f × f)

↭ (µ ◦ (i, id)) ◦ f

= id ◦ f = f

其中最后一行是左逆的定义.

这意味着homC(A,G)上有群结构，并且这个群结构关于A是自然的（这个可以从定义中得出，因为群结构都

是关于固定态射的复合），于是homC(−, G)是函子C → Gp.

反过来假设hG := homC(−, G)事实上是函子C → Gp，对任意C中的对象A，记群homC(A,G)的乘法为

µA : homC(A,G)× homC(A,G)→ homC(A,G),
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群homC(A,G)的单位为

eA : homC(A,E)→ homC(A,G),

群homC(A,G)的逆为

iA : homC(A,G)→ homC(A,G),

若我们能证明三个变换关于A都是自然的（即这些是自然变换），则根据Yoneda引理（定理15.1），这些自然
变换对应了态射

µ : G×G→ G

i : G→ G

e : E → G,

群乘法的结合性、单位和逆的性质给出了µ, i, e所需要的条件.

任取C中的态射f : A → B，hG的函子性说明f
∗ := homC(−, G)是群同态，这意味着对任意的g, h ∈

homC(A,G)，关于乘法有

f∗(µA(g, h)) = µB(f
∗(g), f∗(h)),

即µ是自然变换；其余证明类似.

同样地，我们可以用图的方式描述群作用.注意到我们在不同范畴中对作用映射的要求不同，比方说在集
合范畴中作用只是普通的映射，但在拓扑范畴中作用就必然是连续的.这刚刚好可以用范畴的语言简单地表达

20.1.2 群对象的作用

定义. 设G是范畴C中的群对象，X是C中的对象，且G × X,G × G × X存在.那么群对象G在X上的作
用(action)是一个态射σ : G×X → X，满足

G×G×X G×X

G×X X,

(µ,idX)

(idG,σ) σ

σ

其中µ是群对象G的乘法.

定义. 给定C中的群对象G和G作用的对象X,Y，若态射f : X → Y满足

G等变

习题 20.1. 求证Gp中的群对象是Abel群.

当我们在范畴中有一个用交换图定义的对象时，我们自然地会考虑它的对偶定义
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20.2 单子及其上的代数

20.2.1 单子和伴随

定义. 给定范畴C和函子⊤ : C → C，若有自然变换η : idC ⇒ ⊤和µ : ⊤2 ⇒ ⊤，分别称为单位(identity)和
乘法(multiplication)，满足交换图

⊤3 ⊤2

⊤2 ⊤

⊤µ

µ⊤ µ

µ

和

⊤ ⊤2

⊤2 ⊤,

⊤η

η⊤ µ

µ

则称(⊤, η, µ)为一个单子(monad).

如果我们将µ类比为一个幺半群的乘法，第一个交换图是结合性的类比，第二个交换图是单位元的存在性

（由η给出）.对偶地，C上的余单子结构是C◦上的单子结构，更具体地，

定义. 给定范畴C和函子⊥: C → C，若有自然变换ϵ :⊥⇒ idC和µ :⊥⇒⊥2，分别称为余单位(coidentity)和
余乘法(comultiplication)，满足交换图

⊥3 ⊥2

⊥2 ⊥

⊥∆

∆⊥

∆

∆

和

⊥ ⊥2

⊥2 ⊥,

∆

∆ ⊥ϵ

ϵ⊥

则称(⊥, ϵ,∆)为一个余单子(comonad).
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例 20.1. 考虑函子（）

(−)+ : Set→ Set

X 7→ X+ := X
∐
{∗}

(f : X → Y ) 7→

(
f+ : X+ → Y+, x 7→

{
f(x) 若x ∈ X
∗ 若x = ∗

)
,

若定义自然变换η是自然的嵌入ηA : A→ A+，且µA : (A+)+ → A+定义为将A中的元素映到本身，将(A+)+的

两个基点映到A+中唯一的基点.明显地，η和µ关于选定的集合都是自然的，并且

((A+)+)+ (A+)+

(A+)+ A+

(µA)+

µA+ µA

µA

和

A+ (A+)+

(A+)+ A+

(ηA)+

ηA+ µA

µA

是明显的交换图，这个单子被称为可能单子(maybe monad).

例 20.2. 考虑在范畴Set上，定义如下函子：对任意集合X，⊤(X)是集合X的势集P (X)(power set)，即所有
子集组成的集合

⊤(X) := P (X) = {W |W ⊆ X},

对于任意映射f : X → Y，定义

⊤(f) : ⊤(X)→ ⊤(Y )

W 7→ f(W ),

并且自然变换η定义为对任意集合X

ηX : X → ⊤(X)

x 7→ {x},

µ定义为对任意集合X

µX : ⊤(⊤(X))→ ⊤(X)

W 7→
⋃

W∈W

W,

我们需要验证这是一个单子.

首先η的自然性是显然的，

习题 20.2. 求证20.2中给出的协变势集函子保余等值子.
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例 20.3. 给定域F和F向量空间V，非空集合A若满足存在平移函数

+ : V ×A→ A

满足

1. 0 + a = a对所有的a ∈ A都成立，

2. (v + w) + a = v + (w + a)对所有的a ∈ A, v, w ∈ V都成立，

3. 对任意的a ∈ A，映射−+ a : V → A是双射.

同样地，放射空间还可以不借助辅助向量空间V来定义：首先我们考虑固定A中的任意点o，那么集合的双

射−+ o : V → A给出了唯一满足

c− o = λ(a− o) + (1− λ)(b− o)

的元素c ∈ A.可以证明，这个元素与原点o的选取无关.并且，

习题 20.3.

命题 20.3. 任意伴随函子对F : C ⇆ D : G诱导了单子⊤ : C → C.

证明. 考虑⊤ := G ◦ F : C → C，根据定理15.4，伴随函子给出了单位η : idC ⇒ ⊤和余单位ϵ : ⊤ ⇒ idC，并且

余单位给出了

µ : ⊤2 = G ◦ F ◦G ◦ F G◦ϵ◦F
=⇒ G ◦ F = ⊤.

接下来需要验证单子的相容性.

定理15.4说明存在交换图

F FGF G GFG

F G,

Fη

id
ϵF

ηG

id
Gϵ

这给出了交换图

GF GFGF GF GFGF

GF GF,

GFη

id
GϵF

ηGF

id
GϵF

这两幅交换图恰好是单位所需要的，而引理14.2说明图

C C

C D D D C

F
ϵ

F
ϵ

F

G G

G

给出了两种相同的纵向复合，这给出了交换图



120 第二十章 进阶范畴理论

GFGFGF GFGF

GFGF GF.

GFGϵF

GϵFGF GϵF

GϵF

例 20.4. 1. 例20.1中的单子也来自于伴随.

2. 给定R− S模N，例15.4中给出的伴随

−⊗R N : R−Mod⇆Mod− S : HomS(N,−)

给出了单子

HomS(N,−⊗R N) : R−Mod⇆ R−Mod,

其中对任意R模M，

3. 伴随F : Set⇆ Gp : U给出了单子

⊤ := F : Set→ Set,

其中对任意集合S，F (S)是所有由S和S−1中元素组成的字符串的全体（），根据例15.5和例15.7中单位
和余单位的讨论，单位ηS : S → ⊤(S)定义为s 7→ s，乘法µ : ⊤2(S)→ ⊤(S)定义为字符串的连接.

4. 给定含幺环R，伴随R[−] : Set⇆ R−Mod : U给出了自由R模单子

R[−] : Set→ Set,

对任意集合S，定义

R[S] :=

{∑
s∈S

ξ(s) · s

}
,

其中ξ : S → R是具有有限支集的映射（即只存在有限多个x ∈ S使得ξ(s) = 0），单位映射ηS将元素s映

到χs · s，其中χs是仅在s上取1且在其他元素上取0的映射，而乘法µ : ⊤2(S)→ ⊤(S)为形式地乘积，即

5. 伴随F : Set⇆Mon : U给出了自由幺半群单子(free monoid monad)

⊤ : Set→ Set,

对任意集合S，定义

⊤(S) :=
∐
n≥0

Sn,

即S上的字符串的全体.此时，单位映射ηS是自然的嵌入，乘法µ : ⊤2(S)→ ⊤(S)恰好是字符串的连接.

特别地，如果伴随函子对是忘却函子给出的，比方说，

习题 20.4. 给定范畴C及其上的单子(⊤ : C → C, η, µ)，求证如下描述是等价的：

1. 单子的乘法µ : ⊤2 ⇒ ⊤是自然同构（于是该单子被称为幂等的(idempotent)），

2. 对任意对象A，µA : ⊤2(A)→ ⊤(A)是单态射，
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3. 自然变换η⊤,⊤η : ⊤ ⇒ ⊤2相等.

解答.1⇒2) 根据定义这是显然的.

2⇒3) 按照单子的定义，存在交换图

⊤(A) ⊤2(A)

⊤2(A) ⊤(A),

⊤(ηA)

η⊤(A) µA

µA

由于µA是单态射，故⊤(ηA) = η⊤(A)，由于A是任意的η⊤ = ⊤η.

3⇒1) 任取对象A，交换图

⊤(A) ⊤2(A)

⊤2(A) ⊤(A),

⊤(ηA)

η⊤(A) µA

µA

说明µA的左右逆都存在，假设η⊤ = ⊤η说明二者相等，因此µA是同构.

20.2.2 单子上的代数

命题20.3说明，那么一个自然的问题是是否所有的单子都来源于伴随函子对.这个问题的回答需要新的构
造，而这个构造也统一了许多代数上的定义.

定义. 给定范畴C和函子F : C → C，一个F代数(F -algebra)是态射α : F (A) → A，其中对象A称为代数的

载体(carrier).给定两个F代数(A,α), (B, β)，若态射f : A→ B满足交换图

F (A) A

F (B) B,

α

F (f) f

β

则称f是一个F代数同态(homomorphism).

特别地，

定义. 给定范畴C和其上的单子(⊤, η, µ)，此时一个⊤代数(⊤-algebra)是一个C中的态射α : ⊤(A) → A，满

足交换图结合律

⊤2(A) ⊤(A)

⊤(A) A

⊤α

µA α

α

和与单位相容
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A ⊤(A)

A,

ηA

α

其中α称为结构态射(structure morphism).

例 20.5. 1. 给定含幺环R，伴随− ⊗Z R : Ab ⇆ Mod − R : U给出的单子是⊤ := − ⊗Z R : Ab → Ab，

若Abel群A是一个⊤代数，则给出了一个态射

α : A⊗Z R→ A,

根据张量积的泛性质，这对应了映射

A×R→ A

(a, r) 7→ r · a,

交换图

A⊗Z R⊗Z R A⊗Z R

A⊗Z R A

⊤α

µA α

α

和

A ⊤(A)

A,

η

α

说明了，即A是一个右R模.

2. 例20.4中我们讨论了几个自由忘却函子给出的单子，我们考虑F : Set ⇆Mon : U给出的单子⊤ = UF，

它将集合S映到
∐
n≥0 S

n.于是，该单子上的一个代数是映射

α :
∐
n≥0

Sn → S,

其中α在Sn上的限制给出了S上的n元运算，代数满足的交换图

S
∐
n≥0 S

n
∐
n≥0

(∐
m≥0 S

m
)n ∐

n≥0 S
n

S
∐
n≥0 S

n S

ηS

α

⊤α

µS α

α
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给出了这些n元运算满足的性质.

若M是一个⊤代数，取M上的二元运算α2 : M ×M → M和M中的元素α0 : {∗} → M，即e := α0(∗).单
位的性质说明α1 = idM .于是，对任意的元素m,n, p ∈M，结合性交换图说明

α2(α2(m,n), p) = α3(m,n, p) = α2(m,α2(n, p))

和

α2(e,m) = α2(α0(∗),m) = α1(m) = m

这也意味着M在如上的定义下是一个幺半群.

另一方面，如果M是一个幺半群，那么按照上面的讨论可以定义α0, α1, α2，其余αn定义为

(m1, · · · ,mn) 7→ α2(· · ·α2(m1,m2), · · · ,mn)

则说明M是一个⊤代数.

例 20.6. 给定域F和其上的向量空间V，那么V上的仿射空间(affine space)是集合A和其上的平移函数(translation)V×
A

+−→ A，满足

1. 0 + a = a对所有A中的元素a都成立，

2. (v + w) + a = v + (w + a)对所有A中的元素a和所有V中的元素v, w都成立，

3. 对任意A中的元素a，映射−+ a : V → A是集合之间的双射.

还存在不需要辅助向量空间V的定义方式：任取A中的点o ∈ A，双射− + o : V → A说明存在唯一的元素c ∈
A满足

c− o = λ(a− o)(1− λ)(b− o),

并且这个点c与o的选取无关.更一般地，对任意n个A中的点a1, · · · , an和F中的满足λ1+· · ·+λn = 1的数λ1, · · · , λn，
存在唯一的元素λ1a1 + · · ·+ λnan ∈ A.

于是，对于任意集合A，定义AffF (A)为集合

{λ1a1 + · · ·+ λnan | ai ∈ A, λi ∈ F, λ1 + · · ·+ λn = 1},

即所有形式线性组合的全体，那么类似于例20.4中(iv)的构造，

ηA : A→ AffF (A)

a 7→ a

和

µA : AffF (AffF (A))→ AffF (A)

λ1(µ1,1a1,1 + · · ·+ µ1,n1
a1,n1

) + · · ·+ λm(µm,1am,1 + · · ·+ µm,nm
am,nm

) 7→ λ1µ1,1a1,1 + · · ·+ λmµm,nm
am,nm

使得AffF (−)成为单子Set→ Set.
若A是AffF (−)单子，则存在映射evA : AffF (A)→ A，这相当于给了A上的线性组合一个赋值，并且代数

的定义说明此赋值满足一定的相容性：a的赋值一定是a，并且赋值满足分配律，于是我们可以定义仿射空间

是单子AffF (−)上的代数.
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习题 20.5.

事实上，我们可以构造某个范畴上的单子，使得其上代数的范畴恰好是某个R代数范畴R−Alg.

按定义，一个单子⊤上的代数也是单纯作为函子⊤上的代数，因此作为单子的⊤代数同态就是作为函子
的⊤代数的代数同态，范畴C上⊤代数全体和⊤代数同态组成的范畴记为C⊤，这个范畴也被称为Eilenberg–Moore范
畴，这样我们就可以来回答本小节开始提出的问题了：

定理 20.4. 任意的单子都是由某个伴随函子对给出的.

证明. 给定范畴C和单子⊤ : C → C，考虑忘却函子U⊤ : C⊤ → C，我们首先证明它有左伴随函子

F⊤ : C → C⊤

A 7→ (⊤(A), µA : ⊤2(A)→ ⊤(A))

(f : A→ B) 7→ (⊤(A), µA)
⊤(f)−−−→ (⊤(B), µB),

其中对任意C中的对象A，F⊤(A)被称为自由⊤代数.根据定理15.4，只要能找到单位η : idC ⇒ U⊤F⊤ = ⊤和余
单位ϵ : F⊤U⊤ = ⊤ ⇒ idC⊤并且它们满足定理15.4的相容性条件.

取伴随的单位为单子⊤的单位η : idC ⇒ ⊤ = U⊤F⊤，并且对任意代数(A, a : ⊤A→ A)取ϵA : (⊤A,µA)
a−→

(A, a).为此，要验证a : ⊤A→ A是一个⊤代数同态，而这对应了交换图

⊤2(A) ⊤A ⊤A ⊤2(A)

⊤A A ⊤A,

⊤a

µA a

η⊤A

a

a

并且ϵ的自然性对应了交换图

⊤A A

⊤B B,

a

⊤f f

a

而该图交换是因为f : (A, a)→ (B, b)是代数同态.

对任意C中的对象A和C⊤中的对象B，单位和余单位的相容性方程ϵF⊤(A) ◦ F⊤(ηA) = idF⊤(A)和U
⊤(ϵB) ◦

ηU⊤(B) = idU⊤(B)对应了图

⊤A ⊤2(A) 和 B ⊤B

⊤A B,

η⊤A

a

ηB

b

于是函子对(F⊤, U⊤)是伴随对.

最后注意到对任意C中的对象A，按定义U⊤ ◦ F⊤ = ⊤且(U⊤ϵF⊤)A = µA，因而伴随对(F⊤, U⊤)诱导的单

子是⊤.
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定义. 给定范畴C和其上的单子(⊤, η, µ)，Kleisli范畴C⊤(Kleisli category)定义为

1. 对象同于C中的对象，

2. homC⊤(A,B) := homC(A,⊤B)，且记C中的态射为A⇝ B，

3. 单位态射idA : A⇝ A是单子的单位ηA : A→ ⊤A，

4. 给定态射f : A⇝ B, g : B ⇝ C，复合映射g ◦ f : A⇝ C是

A
f−→ ⊤B ⊤g−−→ ⊤2C

µC−−→ ⊤C.

习题 20.6. 求证如上定义使得C⊤是一个范畴.

解答. 我们需要证明单位态射、和复合的性质.

给定态射f : A⇝ B和单位态射idA : A⇝ A, idB : B ⇝ B，那么按定义复合

f ◦ idB = A
f−→ ⊤B ⊤ηB−−−→ ⊤2B

µB−−→ ⊤B,

其中根据单子的定义，µB ◦ ⊤ηB = idB，因此f ◦ idB = f .另一方面，根据η的自然性，存在交换图

A ⊤A

⊤B ⊤2B,

ηA

f ⊤f

⊤ηB

于是

idA ◦ f = A
ηA−→ ⊤A ⊤f−−→ ⊤2B

µB−−→ ⊤B = A
f−→ ⊤B ⊤ηB−−−→ ⊤2B

µB−−→ ⊤B = f,

这证明了单位态射.

为证明复合的性质，首先根据µ的自然性，对任意的对象C,D和态射h : C → ⊤D，存在交换图

⊤2C ⊤3D

⊤C ⊤2D,

⊤2h

µC ⊤µD

⊤h

于是给定态射f : A⇝ B, g : B ⇝ C, h : C ⇝ D，

h ◦ (g ◦ f) = A
f−→ ⊤B ⊤g−−→ ⊤2C

µC−−→ ⊤C ⊤h−−→ ⊤2D
µD−−→ ⊤D

= A
f−→ ⊤B ⊤g−−→ ⊤2C

⊤2h−−→ ⊤3D
⊤µD−−−→ ⊤2D

µD−−→ ⊤D

= A
f−→ ⊤B ⊤(µD◦⊤h◦g)−−−−−−−−→ ⊤2D

µD−−→ ⊤D

= (h ◦ g) ◦ f.
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例 20.7. 例20.4中，F : Set⇆Mon : U给出的自由幺半群单子的Kleisli范畴满足其中的态射是映射

A→
∐
n≥0

Bn,

即对任意A中的元素a，它对应的是B中元素组成的一个列表(b1, · · · , bk) ∈
∐
n≥0

Bn.

命题 20.5. 给定范畴C和其上的单子(⊤, η, µ)，存在伴随

F⊤ : C ⇆ C⊤ : U⊤,

它给出的C上的单子恰好是⊤.

证明. 定义F⊤是函子，将对象A映到A，将态射f : A → B映到F⊤(f) : A
f−→ B

ηB−−→ ⊤B.定义U⊤是函子，将对

象A映到⊤(A)，将g : A ⇝ B = A
g−→ ⊤B映到U⊤(g) : ⊤A

⊤g−−→ ⊤2B
µB−−→ ⊤B.注意到U⊤F⊤ = ⊤.我们需要证明

如此定义的函子性.
按照定义，

F⊤(idA) = A
idA−−→ A

ηA−→ ⊤A = ηA,

恰好是C⊤中的A的单位态射；给定C中的态射f : A→ B, g : B → C，

F⊤(g ◦ f) = A
f−→ B

g−→ C
ηC−→ ⊤C

= A
f−→ B

g−→ C
ηC−→ ⊤C η⊤C−−→ ⊤2C

µC−−→ ⊤C

= A
f−→ B

ηB−−→ ⊤B ⊤g−−→ ⊤C η⊤C−−→ ⊤2C
µC−−→ ⊤C

= F⊤(g) ◦ F⊤(f),

其中第二个等号来源于单子的公理，第三个等号是因为η的自然性.另一方面，

U⊤(idB : B ⇝ B) = ⊤B ⊤(ηB)−−−−→ ⊤2B
µB−−→ ⊤B = id⊤B,

并且对任意的f : A⇝ B = A
f−→ ⊤B, g : B ⇝ C = B

g−→ ⊤C，

U⊤(A⇝ B ⇝ C) = U⊤(A
f−→ ⊤B ⊤g−−→ ⊤2C

µC−−→ ⊤C)

= ⊤A ⊤f−−→ ⊤2B
⊤2g−−→ ⊤3C

⊤µC−−−→ ⊤2C
µC−−→ ⊤C

= ⊤A ⊤f−−→ ⊤2B
µB−−→ ⊤B ⊤g−−→ ⊤2C

µC−−→ ⊤C

= U⊤(A⇝ B) ◦ U⊤(B ⇝ C),

这样就完成了F⊤和U⊤函子性的验证.
最后，按定义

homC⊤(F⊤(A), B) ∼= homC⊤(A,B) := homC(A,⊤B) ∼= homC(A,U⊤B),

因此二者是伴随.
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给定范畴C和其上的单子(⊤, η, µ)，我们定义范畴Adj⊤如下，其中

1. 对象是伴随F : C ⇆ D : G（包括了单位η : idC ⇒ GF、余单位ϵ : FG ⇒ idD），满足该伴随诱导的单子

（命题20.3）恰好是(⊤, η, µ)，

2. 给定对象(D1, F1, G1, η, ϵ1)和(D2, F2, G2, η, ϵ2)，态射是函子K : D1 → D2，满足交换图

D1 D2 和 D1 D2

C C.

K

G1

K

G2F1 F2

习题 20.7. 求证这样描述的函子K是伴随之间的态射（习题15.20）.

解答. 这里取函子H : C → C为单位函子，根据习题15.20，我们需要证明Hη1 = η2H，但伴随诱导的单子

相同，因此η1 = η2（二者都是相同单子的单位），得证.

定理 20.6. 给定范畴C和其上的单子(⊤, η, µ)， Kleisli范畴C⊤是Adj⊤的始对象， Eilenberg–Moore范
畴C⊤是Adj⊤的始对象.

换句话说，交换图

C⊤ D C⊤

C

J

U⊤

K

G

U⊤F⊤

F F⊤

中的虚线箭头都是存在且唯一的.

证明. 我们来说明相容性必然给出唯一存在的函子，并证明它的函子性.
注意到伴随(F,G)诱导的单子是⊤，根据命题20.3的构造，这意味着GϵF = µ.
假定存在J : C⊤ → D，则根据F = JF⊤知，对任意C⊤中的对象A，F (A) = JF⊤(A) = J(A).对任意

的C⊤中的态射f : A ⇝ B，若它对应于C中的态射f : A → ⊤B，根据函子与态射换位的交换性（习题15.20），
存在交换图

homC⊤(F⊤(A), B) homC(A,U⊤(B))

homD(JF⊤(A), J(B)) homC(A,U⊤(B))

homD(F (A), F (B)) homC(A,GF (B)),

J idC

βA,J(B)

J(f) ∈ homD(F (A), F (B))换位对应到f ∈ homC(A,GF (B))，根据习题15.17，

J(f) := F (A)
F (f)−−−→ FGF (B)

ϵF (B)−−−→ F (B).

我们需要验证如此定义的函子性.但如此的定义只涉及函子F和复合，因此函子性是不言自明的.
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假定存在函子K : D → C⊤，U⊤ ◦ K = G说明对任意对象B ∈ ob D，K(B)的对象是G(B)；对任意态

射f : B → D，K(f) := G(f).此时的函子性是显然的.接下来我们需要给出G(B)上的一个唯一可能的代数结

构.任意给定代数(A, a : ⊤A → A)，根据定理20.4的证明，a可以看作代数之间的态射a : (⊤A,µA) → (A, a)，

因而它可以被看作C⊤中的态射.根据函子与态射换位的交换性（习题15.20），存在交换图

homD(FG(B), B) homC(G(B), G(B))

homC⊤(KFG(B),K(B)) homC(G(B), G(B))

homC⊤(F⊤(G(B)),K(B)) homC(G(B), U⊤K(B)),

K idC

α⊤
G(B),K(B)

其中除了K之外都是集合的同构，因此K也是集合的同构；对于a ∈ homC⊤(KFG(B),K(B))，α⊤
G(B),K(B)将

其映为U⊤(a) ◦ ηG(B)，按照代数的公理这必然为idG(B)，这样代数结构定义只能为K(B) := (G(B), G(ϵB))，

其中G(ϵB) : GFG(B)→ G(B).如此定义确实给出了一个代数结构，这因为对所需证明的交换图

⊤2G(B) ⊤G(B) G(B) ⊤G(B)

⊤G(B) G(B) G(B),

⊤G(ϵB)

µG(B) G(ϵB)

ηG(B)

G(ϵB)

G(ϵB)

GϵF = µ说明µG(B) = G(ϵFG(B))，因而第一幅图是ϵ自然性的推论，而第二幅图则直接来源于定理15.4中的交
换图

G GFG

G.

ηG

id
Gϵ

注意到函子K唯一性的证明中我们事实上说明了K(B)上只存在唯一可能的代数结构，它意味着K(B)上

的代数结构是对象本身决定的性质而不是附加的结构.
定理20.6说明存在唯一的函子K : C⊤ → C⊤与定理20.4和命题20.5给出的函子都相容，下面的命题说明了

它的性质：

命题 20.7. 典范函子K : C⊤ → C⊤是忠实的，其像是C⊤中所有自由代数组成的满子范畴.

证明. 按定理20.6给出的构造，对C⊤中的对象A，K(A) := (U⊤(A), U⊤(ϵA)) = (⊤(A), µA)，其中最后一个等
式来自于命题20.5中的构造.于是，K的像是自由代数的子范畴.
考虑复合

homC⊤(F⊤(A), B) = homC⊤(A,B)
K−→ homC⊤(K(A),K(B)) = homC⊤(⊤(A),⊤(B)),

集合homC⊤(F⊤(A), B)和homC⊤(⊤(A),⊤(B))在相应的伴随下面都对应到homC(A,⊤(B))，并且复合映射对应

到恒等映射，因此复合映射是集合的同构，于是函子是满忠实的.
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习题 20.8. 给定单子⊤ : C → C，记K : C⊤ → C⊤是命题20.7中将Kleisli范畴映到Eilenberg-Moore范畴的典范
函子，那么可以定义函子

C⊤ → Funct(C⊤,Set)

(A, a) 7→ homC⊤(K(−), (A, a)),

它对每个⊤代数都构造了一个C⊤预层.求证，此函子像中的预层沿F⊤ : C → C⊤的限制是Funct(C,Set)中的可
表函子.事实上，这个函子定义了Eilenberg-Moore范畴到Funct(C⊤,Set)中沿F⊤ : C → C⊤限制是可表函子全体
的范畴的等价.

20.2.3 单子化

例 20.8. 考虑自由忘却伴随

F = Z[−] : Set⇆ Ab : U

和它诱导的单子⊤ := Z[−] : Set ⇆ Set，它将集合S映到S上的整系数线性组合的全体Z[S]，将映射f : S →
T映到

Z[f ] : Z[S]→ Z[T ]
N∑
i=1

nisi 7→
N∑
i=1

nif(si).

根据定理20.6，存在唯一的函子K : Ab→ SetZ[−]满足交换图

Ab SetZ[−]

Set,

K

U

UZ[−]F
F Z[−]

其中SetZ[−]是单子⊤ := Z[−]的代数组成的范畴.按照定理20.6的构造，K将Abel群A映到以A为底集且有“赋
值”映射aA : Z[A]→ A的代数，满足交换图

Z[Z[A]] Z[A] A Z[A]

Z[A] A A,

Z[aA]

µA aA

ηA

aA

aA

这恰好等价于A上的一个Abel群结构.

此外，对任意的Z[−]代数同态f : A→ B，它所需要的交换图

Z[A] Z[B]

A B,

Z[f ]

aA aB

f

刚好是f是Abel群同态所需要的条件.综上，K是一个范畴的等价.
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更一般地，给定单子⊤ : C → C和Adj⊤中的伴随函子对F : C ⇆ D : G，它对应的单子是⊤ = GF，定

理20.6说明函子G都存在分解

D K−→ C⊤ U⊤

−−→ C,

在此分解给出范畴等价的时候，范畴D的许多性质可以由C⊤得出.

定义. 给定伴随函子对F : C ⇆ D : G，若定理20.6给出的分解

D K−→ C⊤ U⊤

−−→ C,

中，K是范畴的等价，则称伴随函子是单子化(monadic)的；对任意函子G若有左伴随F使得(F,G)是单子

化伴随，则称G是单子化的.

若函子K是范畴的同构（如例20.8），则称G是严格单子化的(strictly monadic).

例 20.9. 给定范畴C及其满子范畴D，若自然的嵌入函子i : D → C有左伴随函子L : C → D，则称D是C的自反
子范畴(reflective subcategory).根据定理20.6，i ◦ L = L是C上的单子.

习题 20.9. 给定范畴C及其自反子范畴D，其左伴随是L : C → D，求证

1. ηL = Lη，且该自然变换是自然同构；

2. C中的对象A在i的本质像(essential image)中，即存在D中的对象B使得A ∼= i(B)，当且仅当ηA : A →
i ◦ L(A)是同构；

3. i的本质像包括所有对被L取逆局部(local)的对象，即对象A在本质像当中当且仅当对所有态射f : B →
C，若L(f)是D中的同构，则

f∗ : homC(C,A)→ homC(B,A)

是同构.

证明. 1. 这个说法实际上省略了嵌入函子，完整的表述应当是ηiL = iLη.按定义，嵌入函子i是满忠实
的，根据习题15.18，余单位ϵ对任意对象B都满足ϵB是同构.根据定理15.4，ϵL(A)◦L(ηA) = idL(A)且i(ϵB)◦
ηi(B) = idi(B)，同时因为ϵL(A), i(ϵB)是同构，他们的左逆或右逆必然也是同构

2. 若ηA : A → i ◦ L(A)是同构，则根据定义直接知道A在本质像当中；若A在本质像当中，存在D中
的对象B使得f : A ∼= i(B)，根据定理15.4，i(ϵB) ◦ ηi(B) = idi(B).根据习题15.18，余单位ϵ对任意
对象B都满足ϵB是同构，(ϵB)也是同构.这样，它的右逆ηi(B)也是同构（命题14.1）.根据η的自然性，
ηA = iL(f)−1ηi(B)f，于是ηA是同构.

3. f∗, (ηA)∗的自然性和伴随的自然性给出了交换图

homC(C,A) homC(C, iL(A)) homD(L(C), L(A))

homC(B,A) homC(B, iL(A)) homD(L(B), L(A)).

(ηA)∗

f∗

α−1
C,A

f∗ L(f)∗

(ηA)∗ α−1
B,A
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一方面，若A在本质像中，根据第二部分ηA是同构，因此(ηA)∗是同构.若L(f)是同构，则L(f)∗是同
构，根据交换图f∗是同构.另一方面，取f = ηA，根据第一部分L(ηA)是同构，因此假设说明η

∗
A :

homC(iL(A), A) → homC(A,A)是同构.这意味着存在f ∈ homC(iL(A), A)满足idA = η∗A(f) = f ◦
ηA.于是idL(A) = L(f)◦L(ηA)；但是定理15.4说明ϵL(A) ◦L(ηA) = idL(A)，而习题15.18说明余单位ϵ对
任意对象B都满足ϵB是同构，这样右逆L(ηA)也是同构，于是L(f) = ϵL(A).这样，

f∗ : homC(A,A)→ homC(iL(A), A)

是同构，f也有左逆.根据命题14.1，f和ηA都是同构，由第二部分A在本质像当中.

命题 20.8. 自反子范畴的嵌入函子i : D ↪→ C是单子化的，即典范诱导的交换图

D CL

C

K

i

ULL
FL

中，K是范畴的等价.

证明. 给定⊤ := iL代数对象a : ⊤A → A，这等价于C中的态射a : ⊤A → A，满足相应的相容性，特别地，

aηA = idA.我们想要证明，对象A是代数对象当且仅当ηA是同构.一方面，根据η的自然性，有交换图

⊤A A

⊤2A ⊤A

a

η⊤(A) ηA

⊤a

即ηA ◦ a = ⊤(a) ◦ η⊤(A) = L(a) ◦ ηL(A).但习题20.9说明ηL(A) = L(ηA)，又根据代数对象的定义知aηA = idA，

于是ηA ◦ a = L(a) ◦ L(ηA) = L(aηA) = idL(A)，因此ηA是同构，逆为a.反过来，只要证明η−1
A : ⊤A → A满足

代数对象所需要的公理即可，这实际上是明显的，只要注意到根据单子的定义，µA同时也是ηL(A)的逆.

习题20.9说明A在i : D ↪→ C的本质像中当且仅当ηA是同构，根据上一段的讨论，ηA是同构当且仅当A是
一个代数对象，因此A是一个代数当且仅当A在i的本质像当中.结合定理20.6证明中K的构造，K是本质满射
的函子.按定义，由于D是满子范畴，K是满忠实的函子.于是定理14.5说明K是范畴的等价.

例 20.10. 接例20.8中的讨论，伴随F = Z[−] : Set⇆ Ab : U是单子化的.

在？？？中，我们知道Abel群的表示方式可以通过生成元和关系来表现，即存在集合G和R，使得Z[G] →
A是满射，并且存在自然的“赋值”态射Z[R]→ Z[G]使得该映射的像在Z[G]→ A下表现为0.于是，图

Z[Z[R]]⇒ Z[G]→ A

是余等值子图，其中两个映射Z[Z[R]]⇒ Z[G]分别是零映射和赋值映射，Abel群A也有表示A = ⟨G|R⟩.
明显存在的问题是，这样的表现是依赖于生成元和关系的选取，但我们希望这样的构造是具有函子性

的.这样对应的解决办法是，与其找一组特定的生成元，不如将A中的所有元素都作为生成元，于是自然的态
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射Z[A]→ A必然是满射；同时，我们取A中的“关系”为所有A中的元素——当然，这不是说所有的形式和都

是0，否则这成了平凡群，我们希望此时同样有类似的余等值子图

Z[Z[A]]⇒ Z[A]→ A,

而这依赖于该伴随是单子化的事实.

定义. 给定范畴C和其中的态射f, g : A→ B，若存在C中的交换图

A B C
f

g

h

t s

和截面s, t（具体而言h ◦ s = idC , g ◦ t = idB）满足h ◦ f = h ◦ g且f ◦ t = s ◦ h，则称C是f, g是分裂余等值
子(split coequaliser).

习题 20.10. 求证范畴C中的分裂余等值子

A B C
f

g

h

t s

使得C是f, g的余等值子.并且，这个余等值子是绝对的(absolute)，即对任意给定函子F : C → D，F (C)是F (f), F (g)的
余等值子.

解答. 任取态射k : B → D满足kf = kg，若存在l : A→ C满足l ◦h = k，则由于h◦ s = idC，l = l ◦ idC =

l ◦ h ◦ s = k ◦ s.于是只要证明l := k ◦ s使得l ◦ h = k，而这是显然的.
F的函子性说明在D中同样有分裂余等值子

F (A) F (B) F (C),
F (f)

F (g)

F (h)

F (t) F (s)

因此这个余等值子是绝对的.

例 20.11. 给定C及其上的单子(⊤ : C → C, η, µ)，对任意⊤代数(A, a)，图

⊤2A ⊤A A
⊤a

µA

a

η⊤A ηA

给出了一个C中的分裂余等值子.但是，注意到ηA和η⊤A都不是代数代数同态，因此这不是C⊤中的分裂余等值
子.

定义. 给定函子G : D → C，

1. 若D中的态射f, g : B ⇒ D和C中的态射k : G(D) → C使得C是G(f), G(g)的分裂余等值子，则称态

射f, g是G分裂的(G-split).

2. 若任意的G分裂态射对f, g，都存在C中的态射h : D → A使得图
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B D A
f

g

h

在G下是G分裂给出的分裂余等值子，且任意如此的D中的对象A都是该图的余等值子，则称G创
造G分裂对的余等值子(create coequaliser of split pair).

3. 若对任意的G分裂态射对f, g : B ⇒ D，都存在唯一的D中的图使得它在U下的像是需要的分裂余等
值子，则称G严格创造G分裂对的余等值子(strictly create coequaliser of split pair).

换句话说，创造分裂对的余等值子满足分裂对都可以“提升”，而严格创造给出了唯一的提升.下面的定
理说明了我们引入如此概念的意义.

定理 20.9. 给定C及其上的单子(⊤ : C → C, η, µ)，则忘却函子U⊤严格创造U⊤分裂对的余等值子.

证明. 给定C⊤中的态射f, g : (A, a) ⇒ (B, b)，且存在U⊤分裂的余等值子（注意到按照构造U⊤是忘却函子，

因而这是C中的分裂余等值子）：

A B C.
f

g

h

t s

我们必须证明C可以提升为一个⊤代数(C, c)，并且这个提升是唯一的（即存在唯一的C上的代数结构使得图

是C⊤中的交换图）.

根据习题20.10，⊤C是C中⊤f,⊤g的余等值子，因而存在C中的交换图

⊤A ⊤B ⊤C

A B C,

⊤f

⊤g
a

⊤h

b c

f

g

h

其中左侧方块（分别）交换是因为f, g都是代数同态，并且

h ◦ b ◦ ⊤f = h ◦ f ◦ a = h ◦ g ◦ a = h ◦ b ◦ ⊤g

于是根据余等值子的泛性质，存在唯一的C中的态射c : ⊤C → C使得上图中右侧的方块是交换的，只要我们

证明了c : ⊤C → C使得C是代数，则如上的交换图就证明了h是代数同态.

这样，我们需要验证交换图

C ⊤C 和 ⊤2(C) ⊤C

C ⊤C C.

ηC

a

µC

⊤c b

c

根据η, µ的自然性和B,C的代数的性质，在图
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B C

⊤B ⊤C

B C

h

ηB ηC

⊤h

b c

h

和图

⊤2(B) ⊤2(C)

⊤B ⊤C

⊤B ⊤C

B C

⊤2(h)

µB

⊤(b) ⊤(c)

⊤h

b

c

b c
h

µC

⊤h

中，除了最右侧的图形其余都是交换的，因此我们有

c ◦ ηC ◦ h = ◦⊤(h) ◦ ηB = h ◦ b ◦ ηB = h

和

c ◦ µC ◦ ⊤2(h)

由于h和⊤2(h)都是满态射，因而最右侧的图形也都是交换的.

最后，我们要证明h : (B, b)→ (C, c)是C⊤中的余等值子.给定C⊤中的图

A B C,
f

g

h

和代数映射k : (B, b)→ (D, d)使得k ◦ f = k ◦ g，于是在C中存在分解

A B C

D,

f

g

h

k
j

为验证j是代数同态，只要验证图

⊤C ⊤D

C D

⊤(j)

c d

j

是交换的即可.考虑到h, k都是代数同态，

j ◦ c ◦ ⊤h = j ◦ h ◦ b = k ◦ b = d ◦ ⊤k = d ◦ ⊤j ◦ ⊤h,

考虑到⊤(h)是满态射，我们有j ◦ c = d ◦ ⊤j.

推论 20.9.1. 若伴随F : C ⇆ D : G是单子化的，则
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1. 函子G创造G分裂对的余等值子，

2. 对任意D中的对象B，存在余等值子图

FGFG(B) FG(B) B.
FG(ϵB)

ϵFG(B)

ϵB

证明. 记⊤ := GF为该伴随给出的单子，伴随是单子化的说明存在范畴之间的等价K : C → D使得图

D C⊤

C

K

G

U⊤F
F⊤

是交换的.

给定D中的态射f, g : A⇒ B，若它们是G分裂的等值子，根据图的交换性K(f),K(g) : K(A)⇒ K(B)也

是U⊤分裂的，于是定理20.9说明该分裂余等值子被提升到C⊤中的余等值子图，并且任意这样的图都是余等值
子图.取定K的等价逆L，那么自然同构KL ∼= idC⊤给出了所需要的沿G的提升.又由于K将余等值子映到余等
值子，这就完成了证明.

按定义，

GFGFG(B) GFG(B) G(B).
GFG(ϵB)

G(ϵFG(B))

G(ϵB)

是C中的G分裂余等值子，由前一部分，图

FGFG(B) FG(B) B.
FG(ϵB)

ϵFG(B)

ϵB

是余等值子图.

定理 20.10 (单子化定理(Barr-Beck)). 给定伴随F : C ⇆ D : G，它是单子化当且仅当G创造G分裂对的

余等值子.

考虑伴随给出的范畴的等价

D C⊤

C,

K

G

U⊤F
F⊤

那么定理20.10说明了

1. 典范的函子K是范畴的等价，

2. G创造G分裂对的余等值子

是等价的.对应地，同一幅图也可以证明

1. 典范的函子K是范畴的同构，



136 第二十章 进阶范畴理论

2. G严格创造G分裂对的余等值子

是等价的.

定理20.10的证明. 推论20.9.1说明了必要性，接下来我们证明充分性.此时，我们需要构造K : D → C⊤的等价
逆L : C⊤ → D.
回顾定理证明中的构造，由于交换图，我们有U⊤ ◦K = G和K ◦ F = F⊤.因此，对于等价逆L，我们需

要U⊤ ∼= G ◦ L和F ∼= L ◦ F⊤.假定第二条是严格成立的，即F = L ◦ F⊤，那么对于任意自由代数(⊤A,µA)，

L(⊤A,µA) := F (A),

并且对于自由映射⊤f : ⊤A → ⊤B，定义L(⊤f) := F (f).这样我们只需要将L延拓至所有代数和态射上即可，
为此我们需要条件G创造G分裂对的余等值子.

考虑到范畴的等价保极限和余极限，例20.11提示我们L(A,α)定义为余等值子

FGF (A) F (A) L(A,α),
F (α)

ϵF (A)

(20.1)

其中余等值子的存在性如下：例20.11说明（取单子⊤为伴随诱导的C上的单子）

GFGF (A) GF (A) A,
GF (α)

G(ϵF (A))

是C中的分裂等值子，因而创造分裂等值子的条件说明余等值子L(A,α)存在.若给定态射f : (A,α) → (B, β)，

定义L(f)是余等值子泛性质诱导的（唯一）态射

FGF (A) F (A) L(A,α)

FGF (B) F (B) L(B, β),

F (α)

ϵF (A)

FGF (f) F (f) L(f)

F (β)

ϵF (B)

并且泛性质也说明了此定义的函子性.此时，由于式20.1中创造的余等值子是G分裂的，对任意(A,α)，我们

有GL(A,α) = A；对任意的f : (A,α)→ (B, β)，同理GL(f) = f .
这样我们只需要证明KL ∼= idC⊤和LK ∼= idC即可.按定理20.6证明中的定义，K(B) = (G(B), G(ϵB))，于

是根据上一段的讨论KL(A,α) = GL(A,α) = (A = GL(A), G(ϵL(A)))，根据定理20.6中的证明，GL(A)上只
存在唯一的代数结构，而(A,α)是已经存在的代数结构，故G(ϵL(A)) = α，于是KL = idC⊤ .另一方面，对任
意D中的对象B，

LK(B) := coeq FGFG(B) FG(B)
FG(ϵB)

ϵFG(B)

根据推论20.9.1，LK(B) ∼= B；但余等值子的泛性质说明如此的同构是唯一的，因此这是一个自然的同构.

推论 20.10.1. 自由忘却伴随F : Set⇆Mon : U是单子化的.

这个结论可以推广到其他的忘却函子，如Gp,Ab,Ring, G−Rep,Veck,Set∗到Set的忘却函子.

证明. 根据定理20.10，我们只需要证明忘却函子U创造U分裂对的余等值子.
给定幺半群同态f, g :M ⇒ N，使得
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M N P
f

g

h

t s

是Set中的分裂余等值子，我们需要证明h : N → P是幺半群同态，并且h给出了Mon中的余等值子.

首先我们证明P上有幺半群结构.P的单位必然是ηP : {∗} ηN−−→ N
h−→ P，记其像为1P；函子−2使得P ×

P是f × f, g × g :M ×M ⇒ N ×N的余等值子（习题15.26），因此给出了唯一的µP : P × P → P，如图

M ×M N ×N P × P

M N P,

f×f

g×g
µM µN µP

f

g

(20.2)

我们要验证如此定义的乘法µP满足结合律和存在单位.根据M和N乘法的结合性，Set中的图

M ×M ×M N ×N ×N P × P × P

M ×M N ×N P × P

M N P,

f×f×f

g×g×g
µM×idM

h×h×h

µN×idN µP×idP

f×f

g×g
µM

h×h

µN µP

f

g

h

的最外层同于图

M ×M ×M N ×N ×N P × P × P

M ×M N ×N P × P

M N P,

f×f×f

g×g×g
idM×µM

h×h×h

idN×µN idP×µP

f×f

g×g
µM

h×h

µN µP

f

g

h

的最外层，又根据余等值子的泛性质，µP ◦ (idP ×µP ) = µP ◦ (µP × idP )，即有结合性.习题14.9说明h是满射，
因此对任意x ∈ P，存在z ∈ N使得h(z) = x，于是

µP (1P , x) = µP (h(1N ), h(z))

= h(µN (1N , z))

= h(z) = y,

类似地也可证明右单位性，于是(P, µP , 1P )是幺半群.

图20.2右侧的交换性和ηP的定义说明h是幺半群同态，这样只需要证明h是Mon中的余等值子即可.任意
给定幺半群同态k : N → Q使得k ◦ f = k ◦ g，根据P是Set中的分裂余等值子，存在映射l : P → Q，根据h的

满射性质可以证明l是幺半群同态.

设κ是一个正则基数(regular cardinal)，若集合S的基数小于κ，则称S是κ小的(κ-small).对于小范畴C，若
所有态射的全体组成的集合是κ小的，则称C是κ小的.
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定义. 1. 给定范畴J，若对任意的有限范畴J0（只有有限多个态射）和图D : J0 → J，都存在图下的
锥，则称J是有限可滤的(finitely filtered)，或者直接称为可滤的.

2. 给定函子F : C → D，若它与所有的可滤余极限交换，则称它是有限性的(finitary).

注意到左伴随一定保余极限，因此若伴随F : C ⇆ D : G满足G是有限性的函子，那么该伴随诱导的单

子⊤ := GF则也是有限性的.

定义. 给定范畴A，若存在有限性单子化的函子G : A → Set，则称A是一个代数理论实体的范畴(a cate-
gory of models for an algebra theory).

我们之前提到的Mon,Gp,Ab等都是代数理论的范畴.

例 20.12. 记cHaus是所有紧Hausdorff空间全体组成的（满）子范畴，我们想要证明自然存在的忘却函子U :

cHaus→ Set也是单子化的.为了应用定理20.10，我们要证明U创造了U分裂对的余等值子.
在证明之前，我们回顾拓扑中的一部分结论.闭包运算(−) : P (X)→ P (X)满足对任意P (X)中的元素A,B，

∅ = ∅，a) A ⊆ A，b)

A = A，c) A ∪B = A ∪B.d)

我们不加证明地引用如下结论：

1. 按定义，映射f : X → Y连续当且仅当f(S) ⊆ f(S)，进一步称它是闭映射当且仅当f(S) = f(S),

2. 紧Hausdorff空间之间的连续映射f : X → Y必然是闭映射，

因此，紧Hausdorff空间之间的映射f : X → Y是连续的当且仅当f保闭包运算.
考虑紧Hausdorff空间之间的映射f, g : X ⇒ Y，于是存在Set中的余等值子图

X Y Z,
f

g

h

且这个余等值子是绝对的.协变势集函子（例20.2）保余等值子（习题20.2），于是我们得到如下交换图

P (X) P (Y ) P (Z)

P (X) P (Y ) P (Z)

f∗

g∗

(−)

h∗

(−) (−)

f∗

g∗

h∗

由于f, g是紧Hausdorff空间之间的连续映射，取像集和取闭包操作可交换，于是上图左侧方块交换，因此存
在唯一诱导的映射P (Z) 99K P (Z)，记为(−).

如上给出的映射(−) : P (Z) → P (Z)满足闭包运算需要的条件a)-d)，因此它给出了Z上的拓扑（事实上
是给出了所有的闭集），右侧方块的交换性说明了在此拓扑下h : Y → Z是连续的，且是闭映射.由于h是满射
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且Y是紧的，因此Z也是紧的；根据Y的Hausdorff性和h的闭性质、满射性，Z中的点是闭集，于是对不同的
点z1, z2 ∈ Z，它们的原像h−1(z1), h

−1(z2)是不相交的闭集，Y作为紧Hausdorff的正则性说明存在不相交的开
集U1, U2包含了h

−1(z1), h
−1(z2)，它们补集在h下像的补集给出了包含z1, z2的不相交的开集.

最后再证明h : Y → Z是cHaus中的余等值子.给定连续映射k : Y → W满足kf = kg，于是在Set中存在

唯一的分解l : Z →W满足k = lh.于是只要证明l是闭映射即可，即我们需要验证图

P (Y ) P (Z) P (W )

P (Y ) P (Z) P (W )

h∗

k∗

(−)

l∗

(−) (−)

h∗

k∗

l∗

右侧的交换性.注意到左侧方块和外侧矩形都是交换的，且h是满态射，这就完成了证明.

本小节最后，我们将把定理20.10的证明应用在其他的场景，其中一个是如下自反三项定理(reflexive tripleabil-
ity theorem, RTT)：

命题 20.11. 若函子G : D → C存在左伴随F，并且

1. 对任意D中有相同截面s : B → A的态射对f, g : A⇒ B，D中存在f, g的余等值子，

2. G与有相同截面态射对的余等值子交换，

3. 给定D中的态射f : A→ B，若G(f)是同构则f本身也是同构，

那么G是单子化的.

我们称有相同截面s : B → A的态射对f, g : A⇒ B为自反对(reflexive pair).

证明. 同样地我们这里构造函子K : D → C⊤的等价逆L : C⊤ → D即可.并且事实上的构造方法与定理20.10证
明中的构造是完全一样的，即对于任意自由代数(⊤A,µA)，L(⊤A,µA) := F (A)；对于一般的(A,α)，L(A,α)定

义为余等值子式20.1

FGF (A) F (A) L(A,α),
F (α)

ϵF (A)

因此我们只需要验证该余等值子的存在性，在G下的像是A，并且任意满足这样条件的对象都是余等值子.
考虑D中的图

FGF (A) F (A),
F (α)

ϵF (A)

F (ηA)

代数(A,α)的定义和定理15.4说明F (ηA)是F (α)和ϵF (A)共同的截面，于是余等值子存在，记为B.于是G(B)是

GFGF (A) GF (A)
GF (α)

G(ϵF (A))
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的余等值子.但同时A也是余等值子，于是G(B) ∼= A.若还有图

FGF (A) F (A) D,
F (α)

ϵF (A)

其中的D也满足G(D) ∼= A，同构关于G的提升性说明了D也是余等值子.

例 20.13. 例20.2中构造了协变幂集函子，对偶地还有反变幂集函子P : Set → Set（例15.1），我们首先说明
这个定义给出了一个单子.

命题20.11一个非常有趣的应用是

定理 20.12 (Paré). 反变幂集函子P : Set◦ → Set是单子化的.

为了证明定理，我们需要

引理 20.1. 对任意单态射给出的拉回图

A B

X Y,

g

a b

f

对应的图

PB PA

PY PX

g−1

b∗ a∗

f−1

也是交换的.

证明. 对任意V ∈ PB，考虑交换图

U V

A B

X Y,

f

a b

g

a∗g
−1(V ) = U当且仅当上方的方块是拉回图，f−1b∗(V ) = U当且仅当复合图是拉回图，习题14.12说明二者

是等价的，得证.

习题14.11说明了存在交换图

A A

A B,

f

f
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特别地，对任意单态射f : A→ B，引理20.1说明复合

P (A)
f∗−→ P (B)

f−1

−−→ P (A)

是恒同映射.

定理20.12的证明. 例20.2说明了Set上的笛卡尔闭的结构

homSet(A,P (B)) ∼= homSet(A×B, [1]δ) ∼= homSet(P (A), B)

于是P存在自伴随P : Set◦ → Set.
为了应用命题20.11，我们需要验证其中的三个条件：

1. 根据15.10.1，Set是余完备的，因此自反对的余等值子存在.

2. 考虑映射f, g : A⇒ B，且假定

E A B
f

g

是f, g的等值子，且

A B A
f

g

s

给出了f, g共同的截面，于是交换图

E A

A B

f

g

是单态射的拉回图：共同截面的存在性意味着f, g都是分裂单态射，这意味着其上所有锥必须是相同的

态射（即若有交换图

D A

A B,

k

l f

g

则有k = l）.于是引理20.1说明了

P (B) P (A) P (E),
f−1

g−1

e−1

g∗ e∗

是分裂余等值子，这证明了第二条.

3. 首先注意到P是忠实的函子，这是因为任意给定态射f, g : A⇒ B，复合

B P (B) P (B)
η f−1

g−1
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被自伴随的P对应到A× B ⇒ [1]δ，而这两个映射对应了A ↪→ A× B和B ↪→ A× B，得证.Set中的同构
等价于同时是单态射和满态射，结合例14.15则证明了第三条.

习题 20.11. 给定群G，忘却函子Funct(BG,Set) → Set有左伴随，将集合X映到G ×X，G左作用在上面.求
证这个伴随对是单子化的.

习题 20.12. 给定余完备的范畴C和任意小范畴J，忘却函子

Funct(J , C)→ Funct(J δ, C)

有左伴随（其中J δ定义在习题）L : Funct(J δ, C)→ Funct(J , C)，定义为对任意F ∈ Funct(J δ, C)

LF (B) :=
∐
A∈J

∐
homJ (A,B)

F (A).

1. 尝试写出LF在J中态射上的作用.

2. 定义L在Funct(J δ, C)中态射上的作用.

3. 依据Yoneda引理证明L是忘却函子Funct(J , C)→ Funct(J δ, C)的左伴随.

4. 求证该伴随是单子化的.1

20.2.4 代数范畴中的极限

回顾？？我们对群之间的同态的讨论，一个重要的结论？？说明集合上同构的同态就是群的同构，而这是

代数一个重要的结论：

引理 20.2. 若函子G : A → C是单子化的，那么对任意C中的态射f : A→ B，若U(f)是同态则f本身也是

同态.

证明. 根据定理20.10，我们只要证明忘却函子U⊤ : C⊤ → C满足该性质即可.回顾C⊤中的代数同态f : (A, a)→
(B, b)是C中的交换图

⊤A A

⊤B B,

a

⊤f f

b

只要f−1存在那必然有交换图

⊤A A

⊤B B,

a

⊤f−1 f−1

b

1假设范畴C是余完备的，那么有一类函子K : I → J，使得沿K的限制函子resK : Funct(J , C) → Funct(J , C)严格地创造了resK分裂对，这里

就是一个特例.所有这一类的函子都有左伴随且这个伴随是单子化的.
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即f−1也是代数同态.

我们称满足引理20.2条件的函子为守恒的(conservative).

例 20.14. 例20.12说明了紧Hausdorff空间组成的范畴是单子化的，因而引理20.2说明紧Hausdorff空间之间的
连续双射是同胚.

定理 20.13. 给定单子化的函子U : A → C，那么

1. 对任意图D : J → A，若limJ UD（在C）中存在，则limJ D存在且U(limJ D) ∼= limJ UD.

2. 对任意图D : J → A，若colimJUD （在C）中存在且在⊤和⊤2下不变，则colimJD存在

且U(colimJD) ∼= colimJUD.

证明. 根据定义，存在C上范畴的等价K : A → C⊤，因此只需要证明忘却函子是U⊤ : C⊤ → C的情形即可.

给定图D : J → C⊤，设limJ U
⊤D是C中的极限，且极限的锥是由自然变换λ : ConstlimJ U⊤D ⇒ D给出

的，即C中的交换图
limJ U

⊤D

D(A) D(B)

λA λB

D(f)

(20.3)

给出了极限limJ U
⊤D的结构映射.我们希望证明图20.3是C⊤中的图（即对象limJ U

⊤D本身是⊤代数且λA对所
有的A都是代数同态），于是我们就找到了相应的提升.

根据定义，自然变换的复合

⊤ConstlimJ U⊤D ⊤D D⊤λ µ◦D

给出了图D : J → C上的支架，根据极限的定义，存在唯一的态射l : ⊤ limJ U
⊤D → limJ U

⊤D与支架相容，

即有交换图

⊤ limJ U
⊤D ⊤D(A)

limJ U
⊤D D(A).

⊤λA

l µD(A)

λA

要验证(limJ U
⊤D, l)是一个⊤代数，我们需要验证图

limJ U
⊤D D(A)

⊤ limJ U
⊤D ⊤D(A)

limJ U
⊤D D(A)

λA

η
limJ U⊤D ηD(A)

⊤λA

l µD(A)

λA

和图
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⊤2(limJ U
⊤D) ⊤2(D(A))

⊤ limJ U
⊤D ⊤D(A)

⊤ limJ U
⊤D ⊤D(A)

limJ U
⊤D D(A)

⊤2(λA)

µ
limJ U⊤D

⊤(l) ⊤(a)

⊤(λA)

l

a

l a

λA

µD(A)

⊤(λA)

的最左侧面都是交换的，其中a : ⊤D(A)→ D(A)是D(A)的⊤代数结构映射，而这只需要证明2.

接下来验证(limJ U
⊤D, l)是C⊤中图D : J → C⊤的极限.？？？？

对于余极限，我们还有条件⊤colimJUD = colimJ⊤UD和⊤2colimJUD = colimJ⊤2UD？？？？

我们称定理20.13给出的性质分别是U创造了C中的极限和余极限(create the limits/colimits that C has).

推论 20.13.1. 自反子范畴的嵌入i : D → C（命题20.8）创造了极限，特别地完备范畴的自反子范畴都是完备
的.

推论 20.13.2. 范畴Set上的单子化范畴都是完备的，相应的极限都是由忘却函子创造.

证明. 推论15.10.1说明Set是完备的，于是定理20.13说明Set上的单子化范畴都是完备的.

例 20.15. 我们考虑Ab中的一类特殊极限——

Zp := lim
n
[· · · → Z/pnZ→ · · · → Z/p2Z→ Z/pZ],

根据定理15.14，忘却函子U : Ring→ Set保极限，于是作为集合的极限

Zp = {(a1 ∈ Z/pZ, a2 ∈ Z/p2Z, · · · , an ∈ Z/pnZ, · · · ) | an ≡ am (mod pmin(n,m))},

它的结构映射都是忘却函子的像，即自然的映射

pn : Zp → Z/pnZ

(a1, a2, · · · , an, · · · ) 7→ an

是环同态，这意味着Zp中的加法和乘法是按每一项作相应的加法和乘法.

推论 20.13.3. Set是余完备的.

证明. 定理20.12说明P : Set◦ → Set是单子化的，于是根据定理20.13，Set中的余极限都是由P对应的幂集上

的图生成，于是Set是余完备的.

推论 20.13.4. 任意给定环R，忘却函子U : R−Mod→ Ab创造了所有Ab中的余极限.

2这个证明恰好是定理20.9证明的对偶.
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证明. 对任意Abel群A,B，定理10.3说明存在自然的同构

HomZ(R⊗Z A,B) ∼= HomZ(A,HomZ(R,B)).

根据定理15.15，函子R⊗Z−保所有的余极限.注意到U的左伴随刚好是R⊗Z−，于是单子⊤ = U(R⊗Z−)保余
极限，根据定理20.13，得证.

事实上，包括Ab在内的所有描述代数理论的范畴都是余完备的，但对于某些情况，单子不保余极限，此

时余极限的构造就非常复杂.我们考虑如下：

例 20.16. 伴随对F : Set ⇆ Gp : U根据例20.4给出一个单子.范畴Set和Gp都有余积的，但Set中的余积是

不交并，而？？说明Gp中的余积是自由积.这意味着U并不保余积（进而更不会创造余积）.然而，任意给定
群G,H，我们希望借助单子化的伴随F : Set ⇆ Gp : U和Set中余积的存在性来证明G,H在Gp中余积的构

造.
第一个接近的想法是F (U(G)

∐
U(H))，但这样我们就忽略了G,H本身所带有的关系.这些关系恰恰是由R =

UFUG
∐
UFUH给出，于是这个集合生成的自由群F (UFUG

∐
UFUH)给出了所需要的关系，此时自由积G∗

H刚好是F (U(G)
∐
U(H))商调这些关系给出的群，即有交换图

F (UFUG
∐
UFUH) F (U(G)

∐
U(H)) G ∗H

FUF (U(G)
∐
U(H)),

F (UϵG
∐
UϵH)

F (c) ϵF (U(G)
∐

U(H))

具体而言，G,H的群结构由赋值映射ϵFU(−)给出（例15.7），上面的映射

F (UϵG
∐

UϵH) : F (UFUG
∐

UFUH)→ F (UG
∐

UH)

将自由群F (UFUG
∐
UFUH)中的一个元素——两个群“字串的字串”——通过赋值映射映成两个群元素组成

的字串（将内部的字串用运算合并）;下面的复合映射中，c : UFUG
∐
UFUH → UF (U(G)

∐
U(H))是余积

诱导的自然的态射（习题15.24），在此情形下是将G或H的字串（UFUG
∐
UFUH中的一个元素）恒同地映

成由G和H中元素组成的字串，那么FUF (U(G)
∐
U(H))中的字串是F (c)的像当且仅当字串完全由G或H中

的元素组成，于是复合给出了G或H中的关系，因而两个态射的余等值子恰好是自由积.

习题 20.13. 给定函子F : C → D和C中的一族图{Di : Ji → C}i∈Λ，若

1. C中的态射f是同构当且仅当F (f)是D中的同构，

2. C中存在这些极限limDi且F与这些极限交换，

则F创造了C中的这些极限limDi.

解答.

事实上，例20.16可以推广为

命题 20.14. 给定余完备的范畴C和单子化的函子G : A → C，那么如下是等价的：

1. A是余完备的，

2. A中含有余等值子.
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证明. 1⇒ 2是显然的，只需要证明2⇒ 1即可.根据定理20.10，我们可以假定A = C⊤.定理15.10（的对偶）说
明我们只需要说明余积的存在性即可.

给定C⊤中的一族⊤代数(Ai, αi)i∈Λ，我们要验证，图

(⊤(
∐
i∈Λ⊤Ai), µ∐

i∈Λ ⊤Ai
) (⊤(

∐
i∈ΛAi), µ

∐
i∈Λ Ai

) (A,α)

(⊤2(
∐
i∈ΛAi), µ⊤(

∐
i∈Λ Ai))

⊤(
∐

i∈Λ αi)

c µ∐
i∈Λ Ai

给出的余等值子是余积(
∐
i∈ΛAi,

∐
i∈Λ αi).

？？？？

本节最后我们将完成对⊤代数范畴完备性的描述：

定理 20.15. 若⊤ : C → C是有限性的单子，C是完备且余完备的局部小范畴，那么⊤代数组成的范畴C⊤也
是完备且余完备的.

为了这个定理的证明，我们需要如下的工具：

定理 20.16. 给定连续的函子G : D → C，且D是一个局部小的完备范畴.假定G满足如下的解集条件：

• 对任意C中的对象A，存在态射的集合Ψ := {fi : A → G(Bi)}i∈Λ使得任意态射f : A → G(B)，都存

在fi ∈ Ψ满足分解f = G(h) ◦ fi，其中h : Bi → B是D中的态射，

那么G存在左伴随.

定理的证明留在习题中，我们现在回到定理20.15的证明中：

证明. 根据定理20.13，C的完备性意味着C⊤的完备性.根据命题20.14，我们只需要证明C⊤中有余等值子即可.定
理15.16说明伴随对

coeq : Funct(•⇒ •, C⊤)⇆ C⊤ : ∆

（若存在则）给出了余等值子.习题20.14说明对角函子∆保极限.为证明所要的左伴随存在，依据定理20.16，
我们只要证明∆满足解集条件.

此时，我们需要找到函子∆的解集，即

• 对Funct(• ⇒ •, C⊤)中的任意对象，即代数同态f, g : (A,α) → (B, β)，找到一族对象{(Qi, ui)}i∈Λ和态

射{qi : (B, β)→ (Qi, ui)}i∈Λ，满足qif = qig且对任意满足hf = hg的⊤代数同态h : (B, β)→ (C, γ)，都

存在j ∈ Λ和态射t : (Qj , uj)→ (C, γ)使得分解h = tqi成立.

首先，我们定义q0 : B → Q0为C中图f, g : A⇒ B的余等值子，p0 : ⊤B → P0是C中图⊤f,⊤g : ⊤A⇒ ⊤B的余
等值子，于是我们有C中的图
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⊤Q0

⊤A ⊤B P0

A B Q0.

f

g

α

p0

β

⊤q0
∃!v0

∃!u0

f

g

q0

递归地我们需要构造如下的图：

⊤Qn ⊤Qn+1

⊤A ⊤B Pn Pn+1

A B Qn Qn+1.

⊤qn,n+1

f

g

α

pn

β

⊤qn
vn

un

pn,n+1

vn+1

un+1

f

g

qn qn,n+1

满足

1. pn和qn分别定义了(⊤f,⊤g)和(f, g)下的锥，

2. pn+1 = pn,n+1 ◦ pn且qn+1 = qn,n+1 ◦ qn，

3. 图(Pn)n∈N是图(⊤Qn)n∈N.

定义Pn+1 := ⊤Qn，且Qn+1是余等值子

⊤Pn ⊤Qn Qn+1,
µQn◦⊤vn

⊤un

un+1

并且定义pn,n+1 := vn, qn,n+1 := un+1 ◦ ηQn
, vn+1 := ⊤qn,n+1，且pn+1, qn+1如上是相应的复合.

如此的构造给出了C中指标为N的图{Pn}n∈N和图{Qn}n∈N，并且带有图之间的态射u : P ⇒ Q，这样我们

可以在C中构造图

⊤Q0 ⊤Q1 · · · colimn⊤Qn
∼= ⊤colimnQn = ⊤Qω

P0 P1 P2 · · · colimnPn

Q0 Q1 Q2 · · · colimnQn =: Qω

⊤q0,1 ⊤q1,2

v0

u0

p0,1

v1

u1

p1,2

u2

p2,3

∃!uω

q0,1 q1,2 q2,3

由于⊤保这些可滤余极限（假定的条件），函子⊤将余极限锥qn,ω : Qn → Qω映到了⊤qn,ω : ⊤Qn → ⊤Qω，

于是这给出了指标为N的图{Pn}n∈N的余极限锥.特别地，自然变换u : P ⇒ Q诱导了余极限之间的态射uω满

足uω ◦ ⊤qn,ω = qn,ω ◦ un+1.
接下来我们要证明(Qω, uω)是一个⊤代数.
对于单位性质，根据Qω的泛性质，只需要证明uω◦⊤Qn,ω = Qn,ω对足够大的n成立即可.事实上，根据η的

自然性和uω的定义，

uω ◦ ⊤Qn,ω = uω ◦ ⊤qn,ω ◦ ηQn
= qn+1,ω ◦ un+1 ◦ ηQn

= qn+1,ω ◦ qn,n+1 = Qn,ω.

对于结合性条件，考虑交换图
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... ⊤2Qn

...
...

⊤Pn ⊤Qn Qn+1

⊤2Qn

⊤Pn+1 ⊤Qn+1 Qn+2.

...
...

...
...

µQn

⊤un

⊤pn,n+1

⊤vn

un+1

⊤qn,n+1 qn+1,n+2

µQn

⊤un+1

⊤vn+1

un+2

⊤2qn,n+1

在余极限的层面上，由于⊤保这些余极限，并且注意到vω = id，于是uω : ⊤Qω → Qω是⊤uω和µQω
的余等值

子，特别地uω ◦ ⊤uω = uω ◦ ηQω
，于是(Qω, uω)是⊤代数.

接下来验证(Qω, uω)满足相应的泛性质.任意给定代数同态h : (B, β) → (C, γ)使得对于给定的代数同

态f, g : (A,α) ⇒ (B, β)满足h ◦ f = h ◦ g，我们要找到h沿qω的唯一分解.根据余极限Qω = colimnQn的泛

性质，要构造分解k : Qω → C只需要定义

kn : Qn
qn,ω−−→ Qω

k−→ C.

对任意n ∈ N，我们需要证明
Pn ⊤Qn ⊤C

Qn C

vn

un

⊤kn

γ

kn

(20.4)

在C中交换，再取到余极限层面，vω是单位态射，于是k : (Qω, uω)→ (C, γ)定义了一个代数同态.

我们还是通过归纳法来证明.定义k0是h关于f, g : A⇒ B的余等值子Q0的分解.在n = 0的情形下，图20.4的
交换性等价于图复合p0 : ⊤B → P0后的交换性，而复合后的交换性是因为

γ ◦ ⊤k0 · v0 · p0 = γ ◦ ⊤k0 · ⊤q0 = γ ◦ ⊤h = h ◦ β = k0 · q0 ◦ β = k0 ◦ u0 ◦ p0.

在递推步骤，假设kn+1是γ ◦ ⊤kn : ⊤Qn → C沿余等值子un+1 : Pn+1 ↠ Qn+1的唯一分解，直接的追图说

明γ定义了余等值子un+1下的锥.并且kn+1满足图20.4给出的交换性.再次追图可以验证所有的态射kn : Qn →
C, n ∈ N构成了以N为指标的图的余锥，并且这个余锥的余极限是Qω，这诱导了需要的态射k : Qω → C.由
于⊤保可滤余极限，图20.4意味着

⊤Qω ⊤C

Qω C,

⊤kω

uω γ

k

这样k定义了⊤代数同态.此时我们验证了解集条件，因此根据定理20.16，我们完成了证明.

一个重要的推论是

推论 20.16.1. 任意代数理论的范畴A是完备且余完备的.
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例 20.17. 设f : R→ S是交换环的同态，那么存在伴随

f∗ : R−Mod⇆ S −Mod : f∗,

该伴随是comonadic的当且仅当f是忠实平坦的.

习题 20.14. 给定小范畴C，那么忘却函子

U : Funct(C,D)→ Funct(Cδ,D)

严格地创造了D中存在的极限和余极限.这些（余）极限都是在对象层面构造的，即对任意C中的对象A，赋值
函子evA : Funct(C,D) → D保所有D中存在的（余）极限.这个习题说明函子范畴中的极限可以在对象层面计
算.

解答. 由于范畴CAT中存在极限和余极限，存在范畴的同构Funct(Cδ,D) ∼=
∏
A∈C D，于是根据积的泛性

质，Funct(Cδ,D)中的一个图J → Funct(Cδ,D)是以ob C为指标的图J → D的集族，且赋值函子

evA : Funct(Cδ,D)→ D

刚好给出了该集族中以A为标识的D的图.特别地，Funct(Cδ,D)中有所有D中存在的（余）极限，且evA保

这些（余）极限.
图F : J → Funct(C,D)的极限limJ F是一个函子

C → D,

这样我们就需要知道对于一个C中的对象A和态射f : A → B，limJ F (A)和limJ F (f)的取值.对任意J中
的对象i，F (i)也是一个函子C → D，并且根据忘却函子U : Funct(C,D)→ Funct(Cδ,D)的定义，

UF (i)(A) = F (i)(A) (20.5)

对任意J中的对象i和C中的对象A成立.若假定limJ F存在，那么有图

limF (A)

F (i)(A) F (j)(A).

另一方面，图F : J → Funct(C,D)复合忘却函子U : Funct(C,D)→ Funct(Cδ,D)得到了Funct(Cδ,D)中的
图，前一段已经说明了limJ UF存在，因而也有图

limUF (A)

UF (i)(A) UF (j)(A),

二者都是D中锥图的终对象，于是根据式20.5，我们有

lim
J
UF (A) ∼= lim

J
F (A) ∼= U(lim

J
F )(A)

对任意C中的对象A成立.这也意味着limJ UF ∼= U(limJ F ).
任意给定C中的态射f : A→ B，我们要构造limJ F (f)并证明它的函子性.我们有图
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limF (A)

F (i)(A) F (j)(A)

limF (B)

F (i)(B) F (j)(B),

F (i)f F (j)f

极限的泛性质说明了存在唯一的态射limF (A)→ limF (B)，它就是limJ F (f)，函子性根据唯一性可得.

最后，赋值函子evA : Funct(C,D)→ D保（余）极限也是第一段中证明的内容.

习题 20.15. 任意给定函子G : D → C和对象A ∈ C，对应的忘却函子Π : A/G → D创造了D中存在的极限，
且G保这些极限.特别地，若D是完备的且G是连续的，则A/G也是完备的.

解答.

定义. 1. 给定范畴C及其中的对象A，若对任意C中的对象B都有（可能不唯一的）态射A → B，则

称A是C中的弱始对象(weekly initial object).

2. 给定范畴C及其中的一族对象S := {Ai}i∈Λ，若满足对任意C中的对象B，都存在Ai ∈ S和fi : Ai →
B，则称S是C中的弱始对象族(jointly week initial collection).

习题 20.16. 求证对任意范畴C，求证单位函子idC : C → C存在极限当且仅当C中存在始对象.

解答. 假设I是C中idC的极限，且λ : ConstI ⇒ idC是极限锥，于是I是弱始对象，这样我们只要证明λA :

I → A是唯一的态射即可.任意给定f : I → A，极限锥的交换性说明f ◦ λI = λA，这样只需要证明λI =

idI即可.考虑λI是图idC中的态射，于是极限锥的交换性说明λA ◦ λI = λA，于是根据分解的唯一性，λI =

idI .

假设I是C中的始对象，直接验证定义I是idC : C → C的极限.

注意到解集条件恰好是说明集合Ψ := {fi : A→ G(Bi)}是A/G中的弱始对象族.

习题 20.17. 给定完备的局部小范畴C，若存在其中的弱始对象族S，则C中存在始对象.

解答. 假设D是包含S的C中的极小满子范畴，由于C是完备的，图D ↪→ C的极限存在，记为I.我们要证明，
I是C的始对象.

首先我们定义I下的极限锥：

• 若A在D中，则取λA : I → A是极限的结构态射，

• 若A不在D中，根据S的弱始对象族的定义，存在D中的对象B和态射g : B → A，于是定义λA : I →
A是复合

I → B
g−→ A,

其中I → B是结构态射.
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这样我们已经知道I是弱始对象了，于是根据习题20.16，只要证明之前构造的λ是I下的锥即可.

任意给定C中的态射f : B1 → B2，根据S的弱始性质，存在A1, A2 ∈ S和C中的态射gi : Ai → Bi, i =

1, 2，于是可以取这幅图的纤维积P，并且再根据S的弱始性质，存在g : A→ P，即有下图

I

A

P A1

A2 B1 B2.

λA

λA2

λA1

g

g1

g2 f

注意到虚线的箭头都在范畴D中，这意味着其上的τ∗是交换的，进而λ给出了一个锥.

最后，锥的条件说明了图

I

I A

λI λA

λI

对于任意的D中的对象A成立，这证明了λ沿自身有分解，于是λI = idI .

习题 20.18. 证明定理20.16.

解答. 根据习题15.14，我们需要证明对任意C中的对象A，范畴A/G存在始对象.由于D是完备的，根据20.15，
A/G也是完备的，

习题 20.19. 习题20.13说明存在另一种形式的单子化定理：若函子G : D → C满足D中的态射g是同构当且仅
当G(g)是C中的同构，存在左伴随，D中有G分裂的余等值子并且G保这些分裂余等值子，则G是单子化的.借
由此和任意Hausdorff空间之间的连续双射都是同胚，重新证明例20.12中的结论，特别地证明cHaus中含有bmTop中

构造相同的U分裂等值子.

解答.

20.3 Kan扩张

在之前范畴论的讨论中，我们

虽然我们不会在此讨论，但Kan扩张最重要的应用当属一般导出函子的定义.如果给定的范畴C中有一族
被称为弱等价的态射W，那么这个范畴被视为携带了同伦信息，这样的范畴被称为同伦范畴(homotopical cat-
egory).同伦范畴之间的函子并不一定将弱等价映到弱等价，而后者是我们更关心的对象，因此寻找和构造将
弱等价映到弱等价，且与给定函子“最相近”的函子在很多问题的解决上是关键的，这样的函子被称为（相

对于给定函子的）导出函子(derived functor)，它的构造就是依赖Kan扩张.一般意义下的导出函子并不是非常
有用，它或多或少缺少某些具有实际意义的性质，于是当导出函子满足相应性质时，我们会更为关心这样的

对象，这些导出函子对应于后面介绍的逐点Kan扩张和绝对Kan扩张.
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20.3.1 定义与基本的例子

定义. 给定函子F : C → D和G : C → E，那么F关于G的左Kan扩张(the left Kan extension of F along
G)是函子LG(F ) : E → D和自然变换η : F ⇒ LG(F ) ◦G，满足图

C D

E

F

G
η

LG(F )

交换且对任意满足如此交换图的函子H : E → D和自然变换ξ : F ⇒ H ◦G

C D

E

F

G
ξ

H

使得存在唯一的自然变换δ : LG(F )⇒ H满足ξ = Gδ ◦ η，即

C D

E ,

F

G δ
H

LG(F )

或者换句话说，(LG(F ), η)在所有满足相应交换图的对象中是始对象.对偶地，我们有F关于G的右Kan扩
张(the right Kan extension of F along G)是函子RG(F ) : E → D和自然变换η : F ⇒ LG(F ) ◦G，满足图

C D

E

F

G RG(F )
ϵ

例 20.18.

例 20.19. 给定范畴C和对象A，对任意函子F : C → Set，Yoneda引理说明存在自然的同构

φ : homĈ(h
A, F ) ∼= F (A) : ψ,

其中φ(η) = ηA(idA).令[0]表示有一个对象和该对象上的恒等态射组成的范畴，

[0] Set

C

∗

ConstA
ηa

F

其中函子∗把[0]映到只有一个元素的集合{∗}.对任意a ∈ F (A)，有自然变换ηa : {∗} → F (A), ∗ 7→ a，并且所

有的自然变换∗ ⇒ F ◦ ConstA都是某个ηa.特别地，有交换图

[0] Set

C .

∗

ConstA
ηidA

hA
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根据Yoneda引理中的证明，ψ(a) ◦ ηidA = ηψ(a)A(idA) = ηa，于是证明了有唯一的分解

[0] Set

C ,

∗

ConstA ψ(a)
F

hA

因此LConstA(∗) = hA.

将C换为C◦，那么同样地可以证明RConstA(∗) = hA.

例 20.20. 任意给定群G，那么存在唯一的函子[0]→ BG.对于C中的任意G对象X : BG→ C，自然变换

[0] C

BG

ConstA

X

对应A到X(∗)的态射.于是若C中有余积，那么态射A→ X(∗)对应到G等变的态射∐
g∈G

A→ X(∗),

其中G在左边的作用由G在指标上的左乘给出，再通过在单位e ∈ G上的限制得到

[0] C

BG

ConstA

ιe ∐
g∈G A

是左Kan扩张L(ConstA).

引理 20.3. LG(F )具有关于F的函子性.

证明.

Kan扩张的万有性质可以给出特定自然变换之间的一一对应，但问题是，实际中的范畴Fun(C,D)和Fun(C, E)可
能并不是局部小的.我们并不想借助更高级的集合理论讨论真类之间的双射，因此为了计算LG(F )和RG(F )，
转而考虑函子

Nat(F,− ◦G) : Funct(E ,D)→ SET,

它把函子H : E → D映到F到该函子复合H ◦G的自然变换的全体.如前定义，对于任意的函子H : E → D和自
然变换ξ : F ⇒ H ◦G

C D

E

F

G
ξ

H
,
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习题14.22说明− ◦G和Nat(H,−)都是函子，因此它诱导了

Nat(H,−)⇒ Nat(F,− ◦G)

Nat(H,K)→ Nat(F,K ◦G)

ζ : H ⇒ K 7→ (ζG) ◦ ξ : F ⇒ H ◦G⇒ K ◦G,

而Kan扩张的泛性质说明了
Nat(LG(F ),−)⇒ Nat(F,− ◦G)

是自然同构，即(LG(F ), η)是函子Nat(F,− ◦ G)的代表.对偶地，对于任意的函子H : E → D和自然变换ξ :

H ◦G⇒ F

C D

E

F

G H
ξ ,

存在相应的

Nat(F,− ◦G)⇒ Nat(H,−)

(ξ ◦ (ζG),K ◦G) 7→ (ζ : H ⇒ K,K),

而Kan扩张的泛性质说明了
Nat(F,− ◦G)⇒ Nat(RG(F ),−)

是自然同构.对比伴随函子的定义，我们有

定理 20.17. 给定G : C → E和范畴D，且任意函子F : C → D关于G的左Kan扩张与右Kan扩张都存在，
那么函子

G∗ : Funct(E ,D)→ Funct(C,D)

H 7→ H ◦G

的左右伴随存在，分别由LG(−)和RG(−)给出.

证明. 根据对称性，我们只需要验证左伴随.事实上，根据前面的讨论只需要说明

Nat(H,−)⇒ Nat(F,− ◦G)

Nat(H,K)→ Nat(F,K ◦G)

ζ : H ⇒ K 7→ (ζG) ◦ ξ : F ⇒ H ◦G⇒ K ◦G,

对于任意H的自然性，即对任意λ : K1 ⇒ K2是函子K1,K2 : E → D间的自然态射，需要验证诱导图

Nat(H,K1) Nat(F,K1 ◦G)

Nat(H,K2) Nat(F,K2 ◦G)

λ∗ (λG)∗



20.3 KAN扩张 155

的交换性.一方面，对ζ : H ⇒ K1，向下再向右的映射给出了

ζ 7→ λ ◦ ζ 7→ (λ ◦ ζ)G ◦ ξ = (λG) ◦ (ζG) ◦ ξ.

另一方面，向右再向下的映射给出了

ζ 7→ (ζG) ◦ ξ 7→ (λG) ◦ (ζG) ◦ ξ,

这证明了自然性.

例 20.21. 设k是域，G是给定的群，k −RepG是所有k上的G表示组成的范畴，那么习题？？说明存在范畴的

等价

Funct(BG, k −Vec) ≃ k −RepG.

若H是G的子群，那么嵌入自然地给出了函子i : BH ↪→ BG，于是存在函子

i∗ : k −RepG → k −RepH

这实际上是群表示的限制，也记为ResGH .函子ResGH的左右伴随都存在，它的左伴随称为诱导，记为IndGH，它

的右伴随称为余诱导，记为CoindGH .同样地我们可以对G集合、G空间等进行类似的讨论.

20.3.2 Kan扩张的计算

对于给定的图

C D

E ,

F

G

我们尝试构造F沿G的左Kan扩张.对于任意的B ∈ ob E，按定义LGF (B)是在G的像集中最接近C中该对象
在F下的像；注意到范畴G/B包含了所有C中“在G下映到E/B”的态射，它有到C的自然的投影P/B : G/B →
C，其中的终对象是G下与B最接近的对象；再经过F的作用后我们可以在D中衡量与要定义的LGF (B)的距

离，我们要选取最接近的，因此

colim[G/B
P/B−−→ C F−→ D]

理论上应该给出左Kan扩张在对象下的作用.于是

定理 20.18. 给定函子F : C → D和G : C → E，且对任意任意范畴E中的对象B余极限

LGF (B) := colim[G/B
P/B−−→ C F−→ D]

存在，那么如上的定义给出了左Kan扩张，并且单位变换

η : F ⇒ LGF ◦G

由colim的泛性质给出.
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首先回顾范畴G/B的定义（习题14.31），它的对象是配对(A, f)，其中A是C中的对象，f : G(A)→ B是E中
的态射，并且

homG/B((A1, f1), (A2, f2)) = {g ∈ homC(A1, A2) | f1 = f2 ◦G(g)},

即有如下交换图

G(A1) G(A2)

B.

G(g)

f1 f2

同时，若h : B1 → B2是范畴E中的态射，那么它诱导了函子

h∗ : G/B1 → G/B2

(A, f) 7→ (A, h ◦ f)

[g : (A1, f1)→ (A2, f2)] 7→ [g : (A1, h ◦ f1)→ (A2, h ◦ f2)],

并且有交换图

G/B1 G/B2

C.

h∗

P/B1
P/B2

证明. 首先我们来说明LGF的函子性并给出η : F ⇒ LGF ◦G.考虑E中LGF的定义图

F (A1) F (A2)

LGF (B),

λA1
λA2

其中λAi
是余极限定义中给出的结构态射.给定范畴E中的态射h : B1 → B2，由前讨论

G/B1

P/B1−−−→ C F−→ D = G/B1
h∗−→ G/B2

P/B2−−−→ C F−→ D,

即LGF (B1)的定义图都有到LGF (B2)的态射

F (A1) F (A2)

LGF (B1) LGF (B2),

λA1

µA1λA2
µA2

根据余极限的定义，存在唯一的态射LGF (h) : LGF (B1) 99K LGF (B2).若有E中的态射B1
h−→ B2

k−→ B3，那么

上述的唯一性保证了

LGF (k ◦ h) = LGF (k) ◦ LGF (h).

对于自然变换η : F ⇒ LGF ◦ G，对任意C中的对象A，此时B = G(A)，那么(A, idG(A))是G/B的对象，于是

根据余极限的定义，有结构态射

ηA = λA : F (A)→ LGF (B),

并且与上面相同的论证，对于任意C中的态射g : A1 → A2有交换图
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F (A1) F (A2)

LGF (B1) LGF (B2),

F (g)

λA1

µA1 µA2

LGF (G(g))

其中λ, µ以区分不同余极限的定义结构态射，这意味着η是自然的.

接下来需要验证如上给出的(LGF, η)满足相应的泛性质.给定任意的函子H : E → D和自然变换ξ : F ⇒
H ◦G

C D

E

F

G
ξ

H
,

对任意G/B中的对象(A, f)，有

F (A)
ξA−→ H(G(A))

H(f)−−−→ H(B),

根据ξ的自然性和H的函子性，如上给出的态射与LGF (B) = colim[G/B
P/B−−→ C F−→ D]的定义图相容，即有交

换图

F (A1) H(G(A1))

LGF (B) H(B),

F (A2) H(G(A2))

ξA1

F (g)

λA1

H(G(g))

H(f1)

ξA1

λA2

H(f2)

于是存在唯一的态射

LGF (B)
δB−→ H(B).

对于如此定义的δ的自然性，考虑E中的态射h : B1 → B2，LGF (B1)
δB1−−→ H(B1)

H(g)−−−→ H(B2)是下图中唯一的

与整幅（其中LGF (B1)的定义图只有一部分）图交换的态射

F (A1) H(G(A1))

LGF (B1) H(B1) H(B2), (∗)

F (A2) H(G(A2))

ξA1

F (g)

λA1

H(G(g))

H(f1)

H(h)

ξA1

λA2

H(f2)

同时还有另一部分定义图

F (A1) H(G(A1))

LGF (B2) H(B2),

F (A2) H(G(A2))

ξA1

F (g)

µA1

H(G(g))

H(h◦f1)

ξA1

µA2

H(h◦f2)
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注意到LGF (B1)的定义图是LGF (B2)的定义图的子图，因此LGF (B1)
LGF (h)−−−−−→ LGF (B2)

δB2−−→ H(B2)也是与

图(∗)相容的唯一的态射，那么存在交换图

LGF (B1) LGF (B2)

H(B1) H(B2),

LGF (h)

δB1
δB2

H(g)

也就是自然性.
接下来验证ξ = Gδ ◦η，对于任意C中的对象A，取B = G(A)和G/B中的对象(A, idG(A))，那么LGF (B)的

定义说明有交换图

F (A) H(G(A))

LGF (B) H(G(A)),

ξA

λA H(idG(A))

即是想要的等式.最后，关于δ的唯一性，交换性意味着有如上的交换图，但根据LGF (B)的定义虚线的态射必

然是唯一的，因此唯一性也得证.

习题 20.20. 给定范畴和函子

C D

E ,

F

G

对任意E中的对象E，记函子S : C◦ × C → D为

S := homE(G(−), E)⊗ F (−),

求证LG(F )(E) ∼=
∫ C

S.

例 20.22. 考虑偏序集(Q,≤)和(R+,≤)，函数

ex : Q→ R

由于是单调函数，因而是函子.

例 20.23. 我们回到例20.21中的讨论，来说明定理20.18可以给出诱导表示和余诱导表示的具体构造.假设子
群H ↪→ G给出了函子BH → BG，那么它诱导的函子

resGH : Funct(BG, C)→ Funct(BH, C)

由定理20.17存在左右伴随，分别记为IndGH和CoindGH .
任意给定表示X : BH → C，那么定理20.18说明IndGH是图

BH/∗G
P/∗G−−−→ BH

X−→ C

的余极限，其中∗G是BG中唯一的对象.具体而言，根据定理20.18证明之前的讨论，BH/∗G（这是极限图的指
标范畴）中的对象是BG中的态射，即G中的元素，且homBH/∗G

(g1, g2) = {h ∈ H | g1 = g2h}.依据定理15.10
（的对偶），余极限可以用余等值子
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X(∗)

∐
G×H X(∗)

∐
GX(∗) IndGH(X(∗))

X(∗) X(∗)

ι(g,h)

ιgh

β

α q

ι(g,h)

h∗

ιg

描述，其中任意给定BH/∗G中的态射h ∈ H，记它的定义域是gh，那么余定义域是g.
更具体地，存在IndGH(X(∗))的表示

∐
G/H X使得结构映射q可以被描述出来.给定G/H的一组代表元G/H =

{giH | gi ∈ G}，那么任意g ∈ G都可以表示为唯一的g = gjh0，其中gj是某个代表元，h0 ∈ H.那么q :∐
GX(∗)→

∐
G/H X(∗)定义为

X X

∐
GX(∗)

∐
G/H X(∗).

(h0)∗

ιg ιgj

q

任给定G中的元素g0，它在
∐
G/H X(∗)上的作用是左乘在指标集上的，具体说是交换图

∐
G×H X(∗)

∐
GX(∗) IndGH(X(∗))

∐
G×H X(∗)

∐
GX(∗) IndGH(X(∗)).

(g,h)7→(g0g,h)

q

g 7→g0g (g0)∗

q

对偶地，等值子图

X(∗)

coindGHX
∼=
∏
H\GX(∗)

∏
GX(∗)

∏
H×GX(∗)

X(∗) X(∗),

m

πhg

πg π(h,g)

π(h,g)

h∗

定义了余诱导表示，单态射m有类似的描述，G在coindGHX上的作用由G在指标集上的右乘诱导.特别地，当C =
k −Vect是域k上的向量空间且H是G中的有限指标子群时，有限多个对象的积和余积是同构的，因此如上讨

论的两个定义图给出了相同的乘积（余乘积），因此indGHX
∼= coindGHX，并且这个同构还是保持G作用的，因

而此时的左右Kan扩张相同.

习题 20.21. 根据例20.23中q的定义证明
∐
G/H X(∗)是IndGH(X(∗)).

证明. 首先对例20.23中q的定义解释：按照余积的泛性质，确定q :
∐
GX(∗) →

∐
G/H X(∗)只需要知道每

个g ∈ G作为指标所对应的X(∗)到
∐
G/H X(∗)的态射，而这恰是ιgj ◦ (h0)∗.

接下来验证如此的定义与图相容，即q ◦ α = q ◦ β.根据
∐
G×H X(∗)对应的泛性质，如上当且仅当q ◦ α ◦
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ι(g,h) = q ◦ β ◦ ι(g,h)对任意g ∈ G, h ∈ H成立.验证得

q ◦ α ◦ ι(g,h) = X
ιgh−−→

∐
G

X(∗) q−→
∐
G/H

X(∗)

= X
ιgjh0h

−−−−→
∐
G

X(∗) q−→
∐
G/H

X(∗)

= X
(h0h)∗−−−−→ X

ιgj−−→
∐
G/H

X(∗)

= X
h∗−→ X

(h0)∗−−−→ X
ιgj−−→

∐
G/H

X(∗)

= X
h∗−→ X

ιg−→
∐
G

X(∗) q−→
∐
G/H

X(∗)

= q ◦ β ◦ ι(g,h).

最后来验证所给的态射和对象满足相应的泛性质，对任意满足f ◦ α = f ◦ β的态射f :
∐
GX(∗)→ Y，都

有唯一的态射f̃ :
∐
G/H X(∗)→ Y使得f = f̃ ◦ q即交换图

∐
GX(∗) IndGH(X(∗))

Y.

q

f
f̃

由于f ◦ α = f ◦ β，自然有f ◦ α ◦ ι(g,h) = f ◦ β ◦ ι(g,h)，这意味着f ◦ ιgh = f ◦ ιg ◦ h∗.那么对任意g ∈ G，

记g = gjh0，定义f̃是由f̃ ◦ ιgj ◦ (h0)∗ = f ◦ ιg诱导的态射，由如上关系显然f = f̃ ◦ q；对于唯一性，假设存在
如此的f̃，那么

f̃ ◦ ιgj = f̃ ◦ ιgj ◦ (h0)∗ ◦ (h−1
0 )∗

= f ◦ ιg ◦ (h−1
0 )∗

= f ◦ ιgj ,

这依然是确定的，故唯一性得证.

例 20.24. 在例14.11中，我们介绍了群G的轨道范畴Orb(G).注意到homOrb(G)(G/{e}, G/{e}) = G◦，于是我

们有自然的嵌入

BG ↪→ Orb(G).

任意给定集合X上的G作用X : BG→ Set，定理20.18可以用来构造右Kan扩张

BG Set

Orb(G)◦.

X

Ri(X)
ϵ

总结下来，右Kan扩张Ri(X)恰好是不动点函子，将对象G/H映到对象XH，
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20.3.3 逐点Kan扩张

通常情况下由Kan扩张定义的泛性质对象并不具有良好的性质，比如说在导出函子中的应用，这一方面
是因为之前的定义太过宽泛，而对应它的方案是考虑特定的Kan扩张.为此，我们首先介绍定义：

定义. 给定函子F : C → D和G : C → E，那么F关于G的左Kan扩张是(LG(F ), η)，如图

C D M

E ,

F

G
η

L

LG(F )

若函子L : D → M满足复合(L ◦ LG(F ), Lη)是L ◦ F关于G的左Kan扩张，则称L保左Kan扩张(preserves
left Kan extensions).

有一类特殊的Kan扩张

定义. 给定函子F : C → D和G : C → E，左Kan扩张

C D

E

F

G
η

LG(F )

存在，若任意的函子L : D →M都保Kan扩张LG(F )，则称这个Kan扩张LG(F )是绝对的(absolute).

引理 20.4. 左伴随保左Kan扩张.

证明1. 给定函子F : C → D和G : C → E，F关于G的左Kan扩张是(LG(F ), η)，

C D M

E ,

F

G
η

L

LG(F )

函子L : D →M有右伴随R :M→ D，且对应了单位θ : idD ⇒ RL和余单位ϵ : LR ⇒ idM，那么任意给定函

子H : E →M，

homFunct(E,M)(L ◦ LG(F ), H) ∼= homFunct(E,D)(LG(F ), R ◦H)

∼= homFunct(C,D)(F,R ◦H ◦G)
∼= homFunct(C,M)(L ◦ F,H ◦G),
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其中第一、三个同构是因为习题15.21，第二个同构是因为定理20.17.于是取H = L◦LG(F )，那么习题15.21和
定理20.17中的映射给出

idL◦LG(F ) 7→ θLG(F ) 7→ θ(LG(F ) ◦G) ◦ η 7→ ϵL(LG(F ) ◦G) ◦ Lθ(LG(F ) ◦G) ◦ Lη

注意到ϵL(LG(F ) ◦G) ◦ Lθ(LG(F ) ◦G) ◦ Lη = (ϵL ◦ Lθ)(LG(F ) ◦G) ◦ Lη = Lη，于是我们证明了函子的同构

Nat(L ◦ LG(F ),−) ∼= homFunct(C,M)(L ◦ F,− ◦G) : Funct(E ,M)→ Set,

那么(L ◦ LG(F ), idL◦LG(F ))关于Nat(L ◦ LG(F ),−)的泛性质说明了(L ◦ LG(F ), Lη)关于homFunct(C,M)的泛性

质，因此(L ◦ LG(F ), Lη)是左Kan扩张.

事实上我们还可以构造性地完成证明：

证明2. 任意给定自然变换α : LF ⇒ HG，

C D D C D D

E M E M

F

G
α

L
θ

F

G
η ∃!ξ

H

R = LG(F )

H
R

根据(LG(F ), η)的泛性质存在唯一的ξ : LG(F ) ⇒ R ◦ H，即左图可以对应到右图.进一步地，与余单位ϵ :

LR⇒ idM的复合（如下图）

C D C D D C D D

E M E M M E M M

F

G

L
α = G α L θ

L
ϵ = G η ∃!ξ L

ϵ

H H

R LG(F )

H
R

说明了α有沿Lη的分解，分解的另一部分恰是复合(ϵH ◦ Lξ)G : L ◦ LG(F ) ◦G⇒ H ◦G.

再来证明如上分解的唯一性.给定任意分解

C D C D

E M E M,

F

G

L
α

F

G
η

ζ
L

H

= LG(F )

H

再与单位θ : idD ⇒ RL的复合给出

C D D C D D

E M E M

F

G

L
α θ

F

G
η

ζ
L

θ

H

R = LG(F )

H

R

Rα ◦ θF : F ⇒ R ◦H ◦ G沿η的分解Rα ◦ θF = R(ζG ◦ Lη) ◦ θF = RζG ◦ RLη ◦ θF，记ξ = Rζ ◦ θLG(F ) :
LG(F )⇒ R ◦H

D D

E M,

ζ
L

θLG(F )

H

R
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那么根据左Kan扩张LG(F )的泛性质如此的ξ唯一，恰是上一段证明存在性的ξ，并且Rα ◦ θF = R(ζG ◦ Lη) ◦
θF = RζG ◦RLη ◦ θF = RζG ◦ θLG(F )G ◦ η = ξG ◦ η（这里如同证明1用到了η的自然性），再继续复合余单
位ϵ : LR⇒ idM得到

D D D D D

E M M E M M E M,

ξ
L

ϵ
= Lζ θ

L
ϵ

= L
ζ

LG(F )

H

R

H

LG(F )
R

H

LG(F )

这意味着ζ = ϵH ◦ Lξ是唯一的.

例 20.25. 考虑忘却函子U : Top→ Set，根据例15.2函子U的左右伴随都存在，于是引理20.4（及其对偶）说
明U同时保左右Kan扩张.这点在例20.23中也有体现.

例 20.26. 考虑忘却函子U : k − Vec → Set，它是右伴随函子因此保极限，但注意到Vec中的余极限并不

是不交并，因此U不保余极限.例20.23也说明了，由H线性表示余诱导的G线性表示的底集和作为H集合诱导
的G集合不相同（Set和k − Vec的余积不同），但由H线性表示诱导的G线性表示的底集和作为H集合诱导

的G集合相同.

定义. 给定函子F : C → D和G : C → E，D是局部小范畴，右Kan扩张(RG(F ), ϵ)

C D Set

E

F

G

homD(X,−)

RG(F )
ϵ

若满足对任意X ∈ ob D，homD(X,−)都保Kan扩张，则称RG(F )是逐点右Kan扩张(pointwise right Kan
extension).

逐点左Kan扩张的定义是取对偶得来的：

定义. 给定函子F : C → D和G : C → E，D是局部小范畴，作Kan扩张(LG(F ), η)

C D

E ,

F

G
η

LG(F )

若取对偶后的图

C◦ D◦ Set

E◦,

F

G

homD(−,X)

LG(F )
η◦

满足对任意D中的对象X，homD(−, X)都保Kan扩张，则称(LG(F ), η)是逐点左Kan扩张(pointwise left
Kan extension).
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由于协变hom函子保极限（命题15.12），定理20.18（和对偶）中构造给出来的有Kan扩张是逐点的.值得
注意的是，这个结果的逆也是正确的，如下定理也解释了如此命名的原因——逐点Kan扩张可以由极限或余
极限逐点计算.

定理 20.19. 给定函子F : C → D和G : C → E，D, E是局部小范畴，F沿G的Kan扩张RGF和LGF是逐点
的当且仅当它们可以由

RGF (B) := lim[B\G
PB\−−→ C F−→ D]

和

LGF (B) := colim[G/B
P/B−−→ C F−→ D]

计算得来.

为完成定理的证明，我们需要如下一个引理：

引理 20.5. 给定范畴C,D和E，函子F : C → D, G : C → E，取E中对象B，记PB\ : B\G → C是自然的投
影函子，那么对D中的任意对象X都存在集合间的同构

Cone(X,F ◦ PB\) ∼= Nat(homE(B,G(−)),homD(X,F (−))).

证明. 函子Cone的定义在15.4.1节中，按定义Cone(X,F ◦ PB\)的对象是(λ, {fi : B → G(Ai)}Ai∈ob C)，其

中λ : ConstX ⇒ F是Cone(X,F )中的锥，{fi : B → G(Ai)}Ai∈ob C确定了B\G中的一个对象，图FPB\内的态

射h : Ai → Aj必然满足G(h) ◦ fi = fj .
考虑给定一个自然变换λ : homE(B,G(−)) ⇒ homD(X,F (−))，按定义它将D中的态射fi : B → G(Ai)映

到λAi
(fi) : X → F (Ai)，并且任意给定C中的态射h : Ai → Aj，图

homE(B,G(Ai)) homD(X,F (Ai))

homE(B,G(Aj)) homD(X,F (Aj))

λAi

(G(h))∗ (F (h))∗

λAj

交换（λ自然性的定义），即

F (h) ◦ λAj
(fi) = (F (h))∗(λAj

(fi)) = (F (h))∗ ◦ λAi
(fi) = λAj

◦ (G(h))∗(fi) = λAj
(G(h) ◦ fi),

这意味着交换图

G(Ai)

B

G(Aj)

G(h)

fi

fj
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诱导了交换图

F (Ai)

X

F (Aj),

F (h)

λAi
(fi)

λAj
(fj)

于是给出了映射

Ψ : Nat(homE(B,G(−)),homD(X,F (−)))→ Cone(X,F ◦ PB\).

反过来任意给定锥

F ◦ PB\(Ai, fi)

X

F ◦ PB\(Aj , fj),

F (h)

λi

λj

定义变换

λ : homE(B,G(−))⇒ homD(X,F (−))

λAi
: homE(B,G(Ai))→ homD(X,F (Ai))

fi 7→ λi,

我们需要验证它的自然性，由前面的讨论需要验证对任意的h : Ai → Aj，

F (h) ◦ λAj
(fi) = λAj

(G(h) ◦ fi).

此时，取B\G中的对象满足fj = G(h) ◦ fi : B → G(Aj)，那么定义得λj = λAj
(fj) = λAj

(G(h) ◦ fi)，根据原
锥的交换性自然性得证.于是给出了映射

Φ : Cone(X,F ◦ PB\)→ Nat(homE(B,G(−)),homD(X,F (−))).

明显地两个映射互为逆，得证.

定理20.19的证明. 我们只证明一方面，另一方面对偶地可以得到.

假设右Kan扩张RG(F )是逐点的，那么对任意D中的对象X，homD(X,RG(F )(−))是homD(X,F (−))沿G的
有Kan扩张，那么根据Yoneda引理和定理20.17（的证明部分），

homD(X,RG(F )(−)) ∼= Nat(homE(B,−),homD(X,RG(F )(−)))
∼= Nat(homE(B,G(−)),homD(X,F (−)))
∼= Cone(X,F ◦ PB\),

其中最后一步用到了引理20.5，这意味着RG(F )(B)是lim[B\G
PB\−−→ C F−→ D].
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值得注意的是，沿满忠实的函子给出的逐点Kan扩张事实上直接给出了沿该函子的分解：

推论 20.19.1. 沿用定理20.19的记号，若G : C → E是满忠实的，则任意逐点左Kan扩张的单位定义了自然同
构

LG(F ) ◦G ∼= F.

证明. 根据习题14.31，存在范畴之间的同构C/A ∼= G/G(A)，并且这个同构显然与二者到C的投影交换，因此
根据定理20.19，

LG(F ) ◦G(A) := colim[C/A
P/A−−→ C F−→ D],

但此时指标范畴C/A存在终对象(A, idA)，根据习题15.25，这个余极限恰好是

F ◦ P/A(A, idA)) = F (A).

此外，单位η的定义说明它实质给出了同构ηA : F (A)
∼−→ LG(F ) ◦G(A).

另一方面，逐点Kan扩张也可以用来描述极限和余极限.在练习15.27中，我们构造了范畴Cone(J )和Cocone(J )，
借助它们和逐点Kan扩张可以重新叙述极限和余极限：

命题 20.20. 范畴C包含了图J的所所所有有有极限当且仅当函子res : Funct(Cone(J ), C) → Funct(J , C)有由逐
点Kan扩张定义的右伴随

res : Funct(Cone(J ), C)⇆ Funct(J , C) : lim,

记为lim.

证明. 根据习题14.26的构造，存在满忠实的嵌入函子i : J ↪→ Cone(J )（这个嵌入函子不是习题15.27定义图
中的对角函子；并且限制函子就是嵌入函子i的拉回）.记Cone(J )的顶点对象为S.于是，由定理20.17，沿i的
右Kan扩张（如果存在）恰好是函子res的右伴随.

若如此的右伴随存在，任意给定图F : J → C，那么根据右Kan扩张的泛性质lim(F )(S)恰好是图F的极

限.反过来，若所有的极限存在，注意到对J中的任意对象j，j\i = j\J，特别地S\i = J，那么定理15.10给
出的计算

Ri(F ) = lim[A\i
PA\−−→ J F−→ C]

由于lim的存在是可行的（习题15.28），于是右Kan扩张存在.

注意如上命题的等价结论要远强于某个特定的图的极限的存在性，因为它描述的是所有以J为指标的图
的极限的存在性.实际上如上命题从另一个角度解释了lim的函子性（定理15.11）.

20.3.4 “Kan扩张包含所有概念”

本节的最后我们将试图用Kan扩张的概念来重述之前所有范畴体系下的泛性质概念，这可以看作是对MacLane著
名论断“Kan扩张包含所有范畴论的其他概念”(The notion of Kan extensions subsumes all the other funda-
mental concepts of category theory)的解释.
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命题 20.21 (极限（余极限）是Kan扩张). 给定函子F : J → D，记q : J → [0]是唯一确定的收缩函子，

那么F沿q的左Kan扩张

J D

[0]

F

q
η

Lq(F )

给出了余极限colimJF .

证明. 根据构造，函子的复合Lq(F ) ◦ q在D中只给出一个对象Lq(F )({∗})，η确定的是一族态射ηj : F (j) →
Lq(F )({∗})，自然性说明这恰是图F下的锥.

Lq(F )的泛性质说明，对于任意给定的函子H : [0] → D和自然变换ξ : F ⇒ H ◦ q（按照前一段的讨论这
是一个图F下的锥），存在唯一的θ : Lq(F )⇒ H使得ξ = qθ ◦ η.注意到Lq(F ) ◦ q和H ◦ q都只确定了一个对象，
因此自然变换θ : Lq(F )⇒ H是一个态射

θ{∗} : Lq(F )({∗})→ H({∗}),

这意味着Lq(F )的泛性质恰是colim满足的泛性质，得证.

命题 20.22 (伴随是Kan扩张). 1. 若F : C ⇆ D : G是伴随函子对，且η : id ⇒ GF是单位，δ : FG ⇒
id是余单位，那么(G, η)是F沿idC的左Kan扩张，(F, δ)是G沿idD的右Kan扩张：

C C D D

D C,
F

η
GG∼=LF idC F∼=RGidD

ϵ

并且这两个Kan扩张都是绝对Kan扩张.

2. 反过来，若给定函子F : C → D，(G, η : idC ⇒ GF )是F沿idC的左Kan扩张，且F保这个Kan扩张，
那么F : C ⇆ D : G是伴随函子对.

证明. 1. 习题15.22说明伴随对F : C ⇆ D : G诱导了新的伴随对

G∗ : Funct(C, C)⇆ Funct(D, C) : F ∗,

这意味着对于任意函子K : D → C存在自然的同构

Nat(G,K) ∼= Nat(idC,K ◦ F ),

然而上式恰好说明了G满足左Kan扩张LF idC的泛性质.对偶于习题15.21，给定函子H : C → E = C,K :
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D → E = C，有自然的同构

Nat(H ◦G,K) ∼= Nat(H,K ◦ F )

α 7→ αF ◦Hη

Kϵ ◦ βG←[ β,

在如上H = idC的情形，α对应的分解刚好是αF ◦ η，即(G, η)有相应的泛性质.

同样根据习题15.22，对任意局部小范畴E，F,G诱导了伴随G∗ : Funct(C, E) ⇄ Funct(D, E) : F ∗，于是

对任意的函子H : C → E，上面的论述不变地成立，即(HG,Hη)有相应的泛性质.

2. 根据定理15.4，伴随函子等价于满足粘贴图

C C C

D D D

F
η F

ϵ FF
idF

G =

和

C C C

D D D

Fϵ
η =

idGG

G
G G

的函子对F : C ⇆ D : G和单位η余单位ϵ.根据假设，F保该Kan扩张意味着(FG,Fη)是F沿本身的Kan扩
张，这意味着分解

C C D

D
F

η

F

ϵG

是存在的，即idF沿Fη的分解给出了自然变换

ϵ : FG⇒ idD.

根据定义立即可以得到

ϵF ◦ Fη = idF ,

这证明了第一个等式.同时图

C C C C C

D D D ,
F

η Fϵ
η

F
η id

G
G

G

G
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是自然变换id : G ⇒ G的两个分解，其中第一个是Gϵ ◦ ηG，这样根据Kan扩张的唯一性Gϵ ◦ ηG = idG，

这证明了F,G是伴随，η, ϵ分别是单位和余单位.

接下来我们将用简单图的逐点Kan扩张叙述并推广Yoneda引理.根据Kan扩张的泛性质，任意函子F : C →
D沿id : C → C的右Kan扩张是（更准确地讲，同构于）F，根据定义这必然是逐点Kan扩张，于是根据定
理20.19对任意C中的对象A，

F (A) ∼= lim[A\C
PA\−−→ C → D].

特别地当F是函子C → Set时，

F (A) ∼= homSet({∗}, F (A)) ∼= homSet({∗}, lim(F ◦ PA\)) ∼= Cone({∗}, F ◦ PA\)

∼= Nat(homC(A,−),homSet({∗}, F (−))) ∼= Nat(homC(A,−), F ),

其中第三个同构（红色标注）来自于极限的泛性质，第二行第一个同构是习题15.25，这个结果恰是Yoneda引
理.从上面的证明中可以看出，将F (A)用极限式表出是Yoneda的核心，因而我们也称此式为Yoneda引理.
如果考虑定理15.10，那么极限lim[A\C

PA\−−→ C → D]可以由定理中的等值子图来表示，具体来说，在定
理15.10的描述中，图是A\C，它的对象恰好是所有的A f−→ X，态射对应于A

f−→ X
g−→ Y，两个态射分别

由g : (A
f−→ X)→ (A

g◦f−−→ Y )的自然作用和平凡作用诱导，于是我们证明了如下推广的Yoneda引理：

命题 20.23 (Yoneda引理). 给定小范畴C和有乘积、等值子的范畴D，F : C → D是函子，那么图

F (A)
∏
A

f−→X
F (X)

∏
A

f−→X
g−→Y

F (Y )

是等值子图，其中映射
∏
A

f−→X
F (X)⇒

∏
A

f−→X
g−→Y

F (Y )由图

F (Y )

∏
A

f−→X
F (X)

∏
A

f−→X
g−→Y

F (Y )

F (X) F (Y ),

πg◦f

πf πg

πg

F (g)

定义.

如同其他抽象废话，命题20.23表述的Yoneda引理有对偶的表述，称为余Yoneda引理：

命题 20.24 (coYoneda引理). 给定小范畴C和有余乘积、余等值子的范畴D，F : C → D是函子，那么图∐
Y

g−→X
f−→A

F (Y )
∐
X

f−→A
F (X) F (A)

是余等值子图，其中映射
∐
Y

g−→X
f−→A

F (Y )⇒
∐
X

f−→A
F (X)由图
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F (Y )

∐
Y

g−→X
f−→A

F (Y )
∐
X

f−→A
F (X)

F (Y ) F (X)

ιg
ιf◦g

ιg

F (g)

ιf

定义.

当所选取的函子F是函子F : C → Set时，余Yoneda引理20.24有一个重要的推论，称为稠密性定理：

定理 20.25. 对任意局部小的范畴C和函子F : C → Set，那么F是图(∫
C
F

)◦
P−→ C◦ y−→ Funct(C,Set)

的余极限，其中y是Yoneda嵌入函子.

证明. 任意给定集合S, T，都存在集合之间的自然同构∐
S

T ∼= S × T ∼=
∐
T

S,

于是命题20.24意味着图∐
X,Y ∈ob C

∐
Y

g−→X
f−→A

F (Y )
∐
X∈ob C

∐
X

f−→A
F (X) F (A)

∐
X,Y ∈ob C

∐
F (Y )×homC(Y,X) homC(X,A)

∐
X∈ob C

∐
F (X) homC(X,A) F (A)

∼= ∼=

β

α

的每一行都是余等值子，其中第一行的两个映射分别是

(Y
g−→ X

f−→ A, y ∈ F (Y )) 7→ (Y
f◦g−−→ A, y ∈ F (Y ))

(Y
g−→ X

f−→ A, y ∈ F (Y )) 7→ (X
f−→ A, x ∈ F (X)),

于是映射α, β由图

homC(X,A) homC(Y,A)

∐
X,Y ∈ob C

∐
F (Y )×homC(Y,X) homC(X,A)

∐
X∈ob C

∐
F (X) homC(X,A)

homC(X,A)

ι(X,Y,y∈F (Y ),g:Y →X)

g∗

ι(Y,y∈F (Y ))

β

α

ι(X,Y,y∈F (Y ),g:Y →X)
ι(X,x=g(y)∈F (X))
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定义，其中g∗ : homC(X,A)→ homC(Y,A)是映射f 7→ f ◦ g.考虑图(∫
C
F

)◦
P−→ C◦ hA−−→ Set

的余极限，按照定理15.10（的对偶），这个极限是图

homC(X,A)

∐
g◦:(X,x)→(Y,y) homC(X,A)

∐
(X,x∈F (X)) homC(X,A)

homC(X,A) homC(Y,A)

ιg◦
ι(X,x∈F (X))

ιg◦

(g◦)∗

ι(Y,y∈F (Y ))

的余等值子，而图恰好是∐
X,Y ∈ob C

∐
F (Y )×homC(Y,X) homC(X,A)

∐
X∈ob C

∐
F (X) homC(X,A),

β

α

因而余等值子是F (A).考虑取遍C中的所有对象，则证明了图(∫
C
F

)◦
P−→ C◦ y−→ Funct(C,Set)

的余极限是F .

定理20.25名称中“稠密性”的解释为子范畴C沿Yoneda嵌入在Funct(C◦,Set)中形成了稠密的子范畴.如
下的另一个表述也描述了同样的事情：

命题 20.26. 对任意的小范畴C，恒等函子

C Funct(C◦,Set)

Funct(C◦,Set)

y

y idy

Ly(y)∼=id

定义了Yoneda嵌入y沿自身的左Kan扩张.

证明. 根据定理20.18，对任意反变函子F : C → Set

Ly(y)(F ) := colim[(y, F )
P−→ C → Funct(C◦,Set)],

而根据习题15.8，(y, F ) ∼=
∫
C F，因此定理20.25证明了Ly(y)(F ) ∼= F .

考虑协变函子F : C → D，其中C是一个小范畴且D是余完备的.在这种情况下，F沿Yoneda函子的左Kan扩
张

C D

Funct(C◦,Set)

F

y Ly(F )
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是存在的，这是由于Yoneda嵌入函子y是满忠实的，推论20.19.1保证了存在性，并且这是严格意义上的扩张
（扩张所需要的自然变换是自然同构）.更重要的是，这个左Kan扩张Ly(F )有右伴随函子

R : D → Funct(C◦,Set),

这是因为如果考虑任意D中的对象B和任意C中的对象A，

R(B)(A) ∼= homFunct(C◦,Set)(hA, R(B)) ∼= homD(Ly(F ) ◦ hA, B) ∼= homD(F (A), B),

这提示我们函子性的构造

R(B) := homD(F (−), B)

应当给出右伴随函子，并且事实上根据稠密性定理20.25，任取X ∈ Funct(C◦,Set)和B ∈ ob D，

homFunct(C◦,Set)(X,R(B)) ∼= homFunct(C◦,Set)(colim(A,a)∈ob
∫
C X
hA, R(B))

∼= colim(A,a)∈ob
∫
C X

homFunct(C◦,Set)(hA, R(B))

∼= colim(A,a)∈ob
∫
C X

homD(F (A), B)

∼= homD(colim(A,a)∈ob
∫
C X
F (A), B)

∼= homD(LyF (A), B),

其中第一个同构是稠密性定理20.25，第二、第四个同构因为命题15.12，最后一个等式用到了定理20.18，注
意到每个同构都是自然的，这证明了伴随性.本节的习题中将会给出几个这样构造的伴随函子.
本节的最后我们引入用Kan扩张定义的单子的概念：

定义. 给定函子G : D → C，（只要存在就）称G沿自身的右Kan扩张为G的单子(monad)

D C

C,

G

G T :=RG(G)
ϵ

记为T .

给定单子T，有相应的单位(unit)和乘法，二者都是由ϵ : T ◦ G ⇒ G的泛性质所得到的，其中单位η的定

义如图

D C D C

C C,

G

G

G

G
idG

idC
=

T

idC

ϵ
η

乘法的定义如图

D C D C

C C C C.

G

G

G

G

G
ϵ

T

T
ϵ =

T

T

ϵ
T

µ
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习题 20.22. 在习题14.3中我们对任意拓扑空间X定义了一个范畴Open(X)，任意给定拓扑空间X，那么存在

自然的嵌入函子

Open(X) ↪→ Top/X ,

求证应用命题20.26后面讨论的构造给出了伴随

Top/X ⇆ Funct(Open(X)◦,Set),

其中右半随给出了预层F的平展空间(étale space).

习题 20.23. 给定范畴C,D和伴随对E : D ⇆ C : F，F : C ⇆ D : G，如图所示

C

D,

F
E G

并且给定自然变换τ : G ⇒ E.记η : id ⇒ G ◦ F是伴随对F : C ⇆ D : G的单位，ϵ : E ◦ F ⇒ id是伴随

对E : D ⇆ C : F的余单位，那么对任意C中的对象A,B，可以构造映射

trA,B : homD(F (A), F (B))→ homC(A,B)

f 7→ (A
ηA−→ GF (A)

τF (A)−−−→ EF (A)
E(f)−−−→ EF (B)

ϵB−→ B),

这事实上是一个自然变换.

1. 证明给定自然变换τ : G⇒ E同于给定自然变换τ̃ : F ⇒ F .

2. 在B = A的情形时，证明如上定义给出了

trF : End(F )→ End(id).

3. 考虑C = D = k − Vec和F = − ⊗k V，其中V是有限维k向量空间，E = G = Homk(V,−).取定U ∈
k −Vec，对任意线性映射

f : U ⊗k V → U ⊗k V,

如上定义给出了trF (f).求证当U = k时，trF (f)恰好是线性代数中的迹.

20.4 幺半范畴和充实范畴

在我们非常多的关注的例子当中，一个（局部小）范畴的hom集合通常附带有其他的结构，这些结构很

多时候也都是与态射的复合式相容的，忽略掉这些结构只关注hom的集合结构会导致很多重要信息的缺失，

这是非常不明智的.充实范畴的目的就是将这些结构考虑进来，以此对问题的解决提供帮助.

20.4.1 幺半范畴和幺半函子
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定义. 设C是给定的范畴，则C上的幺半结构(monoidal structure)包含如下信息：

1. 一个双函子⊗ : C × C → C，一般被称为张量积(tensor product)或者幺半积(monoidal product);

2. C中的对象I，被称为单位对象(unit object, identity object)；

3. 自然同构α, λ, ρ，分别被称为结合子(associator)、左单位子(left unitor)和右单位子(right)，其中α :

(− ⊗ −) ⊗ − ⇒ − ⊗ (− ⊗ −)是自然同构αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)，λ, ρ是自然同

构λ : I ⊗− ⇒ IdC，λA : I ⊗A ∼= A，ρ : −⊗ I ⇒ IdC，满足对任意C中的对象A,B,C,D，下图

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ C)⊗D A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D)),

αA,B,C⊗idD

αA⊗B,C,D

αA,B⊗C,D

idA⊗αB,C,D

αA,B,C⊗D

交换，且对任意C中的对象A,B，下图

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B ,

αA,I,B

ρA⊗idB idA⊗λB

交换，

则称(C,⊗, I)为幺半范畴(monoidal category)， 若自然同构α, ρ, λ都是恒等， 那么称C是严格幺半范
畴(strict monoidal category).

例 20.27. 设R是环，那么范畴(R−Mod,⊕)和(R−Mod,⊗)都是对称幺半范畴.

例 20.28. 任意有限乘积存在且终对象存在的范畴C（比如Set,Ab,Cat等等）都是幺半范畴，我们取单位对

象I = ∗为终对象（习题20.24），幺半积定义为乘积

A⊗B := A×B,

引理 20.6. 在幺半范畴(C,⊗, I)中，对任意的对象A,B，都有

λA ⊗ idB = λA⊗B ◦ αI,A,B,

即有交换图

(I ⊗A)⊗B

I ⊗ (A⊗B) A⊗B.

αI,A,B λA⊗idB

λA⊗B

对偶地，也有ρA⊗B = (idA ◦ ρB) ◦ αA,B,I .
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证明. 注意到函子I ⊗−是范畴的等价，因此这等同于证明图

((I ⊗ I)⊗A)⊗B (I ⊗ (I ⊗A))⊗B I ⊗ ((I ⊗A)⊗B) I ⊗ (I ⊗ (A⊗B))

(I ⊗A)⊗B I ⊗ (A⊗B)

αI,I,A⊗idB

(ρI⊗idA)⊗idB

αI,I⊗A,B

(idA⊗λA)⊗idB

idI⊗αI,A,B

id⊗(λA⊗idB)
idI⊗λA⊗B

αI,A,B

最右侧三角形的交换性，其中中间方块的交换性是α的自然性，左侧三角形的交换性是左右单位的性质.由于
图中每个态射都是同构，因而只要证明最外圈的图是交换的即可.但是，α的自然性和其作为结合子的性质说
明存在交换图

(I ⊗ (I ⊗A))⊗B I ⊗ ((I ⊗A))⊗B)

((I ⊗ I)⊗A)⊗B (I ⊗ I)⊗ (A⊗B) I ⊗ (I ⊗ (A⊗B))

(I ⊗A)⊗B I ⊗ (A⊗B),

αI,I⊗A,B

idI⊗αI,A,B

αI,I,B⊗idB

αI⊗I,A,B

(ρI⊗A)⊗B

αI,I,A⊗B

ρI⊗idA⊗B
idI⊗idA⊗B

αI,A,B

这就完成了证明.

引理 20.7. 在幺半范畴(C,⊗, I)中，恒有

λI = ρI : I ⊗ I → I.

证明. 注意到函子−⊗ I是范畴的等价，因此这等同于证明（习题14.30）

λI ⊗ idI = ρI ⊗ idI .

λ的自然性说明图

(I ⊗ I)⊗ I I ⊗ I

I ⊗ I I

λI⊗idI

λI⊗I λI

λI

是交换的，因此λI⊗I = λI ⊗ idI，于是

λI ⊗ idI = λI⊗I ◦ αI,I,I = (λI ⊗ idI) ◦ αI,I,I = ρI ⊗ idI ,

其中第一个等式是引理20.6，最后一个等式是交换子的性质.

习题 20.24. 求证若范畴(C,×, I)是幺半范畴，其中×是范畴积且C中包含终对象，那么I是终对象（对比习
题14.7）.

证明. 取{∗}为C的终对象，由于(C,×, I)是幺半范畴，存在同构

λ{∗} : I × {∗} ∼−→ {∗},
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但另一方面习题14.7说明
I × {∗} ∼= I,

于是I是终对象.

定义. 设(C,⊗, I)为幺半范畴，若我们还有

1.

则称(C,⊗)为对称幺半范畴(symmetric monoidal category)，若自然同构α, ρ, λ都还是恒等，那么称C是对
称严格幺半范畴(strict symmetric monoidal category).

通常情况下（如例20.27和例20.28中）

定义. 给定幺半范畴(C,⊗, I)，若对于任意S ∈ ob C，函子− ⊗ S存在右伴随函子homC(S,−)，则称C是
闭幺半范畴(closed monoidal categories).特别地当幺半积是范畴积的时候，称闭幺半范畴是笛卡尔闭
的(Cartesian closed).

具体来说，对任意C中的对象A,B，有自然的同构

homC(A⊗ S,B) ∼= homC(A,homC(S,B)),

当幺半结构是笛卡尔积的时候，只需要取⊗ := ×即可.

例 20.29. 给定交换环R，那么定理10.3说明范畴R−Mod闭的对称幺半范畴.

例 20.30. 范畴Cat是笛卡尔闭的.

习题 20.25. 给定闭幺半范畴(C,⊗, I)，求证对任意C中的对象B，

homC(I,B) ∼= B,

并且这个同构是自然的.

证明. 任意给定对象A，根据定义有自然的同构

homC(A,B) ∼= homC(A⊗ I,B) ∼= homC(A,homC(I,B)),

其中第一个同构由ρA诱导，于是Yoneda引理说明homC(I,B) ∼= B.

习题 20.26. 给定闭幺半范畴(C,⊗, I)，验证homC(−,−)的函子性.

证明.

习题 20.27. 给定幺半范畴(C,⊗, I)，且C中的有限余积都存在且与⊗交换（即(A
∐
B) ⊗ (C

∐
D) ∼= (A ⊗

C)
∐
(A ⊗ D)

∐
(B ⊗ C)

∐
(B ⊗ D)），求证⊤ : C → C, A → ⊤(A) :=

∐
n≥0A

⊗n和幺半结构给出了一个单

子.
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证明. 定义η :和µ :

例 20.31. 给定笛卡尔闭幺半范畴(C,×, I)，假设它是完备和余完备的，那么存在如下构造，使得(I\C,∧, S0)也

是一个闭幺半范畴，其中I\C是对象I下的范畴（习题14.31），单位对象S0定义为I
∐
I，其中的余积是C中的余

积；A ∧B是（C中的）推出

A
∐
B A

∏
B

I A ∧B,

其中为了映射A
∐
B → A

∏
B需要分别给出映射A

∐
B → A和A

∐
B → B，而给出后者分别需要A →

A,B → A,A → B,B → B，这些映射分别是id或者A → I → B和B → I → A.最后hom
I\C(−,−)是拉

回

hom
I\C(A,B) homC(A,B)

homC(I, I) homC(I,B),

其中的态射都是与基点态射I → A或I → B的复合.

习题 20.28. 验证例20.31的构造给出了一个闭幺半范畴.

定义. 给定幺半范畴(C,⊗C, I)和(D,⊗D, J)，若函子F : C → D满足存在自然变换（或态射）

η : F (−)⊗D F (−)⇒ F (−⊗C −)

和

u : J → F (I),

则称函子是弱幺半的(lax monoidal).若其中的自然变换都是自然同构，则称该函子是强幺半的(strong
monoidal).

例 20.32.

k[−] : Set→ k −Vec

值得注意的是，对任意给定闭幺半范畴(C,⊗, I)，homC(I,−)都是弱幺半的函子.这是因为，映射

homC(I, A)× homC(I,B)→ homC(I, A⊗B)

定义为函子−×−在态射对(I → A, I → B)上作用后与自然同构I ⊗ I ∼= I的复合.特别地当C还是笛卡尔幺半的
（即幺半张量是范畴积），则如上的给出的态射还是同构（命题？？和习题14.7）.

例 20.33. 接例20.31的讨论，自然的嵌入函子（实际是C →I\ C忘却掉I之下结构的函子）有左伴随

(−)+ : C ⇆I\ C : U,
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其中函子(−)+定义为

(−)+ : C →I\ C

A 7→ (A
∐

I, ι2).

接下来我们要证明，函子(−)+是强幺半的.
单位对象需要的同构是明显的，于是只需要证明存在自然的同构

A+

∧
B+
∼= (A×B)+

即可.注意到存在一系列（C中和I\C中的）自然同构(
A
∐
{∗}
)
×
(
B
∐
{∗}
)
∼= (A×B)

∐
(A× {∗})

∐
({∗} ×B)

∐
({∗} × {∗}) ∼= (A×B)

∐
A
∐

B
∐
{∗},

并且态射A+

∐
B+可分解为

A+

∐
B+ ↠ A

∐
B
∐
{∗} → (A×B)

∐
A
∐

B
∐
{∗},

于是A+

∧
B+是I\C中的推出

A+

∐
B+ A

∐
B
∐
{∗} (A×B)

∐
A
∐
B
∐
{∗}

{∗} {∗} A+

∧
B+,

但是上图中左右两个正方形图都是推出，并且

A
∐
B
∐
{∗} (A×B)

∐
A
∐
B
∐
{∗}

{∗} A
∐
B
∐
{∗}

也是推出图，于是习题？？说明存在自然的同构.

20.4.2 充实范畴和底范畴

定义. 设(B,⊗, I)是一个对称幺半范畴，那么一个B范畴(B-category)C包含如下信息：

1. 对象的全体ob C，

2. 任意A,B ∈ ob C给出态射对象homC(A,B) ∈ ob B，

3. 对任意A ∈ ob C，存在态射idA : I → homC(A,A)，且

4. 对任意A,B,C ∈ ob C，存在态射

◦ : homC(B,C)⊗ homC(A,B)→ homC(C,A),

对任意A,B,C,D ∈ ob C，满足以下交换图
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1. 符合的结合性

homC(C,D)⊗ homC(B,C)⊗ homC(A,B) homC(C,D)⊗ homC(A,C)

homC(B,D)⊗ homC(A,B) homC(A,D),

id⊗◦

◦⊗id ◦

◦

2. 单位态射

homC(A,B)⊗ I homC(A,B)⊗ homC(A,A)

homC(A,B) ,

id⊗idA

ρhomC(A,B) ◦

和

homC(B,B)⊗ homC(A,B) I ⊗ homC(A,B)

homC(A,B) .

◦

idB⊗id

λhomC(A,B)

称B为基范畴，也称C是充实于B的范畴(enriched category over B)或者B范畴.

换句话说，这里我们将范畴定义中的态射集改成基范畴B中的对象，符合和恒等用B中的态射表示，而所
要求的相容性与普通范畴的态射集hom在Set中的交换图一致.

注意，对象hom是B范畴C的信息，一个B范畴不需要成为一个范畴——它不需要有hom集合.

例 20.34. 一个最简单的例子是对于任意的范畴C，它自然地是 Set上的范畴.

例 20.35. 设A是只包含一个对象的Ab范畴，那么A是含幺环——hom({∗}, {∗})是一个Abel群，复合态射和单
位态射都是群态射因而刚好给出了含幺环结构.

例 20.36. 当基范畴B包含单位对象的余指数存在（及对任意指标范畴J，
∐

J I都存在），那么任意范畴C都可
以成为一个B范畴，其中

homC(A,B) :=
∐

homC(A,B)

I,

单位态射idA由I到homC(A,B)中idA所指示的嵌入给出，并且由于幺半积与所给的余积交换（习题？？），存在

一系列自然同构 ∐
homC(A,B)

I

×
 ∐

homC(B,C)

I

 ∼= ∐
homC(A,B)

I ×
 ∐

homC(B,C)

I


∼=

∐
homC(A,B)

 ∐
homC(B,C)

I × I

 ∼= ∐
homC(A,B)×homC(B,C)

I,

这意味着复合态射由C中原本的复合重排指标给出.
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引理 20.8. 若C是闭的幺半范畴，那么C是充实于自身的范畴.

证明. 按定义，对于闭幺半范畴C，−⊗−的（双）函子性使得子homC(−,−)也是（双）函子，并且有

homC(A⊗B,C) ∼= homC(A,homC(B,C)).

为说明C是本身上的范畴，只要给出单位态射和态射的复合并验证相容性即可.
对C中的任意对象A，idA : I → homC(A,A)在如上所述的伴随函子对

homC(I ⊗A,A) ∼= homC(I, homC(A,A)).

下对应于自然同构λA : I ⊗ A ∼= A.若ϵ(B) : homC(B,−) ⊗ B ⇒ id是伴随函子对(− ⊗ B, homC(B,−))的余单
位，那么复合

homC(B,C)⊗ homC(A,B)→ homC(A,C)

是如下态射

homC(B,C)⊗ homC(A,B)⊗A id⊗ϵ(A)B−−−−−−→ homC(B,C)⊗B
ϵ(B)C−−−−→ C,

在伴随下的对应.
为证明相容性，我们首先证明有交换图

homC(B,C)⊗ homC(A,B)⊗A homC(A,C)⊗A

homC(B,C)⊗B C.

◦⊗idA

idhomC(B,C)⊗ϵ(A)B ϵ(A)C

ϵ(B)C

根据伴随homC(−⊗−,−) ∼= homC(−,homC(−,−))的自然性（作用在复合态射◦ : homC(B,C)⊗homC(A,B)→
homC(A,C)上），有交换图

homC(homC(B,C)⊗ homC(A,B),homC(A,C)) homC(homC(A,C),homC(A,C))

homC(homC(B,C)⊗ homC(A,B)⊗A,C) homC(homC(A,C)⊗A,C),

◦∗

(◦⊗idA)∗

其中竖直的箭头是由伴随给出的，取ϵ(A)C ∈ homC(homC(A,C)⊗A,C)，它在该交换图中给出homC(homC(B,C)⊗
homC(A,B)⊗A,C)中的等式

ϵ(A)C(◦ ⊗ idA) = ϵ(B)C(idhomC(B,C) ⊗ ϵ(A)B),

即所要的交换图.同理也有ϵ(B)D(◦ ⊗ idB) = ϵ(C)D(idhomC(C,D) ⊗ ϵ(B)C).于是，对任意的对象A,B,C,D，

ϵ(C)D(id⊗ ϵ(A)C)(id⊗ ◦ ⊗ id) = ϵ(C)D(id⊗ (ϵ(B)C(id⊗ ϵ(A)B))

= ϵ(C)D(id⊗ ϵ(B)C)(id⊗ id⊗ ϵ(A)B)

= ϵ(B)D(◦ ⊗ id)(id⊗ id⊗ ϵ(A)B)

= ϵ(B)D(id⊗ ϵ(A)B)(◦ ⊗ id⊗ id).

类似于之前，交换图
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homC(homC(C,D)⊗ homC(B,C)⊗ homC(A,B),homC(A,D)) homC(homC(C,D)⊗ homC(A,C),homC(A,D))

homC(homC(C,D)⊗ homC(B,C)⊗ homC(A,B)⊗A,D) homC(homC(C,D)⊗ homC(A,C)⊗A,D)

(id⊗◦)∗

(id⊗◦⊗idA)∗

说明◦(id⊗ ◦)经过伴随对应到ϵ(C)D(id⊗ ϵ(A)C)(id⊗ ◦ ⊗ id)，交换图

homC(homC(C,D)⊗ homC(B,C)⊗ homC(A,B),homC(A,D)) homC(homC(B,D)⊗ homC(A,B),homC(A,D))

homC(homC(C,D)⊗ homC(B,C)⊗ homC(A,B)⊗A,D) homC(homC(B,D)⊗ homC(A,B)⊗A,D)

(◦⊗id)∗

(◦⊗id⊗idA)∗

说明◦(◦ ⊗ id)经过伴随对应到ϵ(B)D(id⊗ ϵ(A)B)(◦ ⊗ id⊗ id)，这即完成了结合性的验证.
对单位态射，我们只验证

homC(A,B)⊗ I homC(A,B)⊗ homC(A,A)

homC(A,B) ,

id⊗idA

ρhomC(A,B) ◦

另一部分是完全对偶的.同样由伴随的自然性，存在交换图

homC(homC(A,A),homC(A,A)) homC(homC(A,A)⊗A,A)

homC(I, homC(A,A)) homC(I ⊗A,A),

id∗
A (idA⊗idA)∗

那么idhomC(A,A) ∈ homC(homC(A,A),homC(A,A))在图中分别被对应到λA ∈ homC(I ⊗ A,A)和ϵ(A)A(idA ⊗
idA) ∈ homC(I ⊗A,A)，这意味着ϵ(A)A(idA ⊗ idA) = λA，即交换图

I ⊗A homC(A,A)⊗A

A.

idA⊗idA

λA ϵ(A)A

再根据伴随的自然性，存在交换图

homC(homC(A,B)⊗ homC(A,A),homC(A,B)) homC(homC(A,B)⊗ homC(A,A)⊗A,B)

homC(homC(A,B)⊗ I, homC(A,B)) homC(homC(A,B)⊗ I ⊗A,B)

homC(homC(A,B),homC(A,B)) homC(homC(A,B)⊗A,B),

(id⊗idA)∗ (id⊗idA⊗idA)∗

ρhomC(A,B)
∗

(ρhomC(A,B)⊗idA)∗

于是下方的交换图将id : homC(A,B)→ homC(A,B)映到

ρhomC(A,B) : homC(A,B)⊗ homC(A,A)→ homC(A,B)

和

ϵ(A)B(ρhomC(A,B) ⊗ idA) : homC(A,B)⊗ I ⊗A,B,
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这说明上面两个态射是伴随给出的对应.另一方面，◦ : homC(A,B)⊗ homC(A,A)→ homC(A,B)被映到

◦(id⊗ idA) : homC(A,B)⊗ I → homC(A,B)

和

ϵ(A)B(id⊗ ϵ(A)A)(id⊗ idA ⊗ idA) = ϵ(A)B(id⊗ (ϵ(A)A(idA ⊗ idA)))

= ϵ(A)B(id⊗ λA)

= ϵ(A)B(ρhomC(A,B) ⊗ idA),

结合之前的对应刚好给出了所要证的结果.

在上面的证明中，我们其实都省略了结合子自然变换α，它的自然性保证如同上面的证明，在使用中并不

需要特别区分−⊗ (−⊗−)和(−⊗−)⊗−.引理20.8所要求的条件只有闭，但给我们带来了丰富的结构.

例 20.37. 根据例20.27，(Ab,⊗Z)是幺半范畴.对于环R，考虑R −Mod中的态射集homR−Mod(M,N)，可以

自然地定义上面的加法使得它是一个Abel群，记这个Abel群为homR−Mod(M,N)（以区别于没有任何结构的

集合）.按定义，模态射的复合是Z线性的，因此复合是一个Abel群同态，而且复合的结合性从Set中复合的结

合性直接得到.
(Ab,⊗Z)中的单位对象是Z，并且作为集合和Abel群都存在同态homR−Mod(Z,M) ∼= M，这个同构也给

出了所谓的单位态射（区分于Abel群中的单位元），于是R−Mod是 (Ab,⊗Z)上的范畴.

例 20.38. 这个例子是充实范畴理论建立的动机之一，并且理论在这个例子中的应用被推广到了数学中几乎最
重要部分当中.
记Top是“好的”拓扑空间的全体（不同于例14.6中定义对拓扑空间不加限制），这里的“好”代指技术

条件紧生成且Hausdorff（见[1]），homTop(X,Y )依旧定义为全体的连续映射，如此的技术条件使得Top成为

了一个笛卡尔闭的范畴，于是根据引理20.8，Top是充实于自身的范畴，其中的伴随函子对是

−× Y : Top⇆ Top : Map(Y,−),

其中对于任意（好的）空间Z，Map(Y, Z)是一个拓扑空间，其中其底集是Y到Z的全体连续函数，并赋有紧

开拓扑.
这个范畴也被称为“代数拓扑学家的空间范畴”.由这个例子出发

引理 20.9. 任意给定弱幺半函子F : B → D，都使得B范畴C有一个由F诱导的D范畴结构.

证明. 考虑如下定义的D范畴F∗C：它的对象和通常的hom结构同于C，且

homF∗C(A,B) := F (homC(A,B)),

复合态射和单位态射分别定义为

F (homC(B,C))⊗D F (homC(A,B))→ F (homC(B,C)⊗C homC(A,B))
F (◦)−−−→ F (homC(A,C)) = homF∗C(A,C)

和

I → F (J)
F (idA)−−−−→ F (homC(A,A)) = homF∗C(A,A).

这给出了D范畴结构.
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对于充实范畴，我们依旧希望能够建立它们与普通范畴理论之间的联系，

定义. 给定B范畴C，那么它的底范畴(underlying category)C0是一个范畴，满足

1. C0的对象同于C，

2. homC0
(A,B) := homB(I, homC(A,B))， 且单位态射idA ∈ homC0

(A,A)是idA ∈
homB(I, homC(A,A))，

3. 态射的复合是

homC0
(B,C)× homC0

(A,B) homC0
(A,C)

homB(I, homC(B,C))× homB(I, homC(A,B)) homB(I, homC(A,C)).

homB(I, homC(B,C)⊗ homC(A,B))

例 20.39. 给定群G，记TopG是由G空间和G等变的连续映射组成的范畴，于是TopG是对称的幺半范畴，其

中给定G空间X,Y，X ⊗ Y定义为X × Y并赋有对角作用，那么对该范畴有两种不同的充实于Top中的方式：

1. 一种方式是给定G空间X,Y，取Map(X,Y )的子集

{f ∈ Map(X,Y ) | f是G等变的},

并且赋予子空间拓扑，记为MapG(X,Y )；

2. 另一种方式考虑对任意给定G空间X,Y，Map(X,Y )上有自然的G作用

g · f : x 7→ g · f(g−1 · x),

记Map(X,Y )上有此G作用的G空间为MapG(X,Y ).

以上两种方式都使得TopG是充实于自身的范畴，类似于例20.38分别记为TopG和Top
G
.

值得注意的是两种充实的方式给出的底范畴都是TopG：

1. 对于TopG，

Map({∗},MapG(X,Y )) ∼= MapG(X,Y ),

这一部分是明显的；

2. 对于Top
G
，由于G在{∗}上只有平凡作用，因此Map({∗},MapG(X,Y ))给出了MapG(X,Y )中G不变的部

分，恰好也是MapG(X,Y ).

我们这里补全对定义的验证：
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引理 20.10. 给定B范畴C，那么它的底范畴是一个范畴.

证明. 这里只需要验证态射满足复合和单位态射的相容性即可.
复合的相容性是图

homC0
(C,D)× homC0

(B,C)× homC0
(A,B) homC0

(B,D)× homC0
(A,B)

homC0
(C,D)× homC0

(A,C) homC0
(A,D)

◦×idhomC0
(A,B)

idhomC0
(C,D)×◦ ◦

◦

的交换性，根据自然变换homB(I,−)× homB(I,−)⇒ homB(I,−⊗−)的自然性存在交换图

homB(I, homC(C,D))× homB(I, homC(B,C))× homB(I, homC(A,B)) homB(I, homC(C,D)⊗ homC(B,C))× homB(I, homC(A,B))

homB(I, homC(C,D))× homB(I, homC(B,C)⊗ homC(A,B)) homB(I, homC(C,D)⊗ homC(B,C))× homB(I, homC(A,B))

homB(I, homC(C,D)⊗ (homC(B,C)⊗ homC(A,B))) homB(I, hom(C(C,D)⊗ homC(B,C))⊗ homC(A,B)),
α∗

结合−×−的函子性和充实范畴中复合态射◦的结合性，C0中态射的复合也具有相容性.
对于单位态射，任取f ∈ homC0

(A,B)，那么作为B中的态射

f ◦ idA : I
λ−1
I−−→ I ⊗ I

f◦idA−−−→ homC(A,B)⊗ homC(A,A)
◦−→ homC(A,B)

= I
λ−1
I−−→ I ⊗ I f◦idI−−−→ homC(A,B)⊗ I

id◦idA−−−−→ homC(A,B)⊗ homC(A,A)
◦−→ homC(A,B)

= I
λ−1
I−−→ I ⊗ I f◦idI−−−→ homC(A,B)⊗ I

ρhomC(A,B)−−−−−−−→ homC(A,B).

根据ρ : −⊗ I ⇒ −的自然性，有交换图

I ⊗ I I

homC(A,B)⊗ I homC(A,B),

ρI

f⊗id f

ρhomC(A,B)

于是

I ⊗ I f◦idI−−−→ homC(A,B)⊗ I
ρhomC(A,B)−−−−−−−→ homC(A,B) = I ⊗ I ρI−→ I

f−→ homC(A,B),

再根据引理20.7，f ◦ idA = f .另一个单位态射也是类似的.

命题 20.27. 给定闭对称幺半范畴C，那么C作为充实于自身范畴（引理20.8）的底范畴是其本身.

证明. 构造

homC(I,−) : C0 → C

A 7→ homC(I, A)

f ∈ homC0
(A,B) 7→ f̃ ,
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我们证明如上是范畴的等价即可，其中f̃是复合

A
λ−1
A−−→ I ⊗A f⊗id−−−→ homC(A,B)⊗A ϵ(A)B−−−→ B,

这当中ϵ(A) : homC(A,−)⊗A⇒ id是伴随函子对(−⊗A,homC(A,−))的余单位.

首先验证定义的函子性，即给定f ∈ homC0
(A,B)和g ∈ homC0

(B,C)，

homC(I, gf) = homC(I, g)homC(I, f).

在C0中复合gf按定义是

I
λ−1
I−−→ I ⊗ I g⊗f−−→ homC0

(B,C)⊗ homC0
(A,B)

◦−→ homC0
(A,C),

于是

homC(I, gf) = A
λ−1
A−−→ I ⊗A gf⊗id−−−−→ homC(A,C)⊗A

ϵ(A)C−−−→ C

= A
λ−1
A−−→ I ⊗A

λ−1
I ⊗idA−−−−−→ I ⊗ I ⊗A g⊗f⊗idA−−−−−−→ homC(B,C)⊗ homC(A,B)⊗A ϵ(A)C(◦⊗idA)−−−−−−−−→ C

= ϵ(A)C(◦ ⊗ idA)(g ⊗ f ⊗ idA)(λ
−1
I ⊗ idA)λ

−1
A

= ϵ(B)C(idhomC(B,C) ⊗ ϵ(A)B)(g ⊗ f ⊗ idA)(λ
−1
I ⊗ idA)λ

−1
A

= ϵ(B)C(idhomC(B,C) ⊗ ϵ(A)B)(g ⊗ id⊗ idA)(id⊗ f ⊗ idA)(λ
−1
I ⊗ idA)λ

−1
A ,

其中等式

ϵ(A)C(◦ ⊗ idA) = ϵ(B)C(idhomC(B,C) ⊗ ϵ(A)B)

在引理20.8中已经证明.根据−⊗−的函子性，存在交换图

I ⊗ homC(A,B)⊗A homC(B,C)⊗ homC(A,B)⊗A

I ⊗B homC(B,C)⊗B,

id⊗ϵ(A)B

g⊗id⊗id

id⊗ϵ(A)B

g⊗id

即

(idhomC(B,C) ⊗ ϵ(A)B)(g ⊗ id⊗ idA) = (g ⊗ idB)(idI ⊗ ϵ(A)B),

这样

homC(I, gf) = ϵ(B)C(idhomC(B,C) ⊗ ϵ(A)B)(g ⊗ id⊗ idA)(id⊗ f ⊗ idA)(λ
−1
I ⊗ idA)λ

−1
A

= ϵ(B)C(g ⊗ idB)(idI ⊗ ϵ(A)B)(id⊗ f ⊗ idA)(λ
−1
I ⊗ idA)λ

−1
A

= ϵ(B)C(g ⊗ idB)(idI ⊗ ϵ(A)B)(id⊗ f ⊗ idA)(idI ⊗ λ−1
A )λ−1

A ,

其中最后一个等式来源于单位的相容性条件和引理20.7给出的交换图

A I ⊗A

I ⊗A I ⊗ I ⊗A.

λ−1
A

λ−1
A

λ−1
I ⊗id

id⊗λ−1
A
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进一步

homC(I, gf) = ϵ(B)C(g ⊗ idB)(idI ⊗ ϵ(A)B)(id⊗ f ⊗ idA)(idI ⊗ λ−1
A )λ−1

A

= ϵ(B)C(g ⊗ idB)(idI ⊗ homC(I, f))λ
−1
A ,

再注意到λ的自然性给出的交换图

A I ⊗A

B I ⊗B,

λ−1
A

f̃ idI⊗f̃
λ−1
B

于是

ϵ(B)C(g ⊗ idB)(idI ⊗ homC(I, f))λ
−1
A = ϵ(B)C(g ⊗ idB)λ

−1
B homC(I, f) = homC(I, g)homC(I, f).

另一方面，按定义，

homC(I, idA) = A
λ−1
A−−→ I ⊗A

idA⊗id
−−−−→ homC(A,A)⊗A

ϵ(A)A−−−→ A = ϵ(A)A(idA ⊗ idA)λ
−1
A = λAλ

−1
A = idA,

其中ϵ(A)A(idA ⊗ idA) = λA也在引理20.8中证明.如此说明了homC(I,−)是一个函子.
习题20.25说明了对任意的对象A，

homC(I, A)
∼= A,

于是函子是本质满的，因而只要证明它是满忠实的即可.为此，只要找到对任意对象A,B ∈ ob C0，映射

homC0
(A,B)→ homC(A,B)

f 7→ f̃

的逆映射即可.考虑复合
I ⊗A f⊗id−−−→ homC(A,B)⊗A ϵ(A)B−−−→ B

在伴随对(−⊗B, homC(B,−))下的对应，同样交换图

homC(I, homC(A,B)) homB(homC(A,B),homC(A,B))

homC(I ⊗A,B) homC(homC(A,B)⊗A,B)

f∗

(f⊗id)∗

说明这个对应恰好是f，因而

homC0
(A,B)← homC(A,B)

(λ−1
A )∗(f ♯)←[ f ♭

是逆映射，其中f ♯ ↔ f ♭表示伴随对下的对应.

如上的证明实际上在说明原本对于底范畴的定义方式几乎就是取“函子”homC(I,−)，并且在给定的特
殊情形下这是一个范畴的等价（如上证明中的函子性并不需要条件闭）.类似地取任意的对象A，homC(A,−)也
应该是一个函子.下面的习题技术上说明了这一点：
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习题 20.29. [推出和拉回] 给定一个B范畴C，f : I → homC(B,C)是C0中的一个态射，那么对于任意C中的对
象A，定义

f∗ : homC(A,B) ∼= I ⊗ homC(A,B)
f⊗id−−−→ homC(B,C)⊗ homC(A,B)

◦−→ homC(A,C),

证明

1. 如此的构造给出了一个可表函子

homC0
(A,−) : C0 → B,

2. 类似地构造g∗和可表函子

homC0
(−, B) : C0 → B,

3. 该函子与函子homB(I,−)的复合给出了可表函子

homC0
(A,−) : C0 → Set.

证明. 1. 为了验证函子性，

20.4.3 充实函子和充实自然变换

定义. 给定B范畴C和D，若F给出了，并且对任意C中的对象A,B，都有B中的态射

FA,B : homC(A,B)→ homD(F (A), F (B)),

满足

1. 与复合相容，即有交换图

homC(B,C)× homC(A,B) homC(A,C)

homD(F (B), F (C))× homD(F (A), F (B)) homD(F (A), F (C)),

◦

FB,C×FA,B FA,C

◦

2. 与单位相容，即有交换图

I homC(A,A)

homD(F (A), F (A)),

idA

idF (A)
FA,A

则称函子F是充实于B中的函子(functor enriched in B)，简称B函子.

注意B函子不需要是函子.



188 第二十章 进阶范畴理论

例 20.40 (可表函子). 习题20.29说明了

homC0
(A,−) : C0 → B

是一个函子，并且在取底之后是可表的，那么自然会考虑对应的

homC(A,−) : C → B

是否是B函子；但为保证定义的有效性，B必然是充实于自身的，因而不妨考虑B是闭幺半范畴的情形.
于是为说明homC(A,−)是B函子，定义
特别地，若C是闭幺半范畴，那么对任意对象A，homC(A,−)是C函子，

例 20.41.

定义. 给定B范畴C,D和B函子F,G : C ⇒ D，若对任意C中的对象A都存在B中的态射αA : I →
homD(F (A), G(A))，满足

homC(A,B) homD(F (A), F (B))

homD(G(A), G(B)) homD(F (A), G(B)),

FA,B

GA,B (αB)∗

(αA)∗

则称α是充实自然变换（B自然变换(B-natural transformation)），其中.

例 20.42. 例20.35说明了只含有单个对象的Ab范畴是含幺环，记这个环为R，对应的只含有单个对象的Ab范

畴之间的协变（反变）Ab函子是左（右）R模.

如同前面构造

命题 20.28. 底范畴(−)0 :是2函子.

引理 20.11. 任意给定弱幺半函子F : B → D，都诱导了一个2函子

证明.

注意到在一个B范畴中，不存在具体的态射因此无法对态射进行复合（注意之前的复合抽象地定义为一
个B中的态射），于是无法定义态射的逆，进而无法通过通常的方式定义对象的同构，但我们有如下的“B-
Yoneda引理”：

引理 20.12. 给定B范畴C，A,B是C中的对象，那么下列陈述等价：
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1. A,B是C0中的同构对象，

2. 可表函子homC0
(A,−) : C0 → Set和homC0

(B,−) : C0 → Set是自然同构的函子，

3. 可表函子homC0
(A,−) : C0 → B和homC0

(B,−) : C0 → B是自然同构的函子，

4. 可表B函子homC(A,−) : C → B和homC(B,−) : C → B是自然同构的函子.

于是我们称满足如上任意条件C中的对象A,B是同构的(isomorphic).

证明.

最后，类比通常范畴的情形，同样可以定义B范畴的等价和伴随B函子对.

定义. 若B函子F : C → D满足

1. 本质满的(essentially surjective)，即对任意D中的对象B，都存在C中的对象A满足F (A)同构于（在
引理20.12意义下）B，

2. B满忠实的(B-fully faithful)， 即对任意C中的对象A,B， FA,B : homC(A,B) →
homD(F (A), F (B))是B中的同构，

则称F是B范畴等价(B-equivalence of categories).

定义. 给定B范畴C,D和B函子F : C ⇆ D : G，若存在B自然同构

α : homD(F (−),−)⇒ homC(−, G(−)),

则称(F,G)是B伴随(B-adjunction).

完全同于普通范畴的情形（定理15.4），可以用单位和余单位来描述伴随函子对：

命题 20.29. 给定B范畴C,D和B函子F : C ⇆ D : G，那么(F,G)是伴随当且仅当存在B自然变换η : idD ⇒
GF和ϵ : FG⇒ idC满足Gϵ ◦ ηG = idG和ϵF ◦ Fη = idF .

证明.

20.4.4 张量积和余张量积

在上一节中，我们定义并讨论了B范畴之间的B伴随.给定闭范畴C，(−⊗,homC)是Set伴随（即原本意义

下的伴随）；但引理20.8提示，作为充实于自身的范畴，C的底（返回经典范畴的视角）也是本身，因而有理



190 第二十章 进阶范畴理论

由相信这个伴随可以是C伴随.这是正确地，注意到对任意对象X,A,B,C，存在一族自然的同构

homC(X,homC(A⊗B,C)) ∼= homC(X⊗A⊗B,C) ∼= homC(X⊗A,homC(B,C))
∼= homC(X,homC(A,homC(B,C))),

于是根据Yoneda引理，homC(A⊗B,C)自然同构于homC(A,homC(B,C))，即这个伴随可以是C伴随.
这一节中我们始终假定B是闭对称幺半范畴，因此引理20.8说明B是充实于自身的范畴.
借助如上的讨论，闭幺半范畴的张量积− ⊗ B作为homC(B,−)的伴随也应当是一个充实函子，定义函子

所需要的态射是

homC(A,C)
ηBC−−→ homC(A,homC(B,C ⊗B)) ∼= homC(A⊗B,C ⊗B),

其中ηB : idC ⇒ homC(B,−⊗B)是C伴随对应的单位.
更一般地，我们考虑如下问题：给定B范畴C,D，并且给定底范畴之间的伴随

F : C ⇆ D : G,

是否可以将这个伴随扩张为一个B伴随？或者，在什么条件下可以将这个伴随扩张？
仿照刚刚的讨论，我们会想能否用B中的对象和Yoneda引理考虑homB(X,homC(A,G(B)))，但之前论断

的第一步就无法进行下去了.但仿照先前的推理，如果此时对任意C中的对象A和D中的对象B，函子homC(A,−)和homD(B,−)都
存在左伴随，且F保左伴随；或者函子homC(−, A)和homD(−, B)都存在右伴随，且G保右伴随.

定义. 给定B范畴C，若对任意B中的对象X和C中的对象A，都存在对应的C中的对象X ⊗ A使得存在关

于X,A和C中的对象B都成立的同构

homC(X ⊗A,B) ∼= homB(X,homC(A,B)),

则称C是张量化的(tensored).

习题 20.30. 给定张量化的B范畴C，求证存在唯一的方式使得定义中的

−⊗− : B × C → C

给出了一个函子.

证明.

习题20.30说明同构
homC(X ⊗A,B) ∼= homB(X,homC(A,B))

关于X,A和B都自然的，于是对任意可表B函子homC(A,−) : C → B，都存在它的左B伴随−⊗A : B → C.

定义. 给定B范畴C，若对任意B中的对象X和C中的对象B，都存在对应的C中的对象Hom(X,B)使得存在

关于X,B和C中的对象A都自然的同构

homC(A,Hom(X,B)) ∼= homB(X,homC(A,B)),

则称C是余张量化的(cotensored).
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若给定的B范畴C同时是张量化和余张量化的，那么存在一个双变量B伴随

homC(X ⊗A,B) ∼= homB(X,homC(A,B)) ∼= homC(A,Hom(X,B)).

读者可以自行尝试完善这个定义.

例 20.43. 任意给定积和余积都存在的局部小范畴C，C都是Set张量化和Set余张量化的.具体而言，对任意C中
的对象A和集合X：

1. X ⊗A :=
∐
x∈X A

2. Hom(X,A) :=
∏
x∈X A

在继续给出其他例子之前，我们先来讨论一些一般的理论.首先下面的引理解释了为何如上的定义被称为
张量化和余张量化.

引理 20.13. 给定闭幺半范畴(B,⊗, I)，并假设C是B张量化的（为区别，张量化的函子记为⊗C），那么张

量⊗C是单位的(unital)且是分配的(associative)，即对任意B中的对象X,Y和C中的对象A，存在自然的同
构

I ⊗C A ∼= A

和

(X ⊗ Y )⊗C A ∼= X ⊗C (Y ⊗C A).

证明. 这里的主要工具是Yoneda引理和充实Yoneda引理（引理20.12）.
习题20.25说明对任意B中的对象Z，homB(I, Z)

∼= Z，因此

homC(I ⊗C A,B) ∼= homB(I, homC(A,B)) ∼= homC(A,B),

根据引理20.12，有自然的同构I ⊗C A ∼= A.
类似地，对任意M中的对象B，

homC((X ⊗ Y )⊗C A,B) ∼= homC(X ⊗ Y,homC(A,B)) ∼= homC(X,homB(Y,homC(A,B)))

= homC(X,homC(Y ⊗C A,B)) ∼= homC(X ⊗C (Y ⊗C A), B),

同样根据充实Yoneda引理，存在自然的同构(X ⊗ Y )⊗C A ∼= X ⊗C (Y ⊗C A).

此时我们可以回答我们在本小节最初提出来的问题了，即什么时候底范畴之间的伴随可以扩张为充实伴

随：

命题 20.30. 给定张量化B范畴C和余张量化B范畴D，

F0 : C0 ⇆ D0 : G0

是底范畴间的伴随，那么如下信息是互相决定的：
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1. B伴随
α : homD(F (−),−)⇒ homC(−, G(−)),

2. B函子F : C → D满足存在自然的B同构

F (X ⊗C A) ∼= X ⊗D F (A),

3. B函子C ← D : G满足存在自然的B同构

F (X ⊗C A) ∼= X ⊗D F (A).

证明.

定理 20.31. 给定闭对称幺半范畴之间的伴随

F : A⇆ B : G,

满足F是强幺半的函子，那么任意张量化且余张量化的B范畴C都自然地成为张量化且余张量化的A范畴.

在给出证明之前，我们首先想要说明，定理20.31中的伴随F : A⇆ B : G意味着函子G是弱幺半的（[2]），
再结合引理20.9，C有A范畴结构.

证明. 由于C是张量化且余张量化的B范畴，对任意B中的对象X和C中的对象A,B，存在自然的同构

B − homC(X ⊗C A,B) ∼= homB(X,B − homC(A,B)) ∼= B − homC(A,Hom(X,B)),

其中B − homC(−,−)表示C作为B范畴的结构，以区别于A范畴结构A− homC(−,−) := G(B − homC(−,−)).
定义

− ⋆− : A× C → C

(U,A) 7→ U ⋆ A := F (U)⊗C A

和

[−,−] : A◦ × C → C

(U,A) 7→ [U,A] := Hom(F (U), A),

于是需要证明对象A− homC(U ⋆A,B),homA(U,A− homC(A,B))和A− homC(A, [U,B])是同构的，这里的工

具依旧是充实Yoneda引理（引理20.12）.
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对于第一部分，对任意A中的对象W，

homA(W,A− homC(U ⋆ A,B)) = homA(W,G(B − homC(F (U)⊗C A,B)))

∼= homB(F (W ),B − homC(F (U)⊗C A,B))

∼= homC(F (W )⊗C (F (U)⊗C A), B)

∼= homC((F (W )⊗ F (U))⊗C A,B)

∼= homB(F (W )⊗ F (U),B − homC(A,B))

∼= homB(F (W ⊗ U),B − homC(A,B))

∼= homA(W ⊗ U,G(B − homC(A,B)))

= homA(W ⊗ U,A− homC(A,B))

∼= homA(W, homA(U,A− homC(A,B))),

这就证明了前两个对象是同构的.另一部分对偶于这里的讨论.

习题 20.31. 验证定理20.31中定义的− ⋆−与[−,−]的函子性.

推论 20.31.1. 给定定理20.31中的伴随F : A⇆ B : G，那么它是B作为A范畴（引理20.9）下的A伴随.

证明. 注意到范畴B本身是充实于自身的范畴（命题20.8），为做区别记B作为A范畴的结构为A−homB(−,−).于
是

homA(W,A− homB(F (U), V )) = homA(W,G(homB(F (U), V )))

∼= homB(F (W ),homB(F (U), V ))

∼= homB(F (W )⊗ F (U), V )

∼= homB(F (W ⊗ U), V )

∼= homA(W ⊗ U,G(V ))

∼= homA(W, homA(U,G(V ))),

于是根据命题20.30，得证.

例 20.44. 考虑例20.33的特殊情形，

例 20.45.
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第二十一章 Lie代数

21.1 定义和基本结构

定义. 则称g为一个Lie代数(Lie algebra).

定义. 给定k上的Lie代数g，若k模M满足存在双线性型g⊗kM →M（记为a ·m）使得

[a, b] ·m = a · (b ·m)− b · (a ·m)

对所有a, b ∈ g,m ∈M都成立，则称M是一个g模(g-module).

例 21.1. 给定Lie代数g，定义平凡模k为如下的g模，满足对任意a ∈ g, x ∈ k，[a, x] = 0.

存在伴随

U : Liek ⇆ k −Alg : (−)Lie
homk−Alg(Ug, A) ∼= homLiek

(g, ALie)

Ug := Tg/⟨a⊗ b− b⊗ a− [a, b]⟩

其中⟨a⊗ b− b⊗ a− [a, b]⟩是形如

Ug−Mod ∼= g−Mod

21.1.1 同态，理想和表示

197
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定义. 给定李代数g和其中的元素a ∈ g，称映射

ad : g→ gl(g)

a 7→ ada

b 7→ ada(b) = [a, b]

为g的伴随表示(adjoint representation).

定义. 1. ad半单

引理 21.1. Let T be a linear map from V to V (i.e, T 2 End(V )) with Jordan decomposition T = Ts +
Tn. Then, adT =adTs+adTn is the Jordan decomposition of adT.

21.1.2 Lie代数的系数变换

我们先从一个例子开始讨论.

21.1.3 自由Lie代数

homk−Mod(M, g) ∼= homLie(f(M), g).

homSet(X, g) ∼= homLie(f(X), g)

21.2 单Lie代数和半单Lie代数

对李代数g，称由

C1g := g

Cn+1g := [g, Cng]

定义的g的递降子代数为g的lower central series.明显地，

[Cmg, Cng] ⊆ Cm+ng.
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定义. 给定李代数g，若存在正整数n使得Cng = 0，则称g是幂零的(nilpotent).

命题 21.1. 给定特征0的域F上的有限维李代数g，那么下列条件等价：

1. g是幂零的，且Cr+1g = 0，

2. 对任意x0, · · · , xr ∈ g，

[x0, [x1, [· · · , xr] · · · ]] = (adx0
) · · · (adxr−1

)(xr) = 0,

3. 存在g的一个递降理想滤子

g = a0 ⊇ a1 ⊇ · · · ar = 0

满足[g, ai] ⊆ ai+1对所有0 ≤ i ≤ r − 1成立.

定义. 对于李代数g，子集

{x ∈ g | [x, y] = 0对于所有y ∈ g成立}

称为g的中心(center).

命题 21.2. 给定李代数g和包含在中心的理想a，那么g是幂零的当且仅当g/a是幂零的.

例 21.2. 设V是n维向量空间，给定V的上升子空间序列D = {Di}1≤i≤n

0 = D0 ⊆ D1 ⊆ · · · ⊆ Dn = V

满足dimVi = i，并且定义

n(D) := {x ∈ gl(V ) | xDi+1 ⊆ Di},

那么n(D)是幂零的且Cnn(D) = 0.我们称这样的一个子空间序列为V的一个旗帜(flag).

事实上，

用矩阵表示这个例子是说存在V的一组基使得所有矩阵是严格上三角的.

定理 21.3. 有限维李代数g，那么它是幂零的当且仅当对任意的x ∈ g，adx是幂零的.
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定理 21.4. 设V是有限维线性空间，g是gl(V )的子李代数，那么如下叙述等价：

1. g是幂零的；

2. 存在V的旗帜D满足g ⊆ gl(V ).

类似群和代数的情形，给定李代数g和向量空间V ̸= 0，那么称一个李代数同态φ : g→ gl(V )为g在V上的

一个线性表示(linear representation)，也称V是一个g模.V中的向量v若满足对任意x ∈ g，φ(x)(v) = 0都成了，

则称v是一个g作用下的不变量(invariant).

推论 21.4.1. 给定李代数g的有限维线性表示φ : g → gl(V )，若φ(x)对任意x ∈ g都是幂零的，那么存在v ∈
V是g作用下的不变量.

对李代数g，称由

D1g := g

Dn+1g := [Dng, Dng]

定义的g的递降子代数为g的导出序列(derived series).

定义. 若李代数g满足存在自然数n使得Dng = 0，则称g是可解的(solvable).

命题 21.5. 1. 幂零李代数是可解的，

2. 可解李代数的子李代数、商李代数和扩张都是可解的，

3. 给定有限维向量空间V的旗帜D，令

b(D) := {x ∈ gl(V ) | xDi ⊆ Di}

是D对应的Borel代数，那么b(D)是可解的.

命题 21.6. 给定有限维李代数g，则如下是等价的：

1. g是可解的且Drg = 0，

2. 存在g的递降理想

g = a0 ⊇ a1 ⊇ · · · ⊇ ar = 0

使得[ai, ai] ⊆ ai+1成立（即ai/ai+1是交换的）.
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第三项可以理解为（非严格的）上三角矩阵.

定理 21.7 (Lie). 设k是特征0的代数闭域，φ : g → gl(V )是有限维李代数g的有限维线性表示.若g是可解

的，则存在V的旗帜D使得φ(g) ⊆ b(D).

推论 21.7.1. 设k是特征0的代数闭域，φ : g → gl(V )是有限维李代数g的有限维线性表示，且g是可解的，那

么有限维g单模必是1维的.

推论 21.7.2. 设k是特征0的代数闭域，φ : g → gl(V )是有限维李代数g的有限维线性表示，且g是可解的，那

么存在v ∈ V对任意x ∈ g都是φ(x)的特征向量.

引理 21.2. 设k是特征0的代数闭域，φ : g → gl(V )是有限维李代数g的有限维线性表示，h是g的理想，

v ̸= 0是V中的元素，那么

定理 21.8 (Cartan’s Criterion). 设k是特征0的代数闭域，g是gl(V )的有限维子李代数，那么g是可解的当

且仅当

Tr(x ◦ y) = 0

对任意x ∈ g, y ∈ [g, g]成立.

21.3 半单Lie代数

根据命题，若a, b是李代数g的可解理想，那么扩张

0→ a→ a+ b→ b/(a ∩ b)→ 0

说明a+ b也是李代数g的可解理想，于是存在g的极大可解子理想，记为r，称为根理想(radical).

定义. 李代数g的根理想r满足r = 0，则称g是半单的(semi-simple).

例 21.3.

{Ei,j}i,j=1,··· ,n
i̸=j

∪ {Ei,i − Ei+1,i+1}i=1,··· ,n−1

例 21.4. 我们来证明sln是单Lie代数.例21.3中提到了sln的一组基{Ei,j}i,j=1,··· ,n
i ̸=j

∪ {Ei,i − Ei+1,i+1}i=1,··· ,n−1，
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21.3.1 半单Lie代数的结构

定义. 给定半单Lie代数g和子代数t.若t只含有ad半单的元素，则称t是环面子代数(toral subalgebra).

命题 21.9. 任意半单Lie代数都含有环面子代数.

定理 21.10. 半单Lie代数的环面子代数都是交换Lie代数.

定理 21.11. 极大环面子代数的中心是自身.
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22.1 Cartan子代数

我们的目的是寻找g的一个Abel子代数h，使得h在g上的作用类似于对角矩阵.它在下一节对半单Lie代数
的分类中起到了至关重要的作用.

定义. 设h是Lie代数g的子代数，子集

Ng(h) := {a ∈ g | [a, h] ⊆ h}

被称为h在g中的正规化子(normaliser).

h在g中的正规化子是g中满足h在其中是理想的最大的子代数.

引理 22.1. 设g是幂零Lie代数，h是其子Lie代数且h ⫋ g，则h ⫋ Ng(h).

证明. 由于g是幂零Lie代数，存在正整数n使得gn = 0.另一方面存在整数j使得gj ̸⫅ h（不妨取j = 0即得存在

性），且设j0是其中最大的一个，那么1 < j0 < n.但根据定义，[gj0 , h] ⊆ gj0+1 ⊆ h，于是gj0 ⊆ Ng(h)，这意味

着存在x ∈ gj0 ⊆ Ng(h)使得x ̸∈ h，进而h ⫋ Ng(h).

定义. 设h是Lie代数g的子代数，满足

1. h是幂零Lie代数，

2. h = Ng(h)，

则称h是g的Cartan子代数(Cartan subalgebra).

203
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命题 22.1. 对任意Lie代数g，它的Cartan子代数h是极大幂零子代数.

证明. 否则，假设存在比h更大的幂零子代数h′，那么根据引理22.1，h ⫋ Nh′(h)，这就与Cartan子代数中
的h = Ng(h) ⊇ Nh′(h)矛盾.

然而，并不是所有的极大幂零子代数都是Cartan子代数：

例 22.1. 取g = gln(F )，其中F是域且char F ̸= 2.取h := {nn + F · In}，即非严格上三角且对角线元素相同的
矩阵的全体.
注意到[bn, nn] ⊆ nn，于是bn ⊆ Ng(nn) ⊆ Ng(h)，因此h不是Cartan子代数.
同时c · In与任何矩阵交换，于是h ∼= nn ⊕F · In，这意味着h是幂零的，于是只需要证明h是极大的幂零子

代数.
反证法，假设存在幂零子代数k ⫌ h.首先注意到bn = Ng(h)，这是因为若X =

∑
i,j

ci,jEi,j ∈ Ng(h)且存

在i0 > j0使得ci0,j0 ̸= 0，于是Ej0,i0 ∈ h并且

[X,Ej0,i0 ] =
∑
i

ci,j0Ei,i0 −
∑
j

ci0,jEj0,j ,

注意到(i0, i0)和(j0, j0)项的值分别是ci0,j0和−ci0,j0，即[X,Ej0,i0 ] ̸∈ h. 于是根据引理22.1，h ⫋ Nk(h)，因

而k ⊇ Nk(h)包含了bn − h中的元素. 但是任意bn − h中的元素都至少有两个不相同的特征值，因此其中的元素

不是ad幂零的，这与Engel定理矛盾.

定理 22.2. 给定李代数g和根理想r，那么

1. g/r是半单的，且

2. 存在g的子李代数s使得g = s⊕ r.

事实上，投影s→ g/r是同构，于是g是一个半单李代数与一个可解理想的半直积，这称为Levi分解.

定义. 给定双线性形式B : g× g→ k，若满足

B([x, y], z) +B(y, [x, z]) = 0

对任意x, y, z ∈ g都成立，则称该双线性形式是不变的(invariant).

例 22.2. 定义双线性形式
K(x, y) := Tr(ad x ◦ ad y),

称其为Killing形式(Killing form)，它是一个不变双线性形.
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定理 22.3 (Cartan-Killing). 李代数g是半单的当且仅当它的Killing形式是非退化的.

定理 22.4. 给定半单李代数g及其理想a，那么a关于Killing形式的垂直空间b也是a的直和补，并且存在自

然的同构

g ∼= a× b.

推论 22.4.1. 任意半单李代数的子李代数、商李代数和乘积都是半单的.

定义. 给定李代数s，若s是非交换的且它的理想仅有0及其本身，则称s是单的(simple).

例 22.3. 任意给定维数不小于2的向量空间V，则sl(V )是单李代数.

定理 22.5. 李代数g是半单的当且仅当它是单李代数的乘积.

定义. 给定李代数g，若k线性映射D : g→ g满足

D([x, y]) = [D(x), y] + [x,D(y)]

对所有x, y ∈ g都成立，则称D是g的一个微分(derivation)，若存在z ∈ g使得D = adz，则称D是一个内微

分(inner derivation).

定理 22.6. 半单李代数的微分一定是内微分.

定义. 给定半单李代数g，x ∈ g，

1. 若adx是幂零的，则称x是幂零的，

2. 若adx是半单的，即对应的矩阵在k的代数闭包中可对角化，则称x是半单的.
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定理 22.7. 若g是半单李代数，那么任意元素x ∈ g都可以写成

x = s+ n

的形式，其中s是半单元素，n是幂零元素，且[s, n] = 0.特别地，若元素y ∈ g与x交换，则也与s和n交换.

定理 22.8. 给定半单李代数g的表示φ : g→ gl(V )，若x是幂零的，则φ(x)也是幂零的.

定理 22.9 (Weyl). 任意（有限维）的半单李代数表示都是完全可约的.

定理 22.10. 给定有限维R李代数g，那么g是交换的（对应地，幂零、可解、半单的）当且仅当gC :=

g⊗R C是交换的（对应地，幂零、可解、半单的）.

22.2 sl2

依照定义

sl2(C) :=

{(
a b

c d

)∣∣∣∣∣a+ d = 0

}
,

其中的Lie括号满足

[A,B] := AB −BA,

于是sl2自然有一组基

X =

(
0 1

0 0

)
, Y =

(
0 0

1 0

)
, H =

(
1 0

0 −1

)
,

且满足

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y.

显然元素H是半单的，并且它生成的子Lie代数

h := C ·H

是sl2中的Cartan子代数.
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定义. 给定sl2模V，对任意λ ∈ C，令

V λ := {v ∈ V | H · v = λv},

称V λ中的元素的权重(weight)是λ.

命题 22.11. 给定sl2模V，那么

1. 和
∑

λ∈C V
λ是直和，

2. 若元素x具有权重λ，则Xx具有权重λ− 2.

证明.

HXx = [H,X] +XHx = 2Xx+ λXx = (λ+ 2)Xx,

定义. 给定sl2模V和λ ∈ C，若元素e ∈ V具有权重λ且

Xe = 0,

则称e具有权重λ的原元素(primitive of weight λ).

命题 22.12. 给定sl2模V和λ ∈ C，元素e ∈ V是具有权重λ的原元素当且仅当e张成的直线在sl2的Borel群
作用下不变.

命题 22.13. 任意有限维sl2模V都有一个原元素.

习题 22.1. 考虑序列{Xx,X2x,X3, · · · }，证明其中最后一个非零元素是一个原元素.
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定理 22.14. 给定sl2模V和其中的原元素e，令en := Y ne
n!
, n ≥ 0且e−1 = 0，那么

Hen = (λ− 2n)en,

Y en = (n+ 1)en+1,

Xen = (λ− n+ 1)en−1

对任意的n ≥ 0都成立.

推论 22.14.1. 如定理条件，那么如下两种情况必有一成立且仅有一种成立

1. {en}n≥0是线性无关的，

2. e的权重λ是整数m，{e0, · · · , em}是线性无关的且ei = 0对任意i > m都成立.

推论 22.14.2. 若V是有限维sl2模，那么推论中的情形2成立，且{e0, · · · , em}张成了sl2不变的子模.

记{e0, · · · , em}张成的模为Wm.

定理 22.15. 1. Wm是不可约sl2模，

2. 所有的有限维sl2不可约模都同构于某个Wm.

22.3 复半单Lie代数的分类

定义. 给定x ∈ g，若对任意H ∈ h都有

H · x = adH(x) := [H,x] = α(H)x, (22.1)

其中α ∈ h∗，则称x具有权重(wieght)α，g的所有具有权重α的子集记为gα.

定理 22.16. 给定C上的半单Lie代数g，存在分解

g = h⊕
∑
α∈R

(22.2)

1. R是h∗的一个根系，称为g的根系，

2. gα

基本权(fundamental weight)
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22.4 复半单Lie代数的表示

定义. 给定半单Lie代数g模V，对任意λ ∈ h∗，令V λ是集合

V λ := {v ∈ V | H · v = λ(H)v},

称V λ中的元素具有权重(weight)是λ，称dimV是λ的重数(multiplicity).

命题 22.17. 1. 对任意α ∈ R, λ ∈ h∗，gαV λ ⊆ V α+λ.

2.

定义. 给定半单Lie代数g模V，v ∈ V且λ ∈ h∗.若

1. v ̸= 0且v有权重λ，

2. 对任意α ∈ R+，Xαv = 0，

则称v是具有权重λ的原元素(primitive element of weight λ).

定理 22.18. 给定g的不可约表示V，且v ∈ V是一个权重为λ的原元素.那么

1. v是V中（差一个数乘）唯一的原元素，它的权重被称为最高权(highest weight).

2. V包含的权重都有形式
ω = λ−

∑
miαi, mi ∈ N,

这些权重都是有限重数的，且λ的重数为1，

V =
∑

V ω.

3. 若
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