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第零章 从几何开始

练习 0.1. 设 I 是交换环 R 的理想，M 是 R 模，定义

ΓI(M) = {x ∈M | Inx = 0, ∃n ∈ N}.

求证：R 的两个理想 I, J 满足对任意 R 模 M，ΓI(M) = ΓJ(M) 当且仅当
√
I =

√
J .

ΓI(M) = lim
→

HomR(R/I
t,M).

证明. 必要性：令 M = R/I，于是 M = ΓI(M) = ΓJ(M)，即对任意 r ∈ R，Jnr ⊆ I. 取 r = 1 得到 Jn ⊆ I，
两边取根理想得到

√
J ⊆

√
I. 同理可得另一方向.

任取 x ∈ ΓI(M)，可知存在自然数 n 满足 Inx = 0. 又由于
√
I =

√
J，存在自然数 m 满足 Jm ⊆ I，于

是 Jmnx = 0，即 x ∈ ΓJ(M).

练习 0.2. 给定交换环 R 和 R 代数 A,B，I, J 分别是 A 和 B 的理想，求证

A/I ⊗R B/J ∼= A⊗R B/(I + J),

其中 I + J 表示 I ⊗R B 与 A⊗R J 在 A⊗R B 中生成的理想.

练习 0.3. 1. 设 k 是代数闭域，A,B 是 k 代数且都是整环，求证 A⊗k B 也是整环；

2. 求证 C⊗R C = C× C，因此当 k 是非代数闭时存在反例.

练习 0.4 (Bourbaki, Algebra, Chapter V, Section 15, Thm3). 设 k 是完全域，A,B 是约化 k 代数，求证
A⊗k B 也是约化的.

练习 0.5. 给定交换环 R，设 S 是 R 中所有以零因子为元素的理想的全体，即

S := {I ⊴ R | I仅包含零因子},

求证 S 包含极大元并且每个极大元都是素理想.

0.1 习题

练习 0.6. 设 k 是域，Mn(k) 是 n× n 以 k 为系数矩阵的全体，作为仿射空间 Mn(k) ∼= An2

k .

1. 证明 GLn(k) ⊆Mn(k) 是 Zariski 开的.

2. 根据上面的结论证明 GLn(k) 不是 Mn(k) 中的代数集.
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6 第零章 从几何开始

3. 证明 GLn(k) 是 An
2+1
k 中的代数集.

4. 当 k = C 时，证明
Un(C) := {A ∈Mn(C) | AA∗ = I}

不是 An2

C 中的代数集，但它是 A4n2

R 中的代数集.

练习 0.7. 求证 Mn(k) 中所有秩不大于给定整数 1 ≤ r ≤ n 的矩阵组成代数集，这个代数集称为行列式代数
簇 (determinantal variety).[考虑所有 (k + 1)× (k + 1) 子矩阵的行列式.]

练习 0.8. 证明若 k 是无限域，那么 I(Ank) = 0，并给出有限域结论不成立的反例.

练习 0.9. 求证 A2 的 Zariski 拓扑不同于 A× A 的乘积拓扑.[考虑对角线.]

练习 0.10. 1. 证明 Ank 中的代数集都是有限个超平面的交；

2. 证明 Ank 中的超平面的定义方程是某个不可约多项式的方幂.

3. 证明代数集上的 Zariski 拓扑是紧的.

练习 0.11. 证明 Ank 中的集合 D(f) := 是 An+1
k 中的代数集.

练习 0.12. 给定 Ank 中的不可约闭子集 C，记

Ui := {(a1, · · · , an) ∈ Ank | ai ̸= 0},

求证 C ∩ Ui 的闭包是 C.

证明. 反设 C ∩ Ui ⫋ C，则 C = C ∩ Ui ∪ (C − Ui ∩ C)，这与 C 是不可约的矛盾.

练习 0.13. 求证平面 A2
k 中的曲线具有余有限拓扑. 注意，这并不意味着平面曲线与 A1 同构.

证明. 设 C := V (p(x, y)) ⊆ A2 是曲线，其中 p(x, y) 是不可约理想，那么只要证明 C 中的任意闭集都是有限
的即可.
取 C 中的闭集 C ∩ V (f1, · · · , fn)，其中 f1, · · · , fn ∈ k[x, y]. 注意到 V (f1, · · · , fn) ⊆ V (fi)，因而只需要

证明 C ∩ V (fi) = V (p) ∩ V (fi) = V (p(x, y), fi(x, y)) 是有限集即可. 考虑

fi(x, y) = fi,0(x) + fi,1(x)y + · · ·+ fi,d(x)y
d,

作为 y 的多项式在 Frac(k[x]) 中有全部的解 g1(x), · · · , gd(x). 由于 g1(x), · · · , gd(x) 在 Frac(k[x]) 上是代数
的

练习 0.14. 证明仿射代数簇是 quasi-compact 的.

练习 0.15. 求证 k 代数 A 是 Ank 中某个代数集的坐标环当且仅当 A 是有限生成的代数且对任意 A 的非零元
素 a 都能找到 k 代数同态 φ : A→ k 使得 φ(a) ̸= 0.

练习 0.16. 证明仿射代数簇是有限维的.

练习 0.17. 设 f : V →W 是代数簇间的满态射，证明 dimV ≥ dimW，进而证明维数是代数簇的同构不变量.

练习 0.18. 设 f : V →W 是代数簇间的态射，证明 f 是 Zariski 连续的.

练习 0.19. 设 V 是代数闭域 k 上的代数簇，求证坐标环 k(V ) 是有限生成的约化环.
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练习 0.20. 求证态射

An+mk → Ank
(a1, · · · , an, b1, · · · , bm) 7→ (a1, · · · , an)

在定理？？下对应的环同态是
k[x1, · · · , xn] ↪→ k[x1, · · · , xn, y1, · · · , ym].

练习 0.21. 证明 Spec R 是 quasi-compact 的.

练习 0.22. 证明 Spec R 中的点 p 是闭的当且仅当 p 是极大理想.

练习 0.23. 考虑 Spec Z 中的点 (0)，证明它的闭包是 Spec Z.

练习 0.24. 设 F 是无限域. 借助 Zariski 拓扑证明 Cayley-Hamilton 定理.

证明. 任取矩阵 A ∈Mn(F )，设 χA(x) 是 A 的特征矩阵，那么

χA : An
2

F → An
2

F

是 Zariski 连续的. 如果我们能证明可对角化的矩阵是稠密的，那么注意到可对角化的矩阵一定是 χA(x) 的零
点，那么 χA(x) 的零点就必然是全体 An2

F ，即为要证.
于是只要证可对角化的矩阵是稠密的，而这个可由具有 n 个不同特征值的矩阵稠密导出. 我们将任意矩

阵视为 F [x1, · · · , xn2 ] 中的元素，因而 χB(x) ∈ F [x1, · · · , xn2 ][x]，这个多项式是 n 次的且有 n 个不同根（特
征值）. 于是 χB(x) 的判别式

练习 0.25. 求证正文中的定义给出了 Pnk 的拓扑，并证明在该拓扑下 Pnk 的子集 Z 是闭集当且仅当对每个
0 ≤ i ≤ n，Z ∩ Ui 是 Ui 中的闭集.

练习 0.26. 设 R 是交换环，A 是 R 代数，那么 A 是有限展示的当且仅当对任意 R 代数的可滤 (filtered) 余
极限 B = colimi∈IBi，都有同态

colimi∈I HomR(A,Bi) ∼= HomR(A,B).

练习 0.27. 给定交换环 R 和有限展示 R 模 M，若 I 是内射 R 模则对任意 R 模 N

M ⊗R HomR(N, I) ∼= HomR(HomR(M,N), I).

证明. 给定正合列
K → F →M → 0,

其中 K,F 都是自由模，由于 M 是有限展示的，因此可以假设 K,F 是有限生成的. 于是我们得到了正合列

0 → HomR(M,N) → HomR(F,N) → HomR(K,N).

又由于 I 是内射模，因而

HomR(HomR(K,N), I) → HomR(HomR(F,N), I) → HomR(HomR(M,N), I) → 0

是正合列. 另一方面，根据 M 的生成序列存在正合列

K ⊗R HomR(N, I) → F ⊗R HomR(N, I) →M ⊗R HomR(N, I) → 0,
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定义

η : HomR(HomR(−, N), I) ⇒ −⊗R HomR(N, I)

ηT : HomR(HomR(T,N), I) → T ⊗R HomR(N, I)

f 7→

是自然变换，于是有交换图

HomR(HomR(K,N), I) HomR(HomR(F,N), I) HomR(HomR(M,N), I) 0

K ⊗R HomR(N, I) F ⊗R HomR(N, I) M ⊗R HomR(N, I) 0,

ηK

ηF

根据之前的习题，ηK , ηF 是同构，因而由五引理得到了所需的同构.

练习 0.28. 给定交换 Noether 环 R 和有限生成平坦 R 模 P，求证 P 是投射模.

证明. 任意给定 R 模满态射 f :M → N，只要证明

HomR(P,M) → HomR(P,N)

是满射即可. 任取内射模 I，于是存在正合列

0 → HomR(N, I) → HomR(M, I),

由于 P 平坦，于是
0 → P ⊗R HomR(N, I) → P ⊗R HomR(M, I)

也正合. 由于 P 是有限生成的，故 P 是有限展示的，由习题0.27

0 → HomR(HomR(P,N), I) → HomR(HomR(P,M), I)

是正合的，根据 I 的内射性
HomR(P,M) → HomR(P,N) → 0

也是正合的.

练习 0.29. 给定交换环 R 和它的理想 I, J，定义 I 关于 J 的理想商 (I : J) 是

(I : J) := {r ∈ R | rJ ⊆ I}.

求证

1. (I : J) 是 R 中的理想，且理想 K 被 (I : J) 包含当且仅当 KJ ⊆ I，

2. 存在自然的 R 模同构
(I : J) = AnnR(I + J/I),

3. (I : J +K) = (I : J) ∩ (I : K)，

4. (I ∩ J : K) = (I : K) ∩ (J : K)，
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5. 若 R 还是整环，
(I : (r)) =

1

r
(I ∩ (r)).

称 (I : J∞) :=
∪
n≥1(I : Jn) 为 I 关于 J 的饱和理想 (saturation). 求证在 Spec R 中，

V ((I : J∞)) = V (I)− V (J).
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第一章 链条件

1.1 生成条件

命题 1.1 (Nakayama).

1.2 分次环

设 S 是一个分次环，那么由齐次元素生成的理想 I 成为齐次理想 (homogeneous ideal).
分次环 S 中的理想 I 是齐次理想当且仅当

I =
⊕
n∈N

I ∩ Sn.

练习 1.1. 设 M 是分次环 S 上的分次模，m ∈M 是齐次元素，求证 Ann m 是 S 中的齐次理想.

练习 1.2. 交换环 R 是 Noether 环当且仅当任意内射 R 模的直和是内射的.

证明. 设 {Iλ}λ∈Λ 是一族给定的内射 R 模，只要验证对任意的理想 J 和 R 模态射 f : J → I :=
⊕

λ∈Λ Iλ 都
可以提升为 f̃ : R → I.R 是 Noether 环意味着 J 是有限生成的，记生成元为 a1, · · · , an，同时 f(ai) 仅在有
限多个 Iλ 中不为 0，于是存在 Λ 的有限子集 Λ0 使得 f 沿 ι :

⊕
λ∈Λ Iλ ↪→ I 有分解. 但是每个 Iλ 都是内射

的，故 J → Iλ 有提升 R→ Iλ，这给出了 R→
⊕

λ∈Λ Iλ，因而有提升 f̃ : R→ I.
另一方面，假设 R 不是 Noether 环，因此有严格的升链

J1 ⫋ J2 ⫋ · · · Jn ⫋ · · · ,

令 J :=
∪
n∈N∗ Jn，取 In 是包含 J/Jn 的内射模，I :=

⊕
n∈N∗ In，那么存在自然的同态

f : J → I =
⊕
n∈N∗

In.

若 I 是内射模，则 f 可以扩张为 f̃ : R → I，使得 ∀a ∈ J，f(a) = f̃(a) = af̃(1). 设 f̃(1) = {xn}n∈N∗，并找
一个整数 N 使得 a /∈ JN，注意到 0 ̸= ā ∈ J/JN，

定理 1.2. 设 S 是分次环，I 是齐次理想且集合 A = {aλ}λ∈Λ 是 I 的一组齐次生成元，f ∈ S 齐次且 f 阶为
1，那么

(I[f−1]) ∩ S[f−1]0

11
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可以由

Af =

{
aλ

fdeg aλ

}
λ∈Λ

生成.

证明.

练习 1.3. 设 R是交换环，若它的理想 I 满足对任意理想 J1, J2 只要 I = J1∩J2 那么要么 I = J1 要么 I = J2，
则称 I 是不可约理想 (irreducible ideal). 求证若 I 是 R 的不可约理想，那么 IR[x] 是 R[x] 中的不可约理想.

证明. 假设 I = (0)，那么只需要证明若理想 J1, J2 满足 J1 ∩ J2 = (0)，取 f ∈ J1, g ∈ J2，这样 (f)∩ (g) = 0.
记

f = xd

(
n∑
i=0

aix
i

)
, g = xe

(
m∑
j=0

bjx
j

)
,

满足 a0, b0 ̸= 0，且 f, g 取得使得 m + n 最小. 如果令 h =
∑n

i=0 aix
i, k =

∑m
j=0 bjx

j，那么显然 (f) ⊆
(h), (g) ⊆ (k)，于是 (h) ∩ (k) = 0 意味着 (f) ∩ (g) = 0. 反过来若 (h) ∩ (k) ̸= 0，那么 0 ̸= xd+e((h) ∩ (k)) =

(xd+eh) ∩ (xd+ek) = (xef) ∩ (xdg)，注意到 (xef) ⊆ (f) 且 (xdg) ⊆ (g)，于是 (f) ∩ (g) ̸= 0，这意味着
(f) ∩ (g) = 0 当且仅当 (h) ∩ (k) = 0. 这样可以直接假设

f =
n∑
i=0

aix
i, g =

m∑
j=0

bjx
j .

若 m+ n = 0，那么 f, g ∈ R，于是直接由假设 (0) 是 R 中的不可约理想得证，因此 m+ n > 0，不妨设
m ≥ n 且 m > 0. 这样，R 中的理想 (a0) ∩ (b0) ̸= 0，否则与 (0) 在 R 中是不可约的矛盾. 取 c ∈ (a0) ∩ (b0)，
那么存在 r, s 使得 ra0 = c = sb0. 用 rf, sg 代替 f, g，那么可以假设 f, g 有相同的非零常数项.

若 t ∈ R 满足 ta0 = 0，且 tf ̸= 0，那么 (tf) ∩ (g) ⊆ (f) ∩ (g) = 0，但此时 ta0 = 0 意味着 x | tf，之
前的讨论说明存在多项式 h(x) = f(x)

x
满足 degh < deg f 和 (h) ∩ (g) = 0，这与 m+ n 是最小的矛盾，于是

tf = 0. 同理，tg = 0. 用与刚才相同的方法可以证明若 h(x) =
∑l

i=0 cix
i 使得 h(x)f(x) = 0，那么 cif(x) = 0.

于是多项式 h(x) 满足 hf = 0 当且仅当 hg = 0.
由于按假设 f, g 有相同的常数项故存在常数项非零的多项式 k(x)使得 g−f = xlk.根据 m+n的极小性，

(f)∩(k) ̸= 0，于是存在多项式 u, v使得 uf = vk ̸= 0，这样 xluf = v(g−f).同时 vg = (v+xlu)f ∈ (f)∩(g) = 0，
这由前一段说明 vf = 0，xluf = v(g − f) = 0，这样 uf = 0，矛盾.

练习 1.4 (Artin-Tate lemma).

1.3 有限性

定理 1.3 (Hilbert 基定理). 给定 Noether 环 R，那么多项式环 R[x] 也是 Noether 的.

证明. 设 I 是 R[x]的一个理想，L是 I 的元素的首项系数全体组成的集合（即 L := {an | f(x) =
∑n

i=0 aix
i ∈

I}），首先 L 是 R 的一个理想
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由于 R 是 Noether 的，L 是有限生成的，记 L = ⟨c1, · · · , cm⟩，其中 fi(x) =
∑di

j=0 ai,jx
j 是以 ci 为首项

系数的多项式，N := max{d1, · · · , dm}.
对任意的 d ∈ {0, · · · , N − 1}，令 Ld 是 I 中 d 阶多项式的首项系数的全体组成的集合，与前面讨论相同

的证明，Ld 也是 R 中的一个理想，再次根据 R 是 Noether 的，Ld 是有限生成的，记 Ld = ⟨b1,d, · · · , bmd,d⟩，
其中 fi,d(x) =

∑d
j=0 ai,d,jx

j 是以 bi,d 为首项系数的多项式.
接下来只要证明

I = ⟨{f1, · · · , fm} ∪ {fi,d | 0 ≤ d < N, 1 ≤ i ≤ md}⟩

即可.

练习 1.5. 设 R 是 Noether 环，求证下列等价：

1. R 是 Artin 环；

2. R 中只有有限多个素理想，且

3. R 中只有有限多个素理想.

练习 1.6. 设 k 是域且 R 是 Noether 的 k 代数，求证下列等价：

1. R 是 Artin 环；

2. R 是有限 k 代数.

练习 1.7. 设 φ : R→ S 是有限型的环同态，p是 R的任意极小理想，且 S 中只有有限多个 q使得 φ−1(q) = p.
求证存在 f ∈ R− p 使得 Sf 是有限生成的 Rf 模.

练习 1.8. 设 k 是域且 I 是环 k[x1, · · · , xn] 中由集合 S（可能是无限的）生成的理想，那么存在 S 中的有限
多个元素生成 I.
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第二章 局部化

2.1 应用

定理 2.1 (0AFU, Nagata 分解判别法). 给定整环 R，U 是 R 中由素元素生成的乘法闭集，x 是不可约
元，那么

1. x 在 R[U−1] 中的像是不可约元或可逆元，

2. x 是素元素当且仅当 x 在 R[U−1] 中的像是素元素或可逆元，

此外，R 是唯一分解整环当且仅当 R 中的每个元素都有到不可约元的分解，且 R[U−1] 是唯一分解整环.

推论 2.1.1. 设 k 是域，那么 k[a, b, c, d]/(ad− bc− 1) 是唯一分解整环.

证明. 根据习题？？？，k[a, b, c, d]/(ad−bc−1)是整环，并且 k[a, b, c, d]/(ad−bc−1)/(a) ∼= k[c, c−1][d], k[a, b, c, d]/(ad−
bc− 1)[a−1] ∼= k[a, a−1, c, d]，这意味着 k[a, b, c, d]/(ad− bc− 1)[a−1] 是唯一分解整环.

练习 2.1. 设交换环 R 的零理想是有限多个极小素理想的交，即 (0) =
∩n
i=1 pi，设 U 是所有不被 pi 包含的元

素的全体，证明 R[U−1] =
∏n
i=1 Frac(R/pi).

证明. 由 pi 的极小性，mi := R[U−1]pi, i = 1, · · · , n 是 R[U−1] 中仅有的素理想，并且 mi ∩R = pi.

练习 2.2. 证明局部化和取幂零理想可交换.

练习 2.3. 设 M 是一个有限表现的 R 模，A 是一个平坦 R 代数，那么对任意 R 模 N，有 A 模的同构

HomR(M,N)⊗R A ∼= HomA(M ⊗R A,N ⊗R A).

练习 2.4. 设 p 是 R 的素理想，φ : R→ S 是给定的环同态. 求证 Sp/pSp 中的素理想一一对应于 S 中在 φ 的
拉回下是 p 的素理想.

证明. 设 q 满足 φ−1(q) = p，于是首先 φ(R− p) ∩ q = ∅，这是因为若存在 a ∈ R− p 使得 φ(a) ∈ q，按定义
φ−1(q) = {r ∈ R | φ(r) ∈ q}，于是 a ∈ p = φ−1(q)，矛盾. 这样根据局部化的一一理想对应，Sp 中包含对应
于 q 的理想，记为 qSp.

15
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其次若 φ−1(q) = p，那么 φ(p) ⊆ q，于是 qSp ⊇ pSp = φ(p)Sp，这意味着商环的理想一一对应给出了 q

在 Sp/pSp 的理想，这给出了单射

{S中满足φ−1(q) = p的素理想} → {Sp/pSp中的素理想},

于是只要证明 Sp/pSp 的素理想必然满足 φ−1(q) = p.
由于局部化和取商的素理想对应，我们只需要证明不满足 φ−1(q) = p 的 S 中的理想 qp 要么被 pSp 包

含，要么与 φ(R− p) 的交不空. 如果 φ−1(q) ̸= p，要么存在 a ∈ φ−1(q)− p，此时 φ(a) ∈ q∩φ(R− p)；要么
φ−1(q) ⊆ p，于是 q ⊆ pS，进而 qp ⊆ pSp. 这样就完成了对应的证明.

练习 2.5. 设素理想 p 是交换环 R 的任意极小理想，求证 Rp 中极大理想的元素都是幂零的，由此证明 p 中
的非零元素都是零因子.

证明. 根据定理，Rp 中的素理想一一对应于 R 中 p 包含的素理想，但是 p 的极小性说明 pp 是 Rp 中的唯一
素理想，因此 pp 既是 Rp 中的极大素理想也是极小素理想，根据 pp 中仅包含幂零元素，这证明了前半部分.
对于任意的 0 ̸= a ∈ p，a

1
是 Rp 中的幂零元素，于是存在 u ∈ R− p 使得 uan = 0，这意味着 a 是零因子.



第三章 准素分解

在
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第四章 完备性

4.1 反向极限

定义. 设 R 是 Abel 群，R = I0 ⊇ I1 ⊇ · · · ⊇ In · · · 是子群序列（递降滤子），称

R̂ = lim
←

:= {f = (f1, f2, · · · ) ∈
∏
n∈N∗

R/In | fm ∼= fn (mod In)∀m > n}

为 R 关于 In 的完备化 (completion). 若 R 还是一个环，且每个 In 是理想，那么 R̂ 也是一个环.

19
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第五章 平坦性

定义. 给定交换环 R 和 R 模 M，若函子

−⊗RM : R− Mod → R− Mod

是正合函子，那么称 M 是平坦 (flat)R 模.

练习 5.1. 设 R 是约化环 (reduced ring)，M 是局部有限展示的 R 模，若函数

rank : Spec R→ Z

p 7→ dimκ(p)M ⊗R κ(p)

是局部常值函数，则 M 是平坦模.

证明. 任取 R 中的素理想 p，且假设存在一个 R 的表现

Rn
A−→ Rm →M → 0,

满足 A ∈Mm×n(R). 任取 R 中的素理想 p，那么

κ(p)n
A⊗Rκ(p)−−−−−→ κ(p)m →M ⊗R κ(p) → 0

是正合的. 我们断言，可以取 m = dimκ(p)M ⊗R κ(p) 使得 Rm →M 是满射.

练习 5.2. 给定交换环 R 和 f(x) ∈ R[x]，求证 R→ R[x]/(f(x)) 是平坦的当且仅当 f(x) 是首一的.

定义. 设 M 是平坦 R 模，若 M 满足 M ⊗R N = 0 意味着 N = 0，则称 M 是忠实平坦的 (faithfully
flat).

练习 5.3. 设 M 是平坦 R 模，求证 M 是忠实平坦的当且仅当对任意 p ∈ Spec R，M ⊗R κ(p) ̸= 0.

证明. 一方面这是显然的
另一方面这是向量空间

21
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练习 5.4. 设 φ : R→ S 是环同态，S 是平坦 R 模，求证 S 是忠实平坦的当且仅当 φ : R→ S 是平坦的，且
诱导的 Spec S → Spec R 是满射.

证明. 一方面，若 S 是忠实平坦的，那么对任意 p ∈ Spec R，根据习题2.4作为集合 f−1(p) = Spec(Sp/pSp)，
这样只要说明 Spec(Sp/pSp) 非空即可，这等价于 Sp/pSp ̸= 0. 由于 p 是给定的素理想，Rp/pRp 非 0，因此
由忠实平坦性，Sp/pSp

∼= (Rp/pRp)⊗R S ̸= 0.
另一方面，假设 Spec S → Spec R 是满射，

练习 5.5. 证明如下下降性质：设 R→ S 是满忠实的环同态，

1. 若 S 是 Noether 的，那 R 也是 Noether 的；

2. 若 S 是约化的，那 R 也是约化的；

3. 若 S 是正规的，那 R 也是正规的；

4. 若 S 是正则的，那 R 也是正则的.

证明.



第六章 Gröbner 基

首先我们回顾 Hilbert 基定理的证明. 证明中对首项系数的选取起到了很重要的作用，而事实上在这个过
程中，我们按照多项式的阶数给定了一个排序.一个多元多项式 f ∈ R[x1, · · · , xn]可以看成系数在R[x2, · · · , xn]
中的单元多项式，以此类推，R[x2, · · · , xn] 中的多项式可以视为系数在 R[x3, · · · , xn] 中的单元多项式等等，
这实际上给了 R[x1, · · · , xn] 中所有单项式一个排序，我们称为字典序 (lexicographic ordering)，即单项式
Axa11 · · ·xann 大于单项式 Bxb11 · · ·xbnn 当且仅当存在 1 ≤ k ≤ n，满足 1 ≤ i ≤ k 时 ai = bi，且 ak > bk.

定义. 给定交换环 R，R[x1, · · · , xn] 上的单项序 (monomial ordering) 是定义在 R[x1, · · · , xn] 中所有单
项式上的一个（全）序关系 ≥，使得若单项式满足 m1 ≥ m2，那么对任意单项式 m，mm1 ≥ mm2.

定义. 给定交换环 R 和多项式环 R[x1, · · · , xn] 上的单项序 ≥，

1.

2. 给定 R[x1, · · · , xn] 中的理想 I，I 的首项系数理想 (ideal of leading terms)LT (I) 是 I 的所有首项
系数生成的（R[x1, · · · , xn] 中的）理想，即

LT (I) := ⟨LT (f) | f ∈ I⟩.

例 6.1. 给定域 F，考虑 F [x, y]上的字典序 x > y，取多项式 f1(x, y) = x3y−xy2+1和 f2(x, y) = x2y2−y3−1，
那么由定义 LT (f1) = x3y, LT (f2) = x2y2. 根据之前的讨论，(x3y, x2y2) ⊆ LT ((f1, f2))；但另一方面，

yf1 − xf2 = y(x3y − xy2 + 1)− x(x2y2 − y3 − 1) = x+ y,

此时 yf1 − xf2 ∈ (f1, f2) 但 LT (yf1 − xf2) = x /∈ (LT (f1), LT (f2)). 事实上，LT ((f1, f2)) = (x, y4).
若考虑 F [x, y]的字典序 x < y，取同样的多项式多项式 f1(x, y) = x3y−xy2+1和 f2(x, y) = x2y2−y3−1，

那么由定义 LT (f1) = −y2x, LT (f2) = −y3，之后我们会证明 LT (I) = (x4, y)，并且这也说明了不同的单项序
给出不同的首项系数理想.

考虑只有一个变元的多项式环 R = F [x]，多项式除法使得对任意 f(x), g(x) ∈ F [x]，算法给出 q(x), r(x) ∈
F [x] 满足

f(x) = g(x)q(x) + r(x),

23



24 第六章 GRÖBNER 基

且 deg r(x) < deg g(x)，此时 f(x) ∈ (g(x)) 当且仅当 r(x) = 0. 但当多项式环有多于一个的变元时，命题便不
再成立，即使单项序使得我们有多项式阶数的推广——如同上面例6.1的讨论，首项的计算说明“g = yf1−xf2
不是 (f1, f2) 中的元素”，但这显然不正确，究其原因是 (LT (f1), LT (f2)) ⫋ LT ((f1, f2)).

定义. 给定域 F 和多项式环 F [x1, · · · , xn]上的单项序 ≥，理想 I ⊆ F [x1, · · · , xn]的 Gröbner基 (Gröbner
basis) 是 I 的一组生成元 {g1, · · · , gm} 使得 I 的首项系数理想由这组生成元的首项系数生成，即

I = (g1, · · · , gm), LT (I) = (LT (g1), · · · , LT (gm)).

练习 6.1. 设 {g1, · · · , gr} 是给定单项序 ≥x 的多项式环 F [x1, · · · , xn] 理想 I 的 Gröbner 基（≥x 中的下标 x

为了与后面的做区别），考虑多项式环 F [x1, · · · , xn, y1, · · · , ym] 上的单项序 ≥，满足以 x1, · · · , xn 为未定元
的单项式

m1(x1, · · · , xn) ≥ m2(x1, · · · , xn)

当且仅当在 F [x1, · · · , xn] 中 m1(x1, · · · , xn) ≥x m2(x1, · · · , xn)，并且任意以 y1, · · · , ym 为未定元的单项式
my(y1, · · · , ym) 满足 mx ≥ my，其中 mx(x1, · · · , xn) 是仅关于 x1, · · · , xn 的多项式（这样 ≥ 可以看作嵌入
F [x1, · · · , xn] ↪→ F [x1, · · · , xn, y1, · · · , ym]之后的扩张）.求证 {g1, · · · , gr}是多项式环 F [x1, · · · , xn, y1, · · · , ym]
理想多项式环 I · F [x1, · · · , xn, y1, · · · , ym] 的 Grb̈ner 基.

证明. 按定义，LT (g1), · · · , LT (gr) 生成了 LT (I)，那么

LT (I) · F [x1, · · · , xn, y1, · · · , ym] ∼= LT (I · F [x1, · · · , xn, y1, · · · , ym])

需要注意一点，Gröbner 基并不是线性代数意义下向量空间的一组基，它是环 F [x1, · · · , xn] 中理想 I 的
一组（作为理想的）生成元，并且不具有线性表达的唯一性. 但是，事实上给定 Gröbner 基，有（在定理6.1中
描述的）带余除法的唯一性，而这恰是对应到单变元多项式的我们希望的性质，也就说明了 Gröbner 基在这
种意义下是 F [x] 主理想整环性质的推广.
模仿 F [x] 中带余除法，给定 F [x1, · · · , xn] 上的一个单项序 ≥ 和非零元素 {g1, · · · , gm}，任取 f ∈

F [x1, · · · , xn]，假定存在商 q1, · · · , qm ∈ F [x1, · · · , xn] 和余数 r ∈ F [x1, · · · , xn] 满足

f = q1g1 + · · ·+ qmgm + r,

（初始值可以取 q1 = · · · = qm = 0, r = f）那么如下步骤可以递推地给出 f 关于 q1, · · · , qm 的带余除法：

1. 若存在 i 使得 LT (f) 被 LT (gi) 整除，即 LT (f) = aiLT (gi)，那么做替代 qi := qi + ai 和 f := f − aigi，
并重复该过程，

2. 若 LT (f) 不被任意 LT (g1), · · · , LT (gm) 整除，那么做替代 r := r + LT (f), f := f − LT (f).

当经过迭代后 f 成为 0，我们终止这个过程，如上所给的算法称为一般多项式除法 (general polynomial divi-
sion)，最终它给出

f = q1g1 + · · ·+ qmgm + r,

满足 qigi ≤ f 对任意 i 成立，且不存在 gi 使得 LT (gi) | r.
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例 6.2. 给定 F [x, y] 并取上面的字典序 x > y，

1. 令 f(x, y) = x3y3 + 3x2y4, g(x, y) = xy4，此时 f 的首项是 x3y3，它不能被 xy4 整除，于是 x3y3 需要
被加到余数 r 中并且 f 要被 f − LT (f) = 3x2y4 代替，再次做相同的计算得到 3x2y4

xy4
= 3x，此时将 3x

加到商 q 当中，并且 3x2y4 − 3xLT (g) = 0，因此得到了

x3y3 + 3x2y4 = f(x, y) = q(x, y)g(x, y) + r(x+ y) = (3x)(xy4) + x3y3.

2. 若考虑 f(x, y) = x2 + x − y2 + y 和 g1(x, y) = xy + 1, g2(x, y) = x + y，在第一次取商和余数的时候，
LT (f) = x2 因此不能被 LT (g1) = xy 整除但可以被 LT (g2) = x 整除，商是 x，因此用 f − xg2 =

−xy + x − y2 + y 代替 f 后进行第二次循环；这时首项系数可以被 LT (g1) = xy 整除，商是 −1，再
用 (−xy + x − y2 + y) − (−1)g1 = x − y2 + y + 1 代替 f − xg2 后进行第三次循环；这时首项系数不能
被 LT (g1) = xy 整除但可以被 LT (g2) = x 整除，商是 1，用 x − y2 + y + 1 − g1 = −y2 + 1 代替后
进行第四次循环. 但是，−y2 + 1 中每一项都不能被任意首项整除，循环结束，最终的结果是 q1(x, y) =

−1, q2(x, y) = x+ 1, r = −y2 + 1，即

f(x, y) = x2 + x− y2 + y = (−1)(xy + 1) + (x+ 1)(x+ y) + (−y2 + 1).

3. 同样考虑 f(x, y) = x2 + x− y2 + y 和 g2(x, y) = xy + 1, g1(x, y) = x+ y（与前一部分相比交换了顺序），
那么计算可得 q1(x, y) = x− y + 1, q2(x, y) = 0, r = 0.

在一般除法的描述和例子中，商与余数的结果是与 {g1, · · · , gm} 的选取顺序有关，但是，如下的定理说
明当生成元选取得当时，所得到的结果是唯一的，这也是我们考虑 Gröbner 基的原因.

定理 6.1. 给定 R = F [x1, · · · , xn] 上的一个单项序 ≥，且 {g1, · · · , gm} 是非零理想 I 的一组 Gröbner
基，那么

1. 任意多项式 f(x) ∈ R 可以唯一地写成
f = fI + r

的形式，其中 fI ∈ I 且余数 r 的任意单项都不可以被首项系数 LT (g1), · · · , LT (gm) 整除.

2. fI 和 r 都可以用多项式带余除法来计算，且与 {g1, · · · , gm} 的选取顺序无关.

3. 余数 r 给出了 R/I 中的唯一代表元，特别地 f ∈ I 当且仅当 r = 0.

证明. 1.设 fI =
∑m

i=1 qigi 是 f 的多项式带余除法中 {g1, · · · , gm}所给出的项，因此这给出了分解 f = fI+r.
假设存在两个分解 f = fI,1 + r1 = fI,2 + r2，那么 r1 − r2 = fI,2 − fI,1 ∈ I，由于 {g1, · · · , gm} 是 I 的一
组 Gröbner 基，因此 LT (r1 − r2) = LT (fI,2 − fI,1) 是 LT (I) = (LT (g1), · · · , LT (gm)) 中的元素，这意
味着 r1 − r2 是 LT (g1), · · · , LT (gm) 的线性组合，但按多项式带余除法的构造，r1, r2 中的任意单项式不能
被 LT (g1), · · · , LT (gm) 整除（这只对多项式环成立），因此若 r1 − r2 非零那么其中的任意单项式也不能被
LT (g1), · · · , LT (gm) 整除，这意味着 r1 − r2 = 0，即分解是唯一的.

2. 之前我们已经证明了多项式带余除法可以求得分解 f = fI + r，并且这样的分解是唯一的，因此与
{g1, · · · , gm} 中的顺序无关.
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3. 这是第一部分的直接推论.

命题 6.2. 给定多项式环 R = F [x1, · · · , xn] 上的单项序 ≥，I 是 R 的非零理想，那么

1. 若 I 中的元素 g1, · · · , gm 满足 LT (I) = (LT (g1), · · · , LT (gm))，那么 {g1, · · · , gm} 是 I 的 Gröbner
基，

2. 理想 I 有 Gröbner 基.

证明. 1. 与定义相比我们只需要证明 {g1, · · · , gm} 生成了 I 即可. 设 f ∈ I 是多项式且有带余除法

f = q1g1 + · · ·+ qmgm + r,

使得余数 r 的任意单项都不可以被首项系数 LT (g1), · · · , LT (gm) 整除. 由于 f ∈ I，余数 r ∈ I，这意味着
LT (r) ∈ LT (I)，但这样必然存在 LT (g1), · · · , LT (gm) 中的某个首项系数整除 LT (r)，在 r ≠ 0 时产生矛盾，
因此 r = 0，即 f = q1g1 + · · ·+ qmgm. 由于 f 是任意取的，因此这说明了 {g1, · · · , gm} 生成 I.

2. 根据习题1.8，

命题6.2说明了 F [x1, · · · , xn] 上的 Gröbner 基一定是存在的，接下来我们考虑对于任意给定的 I 的一组
生成元，如何检验这是否是 Gröbner 基.
事实上，这样的想法是简单的，例如在例6.1中，yf1−xf2 是使得 (LT (f1), LT (f2)) ⫋ LT ((f1, f2))的（一

个）原因，同时 LT (I) 中的其他元素都是 I 中生成元取线性组合后消掉首项系数得到的，那么这也应当是使
得一组基不能成为 Gröbner 基的唯一障碍.
对任意的 f1, f2 ∈ F [x1, · · · , xn]，取 M = l.c.m.(LT (f1), LT (f2)) 和

S(f1, f2) :=
M

LT (f1)
f1 −

M

LT (f2)
f2.

引理 6.1. 设 f1, · · · , fm ∈ F [x1, · · · , xn] 是给定的多项式，且它们的多项阶数都是 α，线性组合

h = a1f1 + · · ·+ amfm

满足 ai ∈ F 对所有 1 ≤ i ≤ m 成立，且 h 的多项阶数严格小于 α，那么存在 bi ∈ F 使得

h =
m∑
i=2

biS(fi−1, fi).

证明. 令 ci 是 fi 的首项系数，且令 gi :=
fi
ci
，1 ≤ i ≤ m. 于是

h =
m∑
i=1

aicigi

= a1c1(g1 − g2) + (a1c1 + a2c2)(g2 − g3) + · · ·+ (a1c1 + · · ·+ am−1cm−1)(gm−1 − gm)

+ (a1c1 + · · ·+ amcm)gm,
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注意到 gi−1 − gi = S(fi−1, fi)，并且每个 gi−1 − gi 的多项式系数都严格小于 α，h 的多项阶数严格小于 α 意
味着只有 a1c1 + · · ·+ amcm 才可能，这样引理成立.

给定多项式环 R = F [x1, · · · , xn] 中的子集 G = {g1, · · · , gm}，若 f(x) ∈= F [x1, · · · , xn] 关于 G（在如
上给定的顺序）的多项式带余除法的余数是 r(x)，也记

f(x) ≡ r(x) (mod G).

命题 6.3 (Buchberger). 给定多项式环 R = F [x1, · · · , xn] 上的单项序 ≥，I = (g1, · · · , gm) 是 R 的理想，
那么 G = {g1, · · · , gm} 是 I 的 Gröbner 基当且仅当对任意的 1 ≤ i < j ≤ m，

S(gi, gj) ≡ 0 (mod G).

证明. 一方面，若 G 是 I 的 Gröbner 基，那么 S(gi, gj) 是 I 中的元素，根据定理6.1，S(gi, gj) ≡ 0 (mod G).
反过来，取任意 f(x) ∈ I，根据命题6.2只需要证明 LT (f) ∈ (LT (g1), · · · , LT (gm)). 记

f(x) =
m∑
i=1

hi(x)gi(x),

注意到这样的表示并不唯一，因此选取所有这样的表示中使得 hi(x)gi(x) 的多项式阶数（i = 1, · · · ,m）的最
大值，即 max{deghi(x)gi(x)}i=1,··· ,m 最小的表示. 记 α = deghi(x)gi(x)，那么 deg f(x) ≤ α，于是

f(x) =
m∑
i=1

hi(x)gi(x) =
∑

deg(fi(x)gi(x))=α

hi(x)gi(x) +
∑

deg(fi(x)gi(x))<α

hi(x)gi(x)

=
∑

deg(fi(x)gi(x))=α

LT (hi(x))gi(x)

+
∑

deg(fi(x)gi(x))=α

(hi(x)− LT (hi(x))gi(x) +
∑

deg(fi(x)gi(x))<α

hi(x)gi(x),

这其中第一项求和的阶数不大于 α，剩余两项求和的阶数都严格小于 α.
假定 deg f < α，那么第一项求和

∑
deg(fi(x)gi(x))=α LT (hi(x))gi(x) 的阶数必然也严格小于 α，取 ai ∈ F

满足 hi(x) = aiki(x)，使得 ki(x) 是首一的多项式（1 ≤ i ≤ m），于是引理6.1说明∑
deg(fi(x)gi(x))=α

aiLT (ki(x))gi(x) =
∑

deg(kij (x)gij (x))=α

bijS(LT (kij−1
(x))gij−1

(x), LT (kij (x))gij (x)), (6.1)

其中 deg kij−1
(x)gij−1

(x) = deg kij (x)gij (x) = α. 令 βij−1,ij 是 LT (gij−1
(x)) 和 LT (gij (x)) 最大公约数的单项

式阶数，那么直接根据定义

S(LT (kij−1
(x))gij−1

(x), LT (kij (x))gij (x)) =
l.c.m.(LT (LT (kij−1

(x))gij−1
(x)), LT (LT (kij (x))gij (x)))

LT (LT (kij−1
(x))gij−1

(x))
LT (kij−1

(x))gij−1
(x)

−
l.c.m.(LT (LT (kij−1

(x))gij−1
(x)), LT (LT (kij (x))gij (x)))

LT (LT (kij (x))gij (x))
LT (kij (x))gij (x)

=
xα

xα
LT (kij−1

(x))gij−1
(x)− xα

xα
LT (kij (x))gij (x)

= xα−βij−1,ijS(gij−1
(x), gij (x)).



28 第六章 GRÖBNER 基

但是根据假设 S(gij−1
(x), gij (x)) ≡ 0 (mod G)，这意味着多项式带余除法给出

S(gij−1
(x), gij (x)) =

m∑
t=1

qt(x)gt(x)

且 degS(gij−1
(x), gij (x)) < βij−1,ij，由于 qt(x) 是由多项式除法给出的，因此 deg qt(x)gt(x) < βij−1,ij 对每个

1 ≤ t ≤ m 都成立，故

S(LT (kij−1
(x))gij−1

(x), LT (kij (x))gij (x)) =
m∑
t=1

xα−βij−1,ij qt(x)gt(x)

满足每个求和项 degxα−βij−1,ij qt(x)gt(x) < α.但是，如上意味着等式6.1中的右侧每一项都是 g1(x), · · · , gm(x)
的多项式系数线性组合，且每一项的首项阶数都小于 α，这同样在等式

f(x) =
m∑
i=1

hi(x)gi(x) =
∑

deg(fi(x)gi(x))=α

LT (hi(x))gi(x)

+
∑

deg(fi(x)gi(x))=α

(hi(x)− LT (hi(x))gi(x) +
∑

deg(fi(x)gi(x))<α

hi(x)gi(x)

中成立，与所选取 α 的极小性矛盾，因此 deg f(x) = α.
于是，在如上的选取中我们得到

LT (f(x)) =
m∑
i=1

LT (hi(x))LT (gi(x)),

因此 LT (f) ∈ LT (I)，故 G 是一组 Gröbner 基.

Buchberger 判别法不仅给出了如何判断一组元素是否是 Gröbner 基，并且给出了计算得到 Gröbner 基
的方法. 假设 I = (g1, · · · , gm) 是多项式环 R = F [x1, · · · , xn] 的理想，若 S(gi, gj) 在求取相对于 G =

{g1, · · · , gm}的余数时有非零项，那么令 gm+1为该余数，取新的 G = {g1, · · · , gm, gm+1}，并再次计算 S(gi, gj)

(mod G). 习题？？？说明这样的步骤总会在有限多步后停止，那么得到的就是 Gröbner 基.
若 g1, · · · , gm 是理想 I 的一组 Gröbner 基，并且存在 i, j 使得 i ̸= j, LT (gi) | LT (gj)，这样 LT (I)

的生成元就不需要 LT (gj)，再根据命题6.2，集合 {g1, · · · , gm} 中删去 gj 依然是 I 的 Gröbner 基；同样地
可以假设每个 gi 都是首一的. 因此，可以定义理想 I 的一组 Gröbner 基 {g1, · · · , gm} 若都是首一的且满足
LT (gi) ∤ LT (gj) 对所有的 i ̸= j 都成立，则称这是一组极小 Gröbner 基 (minimal Gröbner basis). 尽管极小
Gröbner 基不是唯一的，但它所确定的首项的全体是唯一的（习题？？）.

定义. 给定多项式环 F [x1, · · · , xn] 上的单项序 ≤，若理想 I 的 Gröbner 基 {g1, · · · , gm} 满足

1. 对于任意的 1 ≤ i ≤ m，gi 是首一多项式，

2. 对 j ̸= i，gj 中的任意项（不仅仅是首项）不被 LT (gi) 整除，

则称 {g1, · · · , gm} 是 I 的约化 Gröbner 基 (reduced Gröbner basis).



第七章 Hilbert 多项式

7.1 Hilbert 函数和多项式

在这一章中我们始终假定 k 是域，并且分次模总假定是 N 分次的.
给定 S = k[x0, · · · , xn] 上的分次模 M =

⊕∞
i=0Mn，若 M 作为 S 模是有限生成的，则每个 Mn 作为 k

向量空间都是有限维的，因此映射

hM : N → N

n 7→ dimkMn

是良定义的函数，称其为 M 的 Hilbert 函数 (Hilbert function)，对应的形式幂级数

∞∑
n=0

hM (n)tn = hM (0) + hM (1)t+ hM (2)t2 + · · ·

称为 M 的 Hilbert 级数 (Hilbert series). 一般情况下，我们假定生成元是正阶数的，因此 hM (0) = 1.
给定 S 模 M 和整数 l，记 M [l] 是满足如下条件的 S 模，使得 M [l] 作为 k 向量空间同于 M，分次结构

满足

M [l]d :=Ml+d.

模 M [l] 称为 M 的 l 平移 (shifted by l) 或扭曲 (twisted).

例 7.1. 考虑 S = k[x0, · · · , xn]，那么它所有阶数为 d 的单项式有(
n+ d

n

)
=

(
n+ d

d

)
个，因此 M = S 的阶数为 d 的部分的维数是(

n+ d

n

)
=

(n+ d)(n+ d− 1) · · · (d+ 1)

n!
,

将 d 看作变量的话，这是一个关于 d 的有理系数多项式，阶数为 n 且首项系数为 1
n!

.
考虑模 S[l]，按定义和之前的运算，

S[l]d := Sl+d

的维数是
(
n+d+l
n

)
，将 d 看作变量这就是 Hilbert 函数.

29
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例 7.2. 考虑 S := k[x0, · · · , x3]/(x31−x20x3, x32−x0x23, x1x2−x0x3)，它作为 k[x0, · · · , x3]的商环是 k[x0, · · · , x3]
模. 为求得它的 Hilbert 函数，考虑环同态

φ : k[s, t] → k[x0, · · · , x3]

(s, t) 7→ (s3, s2t, st2, t3),

明显的 S 是

引理 7.1. Hilbert 函数、Hilbert 级数和 Hilbert 多项式都是关于模 M 的加性函数，即若存在 S 模的短正
合序列

0 →M → N → L→ 0,

则 hN = hM + hL，其余同理.

注意到以上例子当中的多项式都满足特别的性质，即虽然多项式是有理系数多项式，但在比较大的整数
处取值一定也是整数. 若多项式 p(z) ∈ Q[z] 满足对充分大的 n ∈ Z，p(n) ∈ Z，则称 p(z) 是数值多项式
(numerical polynomial).

引理 7.2. 若 p(z) 是 d 阶数值多项式，那么存在整数 c0, · · · , cd 使得

p(z) =
d∑
i=0

ci

(
z

i

)
,

其中，
(
z
i

)
= z(z−1)···(z−i+1)

i!
.

证明. 首先证明对任意的单项式 zn 是
{(

z

i

)}
i=1,··· ,k−1

的 Q 线性组合. 显然当 n = 0 和 n = 1 时成立. 归纳

假设当 n = 1, · · · , k − 1 时，zn 是
{(

z

i

)}
i=1,··· ,k−1

的 Q 线性组合，同时注意到

(
z

k

)
=
z(z − 1) · · · (z − i+ 1)

k!
=
zk

k!
+其他低阶项,

按照归纳假设 zk 也是
{(

z

i

)}
i=1,··· ,k−1

∪{(
z

k

)}
的线性组合.如上结果说明若 p(z)是整系数多项式则 p(z)

是
{(

z

i

)}
i=1,··· ,k−1

的 Q 线性组合. 这个线性组合是唯一的，因为基变换矩阵是上三角矩阵.

回到引理，若 d = 0，那么 p(z)是整数，满足引理.归纳假设当 d = 1, · · · , n时，引理成立.现在假设 p(z)

是 n+ 1 阶数值多项式，由前面的结果

p(z) =
d∑
i=0

ci

(
z

i

)
,

其中 ci ∈ Q. 考虑

∆p(z) := p(z + 1)− p(z) =
d∑
i=0

ci

(
z

i

)
,
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这实际上来源于等式 (
z

i

)
+

(
z

i− 1

)
=

(
z + 1

i

)
.

此时 deg∆p(z) = n，于是归纳假设说明 ci ∈ Z. 最后 c0 ∈ Z 是显然的.

引理 7.3. 设函数 f : Z → Z 满足如下性质，存在数值多项式 q(z) 使得 f 的差值函数满足

∆f(n) := f(n+ 1)− f(n) = q(n)

对于充分大 n 都成立，则存在数值多项式 p(z) 使得

f(n) = p(n)

对于充分大 n 都成立，且 deg p(z) = deg q(z) + 1.

证明. 根据引理7.2

q(z) =
d∑
i=0

ci

(
z

i

)
,

其中 ci ∈ Z. 令

p(z) =
d+1∑
i=1

ci

(
z

i

)
,

于是 ∆p(z) = q(z)，因此

∆(f − p)(n) = 0

对于充分大 n 都成立. 这样对于充分大 n，(f − p)(z) 是常数，设为 c0，于是

f(n) = p(n) + c0

对于充分大 n 都成立.

定理 7.1 (Hilbert). 设 k 是域，S := k[x0, · · · , xn]，M 是有限生成的分次 S 模，hM (n) := dimkMn 是
M 的 Hilbert 函数，那么存在多项式 pM (z) ∈ Q[z] 使得对充分大的正整数 d，

hM (d) = pM (d).

称 pM (z) 为 M 的 Hilbert 多项式 (Hilbert polynomial).

命题 7.2. 设 S 是 Noether 分次环，M 是分次有限生成 S 模，那么存在 M 的分次子模滤子

0 =M0 ⊆M1 ⊆ · · · ⊆Md =M

使得

Mi/Mi−1 ∼= (S/pi)[li]

对于任意 1 ≤ i ≤ n 成立，其中 pi 是 S 的齐次素理想，li ∈ Z.
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证明. 我们将用 Zorn 引理来证明该命题. 令

Σ := {N ≤M | N是分次子模且有满足条件的滤子}

是有满足条件的滤子的子模 N 的全体，显然 0 ∈ Σ 意味着 Σ 非空；因为 M 是 Noether 环上的有限生成模，
因此 M 是 Noether 的，因此 Σ 中有极大元，记为 M0.
若 M0 =M，则已完成证明. 否则，令

I := {Im = Ann(m) | m是M/M0中的非零元素且齐次}

是 S 中理想的非空偏序集，由于 S 是 Noether 的，I 中有极大元，记为 Im0
，其中 m0 是齐次元素意味着

Im0
是齐次理想，接下来证明 Im0

还是素理想. 根据 Im0
的齐次性，只需要证明任意的齐次元素 a, b ∈ S，若

ab ∈ Im0
则 a ∈ Im0

或 b ∈ Im0
. 假设 b /∈ Im0

，那么 bm0 也是其次元素因此 Ibm0
∈ I，显然 Im0

⊆ Ibm0
，再

根据极大性 Im0
= Ibm0

. 但是 ab ∈ Im0
，这意味着 abm = 0，于是 a ∈ Ibm0

= Im0
，得证.

根据如上的证明，记 p = Im0
，并且假定 m0 ∈ (M/M0)l，那么存在齐次 S 模同态

φ : (S/p)[−l] → S ·m0 ⊆ (M/M0)

1 7→ m0,

其中齐次性由 m0 的齐次性和阶数平移来保证，p 是零化子说明映射是单射且良定义，而它显然是满射. 令 N

是 M 中 S ·m0 ⊆ (M/M0) 的原像，那么 M0 ⫋ N，但是 N/M0
∼= (S/p)[−l]，这与 M0 的极大性矛盾.

此时我们可以回到定理的证明了：

证明. 首先若
0 →M → N → P → 0

是分次 S 模的短正合序列，并且定理的论断对 M,P 都成立，那么根据加性性质 hN = hM + hP，于是定理
的论断对于 N 也成立，即 hN (d) 对充分大的 d 是一个多项式.
根据命题7.2，只需要证明形如 (S/p)[l] 的模满足定理的论述即可；同时，阶数的平移只意味着函数变量

的变更 z 7→ z + l，因此只需要考虑形如 S/p 的模.
若 p = (x0, · · · , xn)，只需要取 pM (z) ≡ 0 即可. 否则，存在 xi /∈ p，那么正合列

0 → S/p[−1]
·xi−−→ S/p → (S/p)/(xiS/p) → 0

给出了 Hilbert 函数的关系式

h(S/p)/(xiS/p)(z) = hS/p(z)− hS/p(z − 1) = ∆hS/p(z),

经过有限步之后总会得到 p = (x0, · · · , xn) 的情形，但这是已经说明的，因此 ∆hS/p(z) 对充分大的 d 满足
∆hS/p(d) 是多项式，于是根据引理7.3，hS/p(z) 满足定理叙述，得证.

注意到在定理的证明中，短正合序列的第一项我们将所有元素的阶数作了左平移，这是因为如此链复形
中的边缘映射都是阶数为 0 的. 我们始终假设本章中链复形的边缘映射阶数为 0（即把 i 阶齐次元素映为 i 阶
齐次元素）.

例 7.3. 令 vd : P1
k ↪→ Pdk 是射影曲线的 d 阶 Veronese 嵌入，即对应分次环的映射
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7.2 极小消解

定理 7.3 (Hilbert Syzygy). 给定 S = k[x0, · · · , xn] 上的有限生成分次模 M =
⊕∞

i=0Mn，则存在 M 的
有限项的自由消解

0 → Fm
∂m−−→ Fm−1 → · · · → F1

∂1−→ F0 → 0,

并且我们可以取得 m ≤ n+ 1.

证明.

在例7.1中，我们讨论了多项式环的 Hilbert 函数，于是根据它的加性性质引理7.1，我们有

推论 7.3.1. 沿用定理7.3的记号，如果自由 S 模满足

Fi ∼=
Ni⊕
j=1

S[−li,j ],

其中 li,j 是非负整数，则

hM (d) =
m∑
i=0

hFi
(d) =

m∑
i=0

(−1)i
Ni∑
j=0

(
n+ d− li,j

n

)
.

推论 7.3.2. 沿用推论7.3.1的记号，则当 d ≥ maxi,j{li,j − n} 时，

pM (d) = hM (d).

证明. 当 n+ d− l ≥ 0 时，(
n+ d− l

n

)
=

(n+ d− l)(n+ d− l − 1) · · · (d+ 1− l)

n!
,

这是一个关于 d 的 n 阶多项式，这即完成了证明.

记 S := k[x0, · · · , xn] 中的理想 (x0, · · · , xn) 为 m.

定义. 给定 S = k[x0, · · · , xn] 上的链复形

· · · → Ci
φi−→ Ci−1 → · · · ,

若对任意 i，φi 的像在 mCi−1 中，则称该链复形是极小的 (minimal).

我们需要 Nakayama 引理的如下表述
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定理 7.4. 给定有限生成的分次 S 模 M，且元素 m1, · · · ,mn ∈M 生成了 M/mM，那么 m1, · · · ,mn 生
成了 M .

证明. 记 N 是 m1, · · · ,mn 生成的子模，M̄ :=M/N . 由于 m1, · · · ,mn 生成了 M/mM，M̄/mM̄ = 0，因此
M̄ = mM̄ . 若 M̄ ̸= 0，则其中存在阶数最小的非零元素，该元素显然不在 mM̄ 中，得证.

推论 7.4.1. S 上的分次自由消解

· · · → Fm
∂m−−→ Fm−1 → · · · → F1

∂1−→ F0 → 0,

是极小的当且仅当对任意 i，∂i 将 Fi 的的一组基映到 Im ∂i 的一组极小生成元.

证明. F• 是极小的当且仅当对任意 i，边缘映射诱导的

∂̄i+1 : Fi+1/mFi+1 → Fi/mFi

是 0 映射. 考虑正合列
Fi+1

∂i+1−−−→ Fi → Im ∂i → 0,

与 S/m 张量积后还是正合的，于是 ∂̄i+1 = 0 当且仅当 Fi/mFi → Im ∂i/mIm ∂i 是同构. 根据 Nakayama 引
理，得证.

定理 7.5. 给定 S 模的有限生成分次模 M，若 F•, G• 都是 M 的极小自由消解，则存在分次模复形的同
构 F• → G•. 任意 M 的自由消解都包含了极小自由消解.

证明. 证明在 Eisenbud 20.2
任意给定自由预解 F• → M，若 F• 不是极小的，则一定存在 Fi 中的元素，它在边缘映射下的像不在

mFi−1 中，根据 Nakayama 引理，像中的该元素可取作基中的元素，这样我们得到了 F• 的一个子复形

G• := 0 → S(−l) c−→ S(−l) → 0,

其中 c 是 S 中的非零数值，于是 G• 的同调都为 0. 这样复形的短正合序列 0 → G• → F• → F•/G• → 0，诱
导了长正合序列说明 F•/G• 与 F• 有相同的同调，且 F•/G• 也是自由的. 有限生成说明按此步骤进行下去即
可找到极小自由消解.

极小自由预解 F• →M 唯一性说明的更重要的事情是，Fi 中给定阶数的生成元的个数只取决于 M 本身.
这件事情更简单的描述要借用 Tor，因而我们把这部分作为习题.

练习 7.1. 1. 设 F• → M 是有限生成分次 S 模 M 的极小自由预解，则 Fi 的极小齐次生成集恰好包含了
dim TorSi (k = S/m,M)j 个元素，其中 TorSi (k,M)j 是 TorSi (k,M) 阶数为 j 的齐次子空间.

2. 由前一部分证明 M 的投射维数恰好是 F• 的长度.
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证明. 1. 按同调代数的构造，

TorSi (k,M) := Hi(k ⊗S F•),

但 F• 是极小的说明 k ⊗S F• 中的映射都为 0，因此

TorSi (k,M) = k ⊗S Fi.

再由 Nakayama 引理，Fi 中阶数为 j 的生成元的个数等于 dim TorSi (k = S/m,M)j .

2. 由定义，投射维数必然不大于 F• 的长度. 反过来，若 i 大于投射维数则 TorSi (k = S/m,M) = 0，前
一部分说明 Fi = 0.

7.3 分次 Betti 数和计算

一般地，给定分次自由消解 F• →M，满足

F• = 0 → Fs → · · · → Fm
∂m−−→ Fm−1 → · · · → F1

∂1−→ F0 → 0,

其中 Fi =
⊕

j S(−j)βi,j，那么如下的表格

0 1 · · · s

i β0,i β1,i+1 · · · βs,i+s

i+ 1 β0,i+1 β1,i+2 · · · βs,i+s+1

...
...

... . . . ...
j β0,j β1,j+1 · · · βs,j+s

被称为 F• 的 Betti 图 (Betti diagram)；若 F• 还是极小的，则称表格为 M 的 Betti 图，其中的数值 βm,d 被
称为 M 的分次 Betti 数.

命题 7.6. 给定有限生成 S 模M 的分次 Betti数 {βi,j}，若给定 i，存在阶数 d使得对任意 j < d，βi,j = 0，
则对任意 j < d，βi+1,j+1 = 0.

证明. 假定 M 的分次自由消解

F• = 0 → Fs → · · · → Fm
∂m−−→ Fm−1 → · · · → F1

∂1−→ F0

是极小的. 根据定理7.1证明后面的讨论，∂i 的阶数为 0，Fi+1 中的生成元被映为 mFi 中的等阶数元素. 此时，
βi,j = 0 意味着 Fi 非零元素的阶数都不小于 d，因而 mFi（进而 Im ∂i）中的元素的阶数都不小于 d+ 1，即
βi+1,j+1 = 0.
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引理 7.4. 若有限生成 S 模 M 的分次 Betti 数是 {βi,j}，记 Bj :=
∑

i≥0(−1)iβi,j，则 M 的 Hilbert 函
数是

hM (d) =
∑
j

Bj

(
n+ d− j

n

)
.

反过来，若已知 Hilbert 函数，则可以由公式

Bj = hM (j)−
j−1∑
k=0

Bk

(
n+ j − k

n

)
递归地得到所有 Bj.

证明. 根据推论7.3.1，第一部分是明显的.
反过来，由于 M 是有限生成的，存在 j0（可能为 0）使得 hM (d) = 0 对所有的 d ≤ j0 都成立. 此时，对

任意 j ≤ j0 都有 β0,j = 0，于是命题7.6说明 βi,j = 0 对所有的 i 都成立，于是 Bj = 0.
假设对所有 k < j，我们已知了 Bk 的值，由于当 j < k 时，

(
n+j−k
n

)
= 0，因而只有 k ≥ j 时 hM (j) 中

才有 Bk 项出现；特别地，Bj 项的系数为
(
n
n

)
= 1. 这即得到了所想的公式.

练习 7.2. 我们考虑一种推广的情况，令
T := k[z1, · · · , zn],

其中 deg zi = αi ∈ N∗，即多项式环中的每个生成元可能有不同的阶数.

1. 证明在 T 有两个生成元，阶数分别为 2, 3 时 hT (d) 不使得对充分大的 d 成为一个多项式. 证明当 k = C
时，这个环是 Z/6Z 作用在 C[x0, x1] 的不动点子环，其中作用为

x0 7→ e2πi/2x0, x1 7→ e2πi/3x1.

2. 给定分次 T 模 M，记形式幂级数

ψM (t) :=
∞∑
n=0

hM (n)tn = hM (0) + hM (1)t+ hM (2)t2 + · · ·

为 M 的 Hilbert 级数. 求证任意 Laurent 级数都可以写为某个有限生成模 M 的 Hilbert 级数.

3. 求证

ψT (t) =
∞∑
c=0

tcαnψT ′(t) =
1

1− tαn
ψT ′(t) =

n∏
i=1

1

1− tαi
,

其中 T ′ = k[z1, · · · , zn−1]. 由此证明若 M =
∑N

i=−N T [−i]ϕi，

ψM (t) =
N∑

i=−N

ϕiψT [−i](t) =

∑N
i=−N ϕit

i∏n
i=1(1− tαi)

.

4. 证明如下 Hilbert 定理：若有限生成模 M 有消解

· · · →
∑
j

T [−j]βm,j
∂m−−→

∑
j

T [−j]βm−1,j → · · · →
∑
j

T [−j]β1,j
∂1−→
∑
j

T [−j]β0,j → 0,
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记 ϕj =
∑

i(−1)iβi,j，且 ϕM (t) := ϕ−N t
−N + · · ·+ ϕN t

N，则 Hilbert 级数为

ψM (t) =
ϕM (t)∏n

i=1(1− tαi)
.

5. 借用短正合序列
0 → T [−αn]

·zn−−→ T → T ′ → 0,

归纳地证明对充分大的 d，Hilbert 函数 hT (d) 是具有周期性系数的多项式，即

hT (d) = f0(d)d
0 + · · ·+ fn(d)d

n,

其中对 0 ≤ i ≤ n，fi 是取值于 Q 的周期函数，周期整除 l.c.m.{αj}j=1,··· ,n.



38 第七章 HILBERT 多项式



第八章 维数理论

定义. 给定环 R 和素理想 p，p 的高度 (height) 是使得 p0 ⫋ p1 ⫋ · · · ⫋ ph = p 是 R 中素理想递增列的
最大的正整数 h，记为 htR p，当环 R 明确时也记为 ht p. 若不存在这样的最大的正整数则称 p 的高度为
∞. 对于 R 中的任意理想 I，定义 I 的高度为

ht I := min
p⊇I

{ht p}.

练习 8.1. 给定 Noether 环 R 和素理想 p，那么

1. dimR/p = htR p，

2. dimR− htR p = dimRp.

定理 8.1 (Krull 主理想定理). 给定 Noether 环 R 和元素 f ∈ R，若 p 是包含 (f) 的极小理想，那么
ht p ≤ 1.

证明. 若存在一个反例
p0 ⫋ p1 ⫋ p2 = p,

那么在 Rp 中也是一个反例，因此不妨假设 (R, p) 是局部环.

推论 8.1.1. 给定 Noether 环 R，p 是 R 中的素理想，f 是 R 中的非零因子且 f ∈ p，那么

htR p = htR/(f) p/(f) + 1.

证明. 假定 ht I = h，根据练习2.5，f /∈ p0，于是根据定理8.1，包含非零因子的极小素理想的高度为 1，记为
p1. 根据练习8.1，存在 R 中素理想的递增列

p0 ⫋ p1 ⫋ · · · ⫋ ph = p,

其中 f /∈ p0 且 f ∈ p1，于是
p1/(f) ⫋ · · · ⫋ ph/(f) = p/(f)

是 R/(f) 中素理想的递增列且是长度最长的（否则对应到 R 中与 ht I = h 矛盾），因此得证.

39
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设 (R,m) 是 Noether 局部环，证明 dimR 是使得

Rad (f1, · · · , fd) = m, f1, · · · , fd ∈ m

成立的最小的自然数 d.

命题 8.2. 若交换整环 R 是正规的且 p 是余维数为 1 的素理想，那么 Rp 是 DVR.



第九章 微分和光滑性

定义. 设 R 是交换环，A 是 R 代数且 M 是 A 模. 若 Abel 群同态 d : A→M 满足如下 Leibnitz 法则

d(fg) = fd(g) + d(f)g

对任意 f, g ∈ A 都成立，则称 d 为一个微分 (derivation). 若 d : A→M 还是 R 模同态，则称 d 是R 线
性的 (R-linear). 我们将所有的 R 线性微分 A→M 记为 DerR(A,M).

对于任意 R-线性微分 d ∈ DerR(A,M)，Leibnitz 法则说明

d(1) = d(1 · 1) = 1d(1) + d(1)1,

于是 d(1) = 0. 再根据 R 线性性，对任意 R 中的元素 r，d(r) = rd(1) = 0. 这也符合“常值函数的微分为零”
的直觉. 很容易看出，DerR(A,M) 有自然的 A 模结构，于是也有 R 模结构.
虽然 R-线性微分是值得研究的，但我们希望完全用 A 模同态来描述所有的微分. 之前有过相同的处理方

式：对于所有的 R 双线性映射，我们构造了具有一定泛性质的 R 模——张量积，在这里我们同样可以构造 A

模使得所有的 R-线性微分被 A 模同态对应.

定义. 设 R 是交换环，A 是 R 代数，那么由 {d(f) | f ∈ A} 生成的 A 模，模去对任意 f, g ∈ A, r, s ∈ R

d(fg)− fd(g)− d(f)g (Leibnitz)

d(rf + sg)− rd(f)− sd(g) (R-linearity)

生成的理想，得到的 A 模称为 R 线性的 A-Kähler 微分模 (the module of Kähler differentials of A over
R)，记为 ΩA/R.R 线性映射

d : A→ ΩA/R

f 7→ d(f)

称为泛 R 微分 (universal R-linear derivation). 通常，我们记 df = d(f).

类似于张量积，ΩA/R 满足如下泛性质：
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引理 9.1. 设 R 是交换环，A 是 R 代数，微分模 ΩA/R 使得对任意微分 D : A → M，都存在唯一的 A

线性映射 φ : ΩA/R →M 使得

A ΩA/R

M

d

D
φ

交换.

证明. 首先证明唯一性. 对任意 ΩA/R 中的元素
∑n

i=1 aidfi，根据 φ 的线性性

φ

(
n∑
i=1

aidfi

)
=

n∑
i=1

aiφ(dfi).

但图的交换性说明 dfi = D(fi)，故

φ

(
n∑
i=1

aidfi

)
=

n∑
i=1

aiD(fi).

这意味着 φ 的取值是固定的.
再证明存在性. 我们定义

φ

(
n∑
i=1

aidfi

)
=

n∑
i=1

aiD(fi),

于是需要验证 (i)φ 是良定义的；(ii)φ 关于图是交换的. 后一条根据定义是显然的，前一条因为使得 D 是 R

线性微分的关系恰好由 Leibnitz 等式和 R 线性性生成，故良定义.

ΩA/R 的泛性质等价于存在自然的同构

DerR(A,M) ∼= HomA(ΩA/R,M),

自然的意义是通过态射替换 A 与 M 诱导了相应的交换图，具体来说，对任意 R 代数映射 φ : B → A，下图

DerR(A,M) HomA(ΩA/R,M)

DerR(B,M) HomB(ΩB/R,M)

交换且对任意 A 模同态 ψ :M → N，下图

DerR(A,M) HomA(ΩA/R,M)

DerR(A,N) HomA(ΩA/R, N)

交换.
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命题 9.1. 若 R 是交换环且 A := R[x1, · · · , xn]，那么 ΩA/R =
⊕n

i=1Adxi.

证明. 我们构造两个互逆的 A 模同态，来说明二者同构. 首先，我们有显然的映射

φ :
n⊕
i=1

Adxi → ΩA/R

n∑
i=1

aidxi 7→
n∑
i=1

aidxi.

另一方面，由 dxi 的对偶基底诱导的线性函数给出了 A 的 R 线性微分 ∂
∂xi
，令

ψ : ΩA/R →
n⊕
i=1

Adxi

h 7→


∂h
∂x1

...
∂h
∂xn

 ,
容易验证 φ 与 ψ 互为逆映射，故命题成立.

此外，ΩA/R 本身关于 A 和 R 都是函子：给定 R 代数态射 φ : A→ B，那么我们有诱导的 R 模态射

Ωφ/R : ΩA/R → ΩB/R

df 7→ dφ(f),

事实上，由于 B 是 A 模，这个态射也是 A 模态射. 另一方面，若 R
φ−→ S

ψ−→ T 是环态射，那么也有态射

ΩT/φ : ΩT/R → ΩT/S

dh 7→ dh,

这是一个 T 模态射. 考虑到 ΩT/R 和 ΩT/S 的定义，它们的生成元是相同的，且 ΩT/φ 把生成元映到生成元，
于是这是一个满态射，但一般而言这不是一个单态射，于是我们自然地希望知道这个映射的核. 我们考虑这个
态射不是单态射的原因：两个模拥有相同的生成元，Leibnitz 法则也是一样的，但 ΩT/R 需要模掉 R 线性关
系，ΩT/S 需要模掉 S 线性关系，因此出现了差别. 模同态 ΩT/φ 把 R 线性关系映为 S 线性关系，但是存在
一些 S 线性关系不能成为 R 线性关系，于是这些关系就生成了 ΩT/φ 的核.
任取

∑n
i=1 tidfi ∈ ΩT/R，若它不为 0 但被映为 ΩT/S 中的 0，那么存在

命题 9.2 (相对余切序列 (Relative Cotangent Sequence)). 若 R→ S → T 是交换环态射，那么有 T 模正
合序列

T ⊗S ΩS/R → ΩT/R → ΩT/S → 0

其中映射 ΩT/R → ΩT/S 将 dh 映到 dh，映射 T ⊗S ΩS/R → ΩT/R 是系数变换，即将 t⊗ dg 映到 tdψ(g).
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在上同调理论中，我们

命题 9.3 (余法序列 (Conormal Sequence)). 若 φ : A→ B 是 R 模满态射，且具有核 I，那么有 B 模正
合序列

I/I2
d−→ B ⊗A ΩA/R

Dφ−−→ ΩB/R → 0

其中映射 I/I2
d−→ B ⊗A ΩA/R 将 f 的等价类映到 df，映射 B ⊗A ΩA/R

Dφ−−→ ΩB/R 将 g ⊗ df 映到 gdf .

证明.

设 A = R[x1, · · · , xn]/(f1, · · · , fr) 是给定的 R 代数，那么余法序列告诉我们

ΩA/R = coker(d : I/I2 → A⊗R ΩR[x1,··· ,xn]/R =
n⊕
i=1

Adxi).

命题 9.4. 微分模的构造与基变换交换，即给定交换环 R 和 R 代数 S,A，存在同构 φ : S ⊗R ΩA/R
∼=

ΩS⊗RA/R 使得下图交换：

S ⊗R A

S ⊗R ΩA/R ΩS⊗RA/R.

id⊗d d

φ

命题 9.5. 微分模的构造与基变换交换，即给定交换环 R 和 R 代数 S,A，存在同构 φ : S ⊗R ΩA/R
∼=

ΩS⊗RA/R 使得下图交换：

S ⊗R A

S ⊗R ΩA/R ΩS⊗RA/R.

id⊗d d

φ

定理 9.6 (Jacobi 判别法). 设 k 是给定的域，I = (f1, · · · , fr) 是 k[x1, · · · , xn] 中的理想，R :=

k[x1, · · · , xn]/I. 若 p 是 k[x1, · · · , xn] 中包含 I 的素理想，c 是 Ip 在 Rp 中的余维数，那么

1. Jacobi 矩阵在模 p 的意义下秩小于 c.

2. 。。。
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在微分几何当中，我们有自然引入的光滑性概念. 但是在代数几何当中，光滑性的概念并不是自然存在的
——我们所研究的几何空间可能存在奇点，因而需要重新引入光滑性的概念. 一个问题在于同于微分几何的定
义，在有足够的工具之前我们只能定义局部的光滑性，而微分模给出了光滑性本质的刻画.

定义. 设 R,S 是交换环，f : R→ S 是环同态. 如果对任意的交换环 T 和 T 的满足 I2 = 0 的理想 I，只
要下图

R S

T T/I.

f

交换，就有至少一个（对应的，最多一个，恰有一个）环同态 S → T 使得整个图是交换的，则称 f 是形式
光滑的 (formally smooth)（对应的，形式不分叉的 (formally unramified) 和形式平展的 (formally étale)）
.

引理 9.2. 环同态 f : R→ S 是形式不分叉的当且仅当 ΩS/R = 0.

引理 9.3. 设环 B := R[x1, · · · , xn]/(f1, · · · , fr)，记 A := R[x1, · · · , xn]，I := (f1, · · · , fr).于是 f : R→ T

是光滑的当且仅当
0 → I/I2

d−→ B ⊗A ΩA/R
Dπ−−→ ΩB/R → 0

是分裂正合的.

练习 9.1. 设 k 是域，R 是有限生成的 k 代数，证明若 ΩR/k = 0，那么 R 中无幂零元.

证明. 设 R = k[x1, · · · , xn]/(f1, · · · , fr)，对 r 用归纳法证明命题.
当 r = 1 时，根据 conormal sequence

(f1)/(f1)
2 d−→ Ωk[x1,··· ,xn]/k ⊗k[x1,··· ,xn] R→ ΩR/k → 0

是正合列. 注意到

Ωk[x1,··· ,xn]/k ⊗k[x1,··· ,xn] R
∼=

n⊕
i=1

Rdxi,

于是

d : (f1)/(f1)
2 → Ωk[x1,··· ,xn]/k ⊗k[x1,··· ,xn] R

f 7→ df,
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ΩR/k = 0 意味着 d 是满射. 若 R 中存在非平凡幂零元 g，那么存在 h ∈ k[x1, · · · , xn] 使得 f1 = g2h，那么
df1 = 2ghdg + g2dh，即 g | df1，于是 d 是满射意味着 deg g = 0，矛盾.
假设完成了对 r的证明，考虑 r+1.依旧记R = k[x1, · · · , xn]/(f1, · · · , fr)，S = k[x1, · · · , xn]/(f1, · · · , fr, fr+1) =

R/(fr+1)，因而有自然的映射 R↠ S. 再次用 conormal sequence

(fr+1)/(fr+1)
2 d−→ ΩR/k ⊗R S → ΩS/k → 0

I/I2
d−→ ΩF/k ⊗F R→ ΩR/k → 0

I/I2
d−→ ΩF/(fr+1)/k ⊗F/(fr+1) S → ΩS/k → 0

练习 9.2. 1. 设 k 是特征为 0 的域，R := k[x1, · · · , xn]，那么 R 模序列

0 → k → R→ Ω1
R/k → · · · → ΩnR/k → 0

是正合的.

2. 说明 Fp[x] 模序列
0 → Fp → Fp[x] → Fp[x]dx→ 0

不是正合的.

证明. 1. 对 n 用归纳法.

练习 9.3. 设 R := k[x, y]/(y2 − x3 − ax− b)，满足 4a3 + 27b2 ̸= 0.

1. 证明 x3 + ax+ b 与 (x3 + ax+ b)′ = 3x2 + a 互素.

2. 证明 ΩR/k 作为 R 模同构于 R.[提示：由前一部分，存在 u(x), v(x) 使得 u(x)(x3 + ax+ b) + v(x)(x3 +

ax+ b)′ = 1，考虑 ω = 1
2
u(x)ydx+ v(x)dy.]

3. 求 Spec R 的 de Rham 上同调.

证明. 根据定义，ΩR/k = Rdx⊕Rdy/(2ydy − (3x2 + a)dx)，同时 4a3 + 27b2 ̸= 0 说明曲线是光滑的，因此局
部地 Ω2

R/k = 0. 因此 de Rham 复形是
0 → R

d−→ ΩR/k → 0.

显然 H0 = k. 由于曲线光滑，x3 + ax + b 和 3x2 + a 没有公共根，(x3 + ax + b, 3x2 + a) = 1，因此存在
u(x), v(x) 使得

u(x)(x3 + ax+ b) + v(x)(3x2 + a) = 1.

令 ω = 1
2
u(x)ydx+ v(x)dy，那么

dx = (u(x)(x3 + ax+ b) + v(x)(3x2 + a))dx = u(x)y2dx+ v(x)(2y)dy = 2yω

且

dy = (u(x)(x3+ax+b)+v(x)(3x2+a))dy = u(x)y2dy+v(x)(3x2+a)dy =
1

2
u(x)y(3x2+a)dx+v(x)(3x2+a)dy = (3x2+a)ω.
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这意味着 ΩR/k = Rω. 考虑

d : R→ ΩR/k = Rω

f(x, y) 7→ ∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂x
(2y)ω +

∂f

∂y
(3x2 + a)ω.

对任意 g(x, y)ω ∈ Rω，存在（唯一的）k(x), l(x)使得 g(x, y) = yk(x)+l(x) ∈ R，且 l(x) = q(x)(3x2+a)+sx+t.
那么取

f(x, y) = q(x)y +

∫
k(x)− q′(x)(x3 + ax+ b)dx

则有 df = (g(x, y)− sx− t)ω. 因此
Coker d = kω ⊕ kxω.

练习 9.4. 设 I 是交换环 R 的幂零理想，R− Algebraet 是所有的平展 R 环组成的满子范畴，求证存在范畴
的同构

R− Algebraet ≃ R/I − Algebraet.
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第十章 Koszul 复形

10.1 动机和定义

正则序列是非零因子的推广.

定义. 设 R 是交换环且 M 是 R 模，若元素 x1, · · · , xn ∈M 满足

1. (x1, · · · , xn)M ̸=M，且

2. 对任意 1 ≤ i ≤ n，xi 都是 M/(x1, · · · , xi)M 的非零因子，

则称 x1, · · · , xn 是正则序列 (regular sequence) 或 M 序列 (M -sequence).

命题 10.1. 给定 Noether 环和理想 I = (f1, · · · , fn)，若 f1, · · · , fn 是正则序列，那么

ht I = r.

证明. 对 r 用归纳法. 当 r = 1 时，推论8.1.1中的证明已经说明了正确性.

考虑上链序列

K(x) : 0 → R
x−→ R→ 0,

其中第一个 R 设定为 0 阶项，并且微分映射是使得阶数增加的. 注意到 H0(K(x)) = (0 : x) := {r ∈ R | xr =
0}，于是对 H0(K(x)) 的计算可以告诉我们 x 是否是零因子.

考虑另一个 R 中的元素 y，它给出了链映射

K(x) : 0 R R 0

K(x) : 0 R R 0,

y

x

y

x

这样我们可以构造一个更大的链

K(x, y) :

0 R R 0

0 R R 0,

y

−x

⊕ y

x

(10.1)
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或者更简洁地写为

K(x, y) : 0 → R

−x
y


−−−−→ R⊕R

[
y x

]
−−−−−→ R→ 0.

如同对前一个例子的分析，我们尝试计算该上链的上同调. 由定义，

H0(K(x, y)) = {r ∈ R | −xr = yr = 0} = (0 : (x, y)),

于是 x 是非零因子当且仅当 H0(K(x, y)) = 0.

对于 H1(K(x, y))，首先

[
r

s

]
∈ R ⊕ R 满足

[
y x

] [r
s

]
= 0 当且仅当 xs + yr = 0，于是这意味着

r ∈ (x : y)，反过来，若 r ∈ (x : y)，那么一定存在一个 s ∈ R 使得 xs+ yr = 0——但可能存在不同的 s 使得
条件成立；如果还假设 x 是非零因子，那么 s 就唯一地由 r 确定，此时 Z1(K(x, y)) ∼= (x : y).（这里包括下
一段讨论我们只在第一个直和项中考虑，另一个直和项的已经被证明完全依赖于第一个直和项.）

另一方面，

[
a

b

]
∈ R ⊕ R 若是 B1(K(x, y)) 中的元素，则存在 r ∈ R 使得

[
a

b

]
= r

[
−x
y

]
=

[
−rx
ry

]
，如

果继续假设 x 是非零因子，那么给定

[
a

b

]
就唯一确定了 r 使得 −rx = a，此时 B1(K(x, y)) = (x). 于是

H1(K(x, y)) = (x : y)/(x). 这样，当 H0(K(x, y)) = 0 时，H1(K(x, y)) = 0 当且仅当所有满足 ry ∈ (x) 的元
素 r 都是 (x) 中的元素，即 y 是 R/(x) 的非零元素. 简言之，复形 K(x, y) 的上同调刻画了序列 (x, y) 的正
则性.
在定义一般的 Koszul 复形之前，我们再对复形 K(x, y) 进行进一步的分析. 图10.1说明存在如下正合列

0 → K(x)[1] ↪→ K(x, y) → K(x) → 0,

于是这诱导了长正合序列

H0(K(x)[1]) = H−1(K(x)) H0(K(x, y)) H0(K(x))

H1(K(x)[1]) = H0(K(x)) H1(K(x, y)) H1(K(x)),

δ

其中 δ 是连接同态. 可以证明态射 δ 是左乘 y，这因为

例 10.1. 考虑环 R = k[x, y, z]/(x− 1)z 和其中的序列 {x, (x− 1)y}

对于一般的 Koszul 复形的定义，我们需要外代数的概念，具体在附录中.

定义. 给定交换环 R 和 R 模 M，x ∈M 是元素，那么如下复形

K(x) : 0 → R→M → ∧2M → · · · → ∧dM dx−→ ∧d+1M → · · ·

被称为 Koszul 复形 (Koszul complex)，其中 dx : ∧dM → ∧d+1M,m 7→ x∧m. 特别地，如果 M = Rn 且
x = (x1, · · · , xn) ∈M，我们用记号 K(x1, · · · , xn).



10.2 新复形的构造 51

事实上，K(x1, · · · , xn)的结构是比较容易描述的，它是 R的半自由的微分分次代数 (semi-free differential
graded algebra)，其中所有的生成元都是阶数为 1 的，且这些生成元在微分下的像恰好是 x1, · · · , xn.
作为一个例子，首先我们验证定义前给出的复形 K(x, y) 是 Koszul 复形.

引理 10.1. 依定义中的记号，
Hn(K(x1, · · · , xn)) = R/(x1, · · · , xn).

证明. 记 M = Rn，那么存在 R 模同构
∧n
i=1M

∼= R 和
∧n−1
i=1 M

∼=M，其中第一个映射是
n∧
i=1

M → R

e1 ∧ · · · ∧ en 7→ 1,

第二个映射是
n−1∧
i=1

M →M

e1 ∧ · · · ∧ êi ∧ · · · ∧ en 7→ ei,

微分映射满足

d :
n−1∧
i=1

M →
n∧
i=1

M

e1 ∧ · · · ∧ êi ∧ · · · ∧ en 7→

(
n∑
i=1

xiei

)
∧ e1 ∧ · · · ∧ êi ∧ · · · ∧ en = (−1)i+1xie1 ∧ · · · ∧ en,

结合之前的两个同构，Hn(K(x1, · · · , xn)) ∼= R/(x1, · · · , xn).

关于阶数：事实上存在两种不同的 Koszul 复形的构造，一种如我们所述，另一种是从

10.2 新复形的构造

定义. 给定 R 模复形 M• 和 N•，那么它们的张量积 (tensor product)(M ⊗N)• 满足

(M ⊗N)n :=
⊕
i+j=n

M i ⊗R N
j ,

微分映射由

dn : (M ⊗N)n → (M ⊗N)n+1

x⊗ y 7→ dnM (x)⊗ y + (−1)deg xx⊗ dnN (y)

扩张给出.
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容易验证如上定义给出了一个上链复形.

命题 10.2. 若 R 模满足 M = N ⊕ P，那么
∧
M =

∧
N ⊗

∧
P，进一步地若 y ∈ N, z ∈ P，记

x = (y, z) ∈M，那么存在 R 模复形的同构

K(x) ∼= K(y)⊗K(z).

证明.

推论 10.2.1. 若 R 中的元素 y1, · · · , yr 是其中的理想 (x1, · · · , xn) 中的元素，那么对任意 R 模 M，存在分
次 R 模的同构

H∗(M ⊗K(x1, · · · , xn, y1, · · · , yr)) ∼= H∗(M ⊗K(x1, · · · , xn))⊗
∧
Rr,

于是
H i(M ⊗K(x1, · · · , xn, y1, · · · , yr)) = 0

当且仅当 Hk(M ⊗K(x1, · · · , xn)) = 0 对任意 i− r ≤ k ≤ i 都成立.

10.3 上同调与

如同之前的讨论，Koszul 复形是与序列的正则性相关，并且它实际上描述了理想 (x1, · · · , xn) 中极大正
则序列的长度. 下面的定理说明了这个长度是不变的：

定理 10.3. 设 M 是环 R 上的有限生成模，若存在正整数 r 使得

Hj(M ⊗R K(x1, · · · , xn)) = 0

对任意 0 ≤ j < r 成立，且 Hr(M ⊗RK(x1, · · · , xn)) ̸= 0，那么理想 I = (x1, · · · , xn) 中极大正则序列的
长度都为 r.
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