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1 代数几何预备知识

引理 1.1. 给定R代数A和R模M，R代数态射

ι1, ι2 : A→ A⊗R A

定义为ι1(a) := a⊗ 1, ι2(a) := 1⊗ a，若A是忠实平坦的R代数，那么

0 →M
αM−−→ A⊗RM

(ι1−ι2)⊗idM−−−−−−−−→ A⊗R A⊗RM

是正合列.

证明. 按定义，αM : m 7→ 1⊗m，(ι1−ι2)⊗idM : a⊗m 7→ a⊗1⊗m−1⊗a⊗m.设m ∈M使得αM (m) = 1⊗m =

0，取M中的子模⟨m⟩，根据A的R平坦性A⊗R ⟨m⟩是A⊗RM的子模，并且1⊗m = 0说明A⊗R ⟨m⟩ = 0.但A是

忠实平坦的，因此⟨m⟩ = 0，即αM是单射.

由定义显然Im αM ⊆ Ker (ι1 − ι2)⊗ idM .对于序列

0 → A⊗RM
idA⊗αM−−−−−→ A⊗R A⊗RM

(ι∗1−ι
∗
2)⊗idM−−−−−−−−→ (A⊗R A)⊗A (A⊗R A)⊗RM,

也相应有Im idA ⊗ αM ⊆ Ker (ι∗1 − ι∗2) ⊗ idM，其中(ι∗1 − ι∗2) ⊗ idM :
∑K

i=1 ai ⊗ bi ⊗ mi 7→
∑K

i=1 ai ⊗ 1 ⊗
bi ⊗ 1 ⊗mi −

∑K
i=1 ai ⊗ 1 ⊗ 1 ⊗ bi ⊗mi.根据α : R → A的平坦性，idA ⊗ αM也是单射且注意到存在A代数同

态m : A⊗R A→ A, a⊗ b 7→ ab，使得复合映射A = R⊗R A
α⊗idA−−−−→ A⊗R A

m−→ A是恒同映射idA : A→ A，那

么对于任意满足

((ι∗1 − ι∗2)⊗ idM )

(
K∑
i=1

ai ⊗ bi ⊗mi

)
=

K∑
i=1

ai ⊗ 1⊗ bi ⊗ 1⊗mi −
K∑
i=1

ai ⊗ 1⊗ 1⊗ bi ⊗mi = 0

的元素
∑K

i=1 ai ⊗ bi ⊗mi，

m⊗ idA⊗RA⊗RM : (A⊗R A)⊗A (A⊗R A)⊗RM → A⊗A (A⊗R A)⊗RM ∼= (A⊗R A)⊗RM

K∑
i=1

ai ⊗ 1⊗ bi ⊗ 1⊗mi 7→
K∑
i=1

m(ai ⊗ bi)⊗ 1⊗mi

K∑
i=1

ai ⊗ 1⊗ 1⊗ bi ⊗mi 7→
K∑
i=1

ai ⊗ bi ⊗mi,

其中两个映射关系是选取了同一元素的不同代表元，这意味着
∑K

i=1 ai ⊗ bi ⊗mi =
∑K

i=1m(ai ⊗ bi)⊗ 1⊗mi，

因此
∑K

i=1 ai ⊗ bi ⊗ mi = αM (
∑K

i=1m(ai ⊗ bi) ⊗ 1 ⊗ mi)，即Im αM = Ker (ι1 − ι2) ⊗ idM .同时，A代数同

构c : (A⊗RA)⊗A (A⊗RA)⊗RM → A⊗R (A⊗RA)⊗RM,
∑K

i=1 xi⊗yi⊗zi⊗wi 7→
∑K

i=1 xi⊗yizi⊗wi？？？？？？？
使得图
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0 A⊗RM A⊗R A⊗RM (A⊗R A)⊗A (A⊗R A)⊗RM

0 A⊗RM A⊗R A⊗RM A⊗R (A⊗R A)⊗RM

idA⊗αM (ι∗1−ι
∗
2)⊗idM

c

idA⊗αM idA⊗(ι1−ι2)⊗idM

交换，这样第一行的正合性就意味着第二行的正合性，因此根据A的忠实平坦性

0 →M
αM−−→ A⊗RM

(ι1−ι2)⊗idM−−−−−−−−→ A⊗R A⊗RM

是正合列.

命题 1.1. 给定仿射概型X = Spec R，且设f : U = Spec T → V = Spec S是仿射概型间的忠实平坦态射，那

么

hX(V ) hX(U) hX(V ×U V )
pr∗1

pr∗2

是等值子.

证明. 设f对应的环同态是φ : S → T，那么hX(f) = − ◦ f : hX(V ) → hX(U)对应到

φ ◦ − : Hom(R,S) → Hom(R, T ).

由引理1.1（取S模S和S代数T），有正合列

0 → S
αS−−→ T

ι1−ι2−−−→ T ⊗S T

注意到pri对应到ιi（i = 1, 2），于是pr∗i = ιi ◦ −，故函子Hom(R,−)作用在如上正合列恰好得到需要的结

果.

命题 1.2. 设f : Y → X, g : Z → X是概型的态射，满足存在y ∈ Y, z ∈ Z使得f(y) = g(z)，那么存在p ∈
Y ×X Z满足pr1(p) = y,pr2(p) = z.

证明. 令κ(x) := OX,x/mx，于是我们有域扩张κ(x) ↪→ κ(y)和κ(x) ↪→ κ(z).进而κ(y) ⊗κ(x) κ(z)是非零的，故

存在极大理想m，令K := κ(y)⊗κ(x) κ(z)/m，则K是κ(x)的包含κ(y)和κ(z)的扩张.

设U是X中包含x的仿射概型，那么

SpecK → Spec κ(y) → Y
f−→ X

和

SpecK → Spec κ(z) → Z
g−→ X

相同，故我们得到了映射SpecK → Y ×X Z.

2 一般的模问题

模问题(moduli problem)是代数几何当中一类最基本的问题.
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定理 2.1. 设k是域，S是k概型，那么存在如下的1-1对应

{(L, s0, · · · , sn) | L ∈ Pic(S), si ∈ H0(S,L)生成L}/ ∼↔ homk(S,Pn),

其中左边的等价关系(L, s0, · · · , sn) ∼ (M, t0, · · · , tn)定义为存在同构φ : L → M使得ti = φ(si).给定(L, s0, · · · , sn)，
那么它对应的态射是f : S → Pn, P 7→ [s0(P ), · · · , sn(P )]，反过来给定一个态射f : S → Pn，取L := f∗O(1)，

si := f∗(xi).

事实上很难给出模问题的准确的定义，但一般一个反变函子

M : Sch/S → Set

给的想要参数化的对象，这个反变函子就称为一个模问题.下面的例子是我们主要考虑的：

例 1. 考虑函子

M : Sch/S → Set

X 7→


E

X

p t

∣∣∣∣∣∣∣∣ p是平坦态射，在每一点的纤维都是亏格为1的曲线，且p ◦ t = idS

 ,

若f : X → Y是概型的态射，M(f)由下图给出

E ×Y X E

X Y.

π

f

例 2. 考虑函子

M : Sch/S → Set

X 7→


C

X

p

∣∣∣∣∣∣∣∣对X的每一点x，纤维Cx是几何连通、正规、光滑且亏格为g的曲线
 ,

定理 2.2. 设E1, E2是两个k上的椭圆曲线，则

定义. 给定函子M : Sch◦ → Set和k概型M，若

1. 存在自然态射η : M ⇒ homSch(−,M)使得对任意的ξ : M ⇒ homSch(−, X)，都存在唯一的f : X →
M满足下图交换：

M homSch(−,M)

homSch(−, X).

η

ξ
homSch(−,f)

2. 对任意包含k的代数闭域K，

ηK : M(SpecK) → homSch(SpecK,M)

都是一个双射，

那么称M是M的一个粗模空间.
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3 几种不同的商

接下来我们会一直有如下假定：给定一个概型S，我们考虑范畴SchS中的群对象G/S，如果作为概型G是

光滑的，则称G是一个S上的代数群(algebraic group).

当给定一个代数群时，它上的乘法µ : G×G→ G给出了一个环同态µ# : OG(G) → OG(G)⊗k OG(G)，它

满足相应的（余）结合性，于是这使得OG(G)是一个余代数，同时OG(G)还是一个代数，它的乘法和余乘法

相容，因此OG(G)被称为一个Hopf代数.

例 3. 假设k是域，S := Spec k，那么以下是代数群：

1. Ga := Spec k[x].其中，µ#定义为x 7→ 1 ⊗ x + x ⊗ 1，i#定义为x 7→ −x，我们举例说明它们满足群公
理.由于

((µ# ◦ id) ◦ µ#)(x) = (µ# ◦ id)(1⊗ x+ x⊗ 1) = 1⊗ x+ x⊗ 1

且

2. Gm := Spec k[t, t−1].

3. GLn := Spec k[xi,j ,det
−1]1≤i,j≤n.

4. SLn = Spec k[xi,j , ]1≤i,j≤n/(det−1).

5. 任意给定有限Abel群G，那么k[G]是k上的代数（也是Hopf代数），

6. 任意给定有限群G，它一定是一个置换群Sn的子群，而Sn是GLn的子群，那么如果我们可以将Sn写为

代数群那么任意有限群都是代数群.具体的步骤在习题3.1中.

7. 按照点函子的观点，给定一个k上的代数群就给定了一个函子R − Alg → Set，R 7→ G(R)，且G(R)是

一个群.给定k向量空间V，考虑函子R 7→ AutR(V ⊗k R)，那么这给出了一个代数群，记为GL(V ).

事实上，从函子的角度µ# : OG(G) → OG(G)⊗k OG(G)的定义如下：给定测试概型T = Spec R，那么一

个G的T点x : T → G对应于x# : OG(G) → R，那么给定两个T点x, y : T → G，由于homk−Alg(OG(G), R)是

群，因此x · y ∈ homSchk
(T,G)，那么它对应的homk−Alg(OG(G), R)是

OG(G)
µ#

−−→ OG(G)⊗k OG(G)
x#⊗y#−−−−→ R,

这样就唯一确定了µ#.

习题 3.1. 这个习题中我们证明存在GLn的子群Sn是一个k上的代数群，具体的嵌入是将Sn对应到GLn中的

置换矩阵.

1. 对任意σ ∈ Sn，定义k[xi,j , ]1≤i,j≤n中的理想

Iσ := ({xi,σ(i) − 1}1≤i≤n, {xi,j}1≤i,j≤n,j ̸=σ(i)),

求证k[xi,j , ]1≤i,j≤n/Iσ ∼= k.
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2. 求证

k[Sn] := k[xi,j , ]1≤i,j≤n

/ ⋂
σ∈Sn

Iσ

是Artin环，且有n!个k点.

3. 在Spec k[Sn]上定义乘法使得它作为一个群同构于Sn.[提示：考虑k[Sn]作为Artin环的分解.]

4. 证明Spec k[Z/nZ]是Spec k[Sn]的子群，于是这个定义包含了之前关于有限Abel群的定义.

习题 3.2. 设G = Gn
m(k)是n维环，证明OG上模的范畴与Zn分次k向量空间的范畴等价.

定义. 设G是代数群，一个G的表示(representation)就是一个态射ρ : G→ GLn，且满足如下交换图

G×S G G

GLn ×S GLn GLn,

µ

ρ×ρ ρ

m

其中µ是G中的乘法，m是GLn中的乘法.

假设G是线性代数群，S := Γ(G,OX)，那么群乘法自然诱导了一个环同态µ̂ : S → S ⊗k S，单位态射诱

导了î : S → k，因此对任意一个k向量空间V，我们可以定义G在V上的对偶作用为线性空间的同态

σ̂ : V → S ⊗k V,

满足

V S ⊗k V

S ⊗k V S ⊗k S ⊗k V

σ̂

σ̂ µ̂⊗idV

idS⊗σ̂

和

V S ⊗k V Vσ̂

idV

î⊗idV

定义. 设G是代数群，σ̂是G在V上的对偶作用，若V的子空间W满足σ̂(W ) ⊆ S⊗kW，则称W是V的不变子空

间(invariant subspace).

引理 3.1. 设G是代数群，σ̂是G在V上的对偶作用，那么V是自己有限维不变子空间的并(逆极限).

给定代数群G在概型X上的作用σ，那么存在一个k代数的同态

σ∗ : OX(X) → OG×X(G×X) ∼= OG(G)⊗k OX(X)

f 7→
N∑
i=1

hi ⊗ fi

这给出了群态射G→ Aut(OX(X))，对于每个g ∈ G，

f 7→
N∑
i=1

hi(g)fi.
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定义. 设G是一个k上的代数群，V是k线性空间，那么G在V上的作用是如下的信息，对任意的k代数R，都

有G(R)在V ⊗k R上的作用

σR : G(R)× (V ⊗k R) → V ⊗k R,

对任意g ∈ G(R)，σR(g,−)都是一个R模同态，而且σR关于R是自然的.

引理 3.2. 设G是仿射代数群，作用在仿射概型X上，那么对于任意f ∈ OX(X)，存在一个有限维的G等变子

空间W ⊆ OX(X)包含f .

证明. 记σ : G × X → X是给定的作用，那么σ∗ : OX(X) → OG(G) ⊗k OX(X)是对偶作用.若有σ∗(f) =∑N
i=1 hi(g)fi，那么

定理 3.1. 任意k上的仿射代数群都是线性仿射代数群.

定义. 设G作用在概型X上，T是另一个概型，f : T → X是一个T值点，那么我们有映射G ×S T
idG×f−−−−→

G×S X
σ−→ X，进而可以定义

ψGf : G×S T → G×S T

为(σ ◦ (idG × f), p2)，简记为ψf .我们称ψf的像为f的轨道(orbit)，记为o(f).另一方面，X ×S T是T上的概型，

于是我们自然地有截面

(f, idT ) : T → X ×S T.

我们定义S(f)为纤维积

S(f) T

G×S T X ×S T,

(f,idT )

ψf

这是G的子群，称为f的(stabilizer).

命题 3.2. 设G作用在概型X上.那么

定义. 给定代数群G在概型X上的作用σ，若

定义. 给定SchS中的群作用σ : G×S X → X，若存在S上的态射φ : X → Y满足

1. 有交换图：

G×S X X

X Y,

σ

p2 φ

φ

2. Y在上图意义下具有泛性质，即若有S上的概型Z和态射ϕ : X → Z满足图

G×S X X

X Z,

σ

p2 ϕ

ϕ
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交换，则存在唯一的态射χ : Y → Z使得ϕ = χ ◦ φ，

那么称Y是G作用在X上的一个范畴商(categorical quotient).

换言之，G作用在X上的范畴商是作用映射和投影映射的推出.

定义. 给定SchS中的群作用σ : G×S X → X，若存在S上的态射φ : X → Y满足

1. 有交换图：

G×S X X

X Y,

σ

p2 φ

φ

2. φ是满态射，且

Ψ = (σ, p2) : G×S X → X ×S X

的像是X ×Y X，

3. φ是拓扑商，也就是说，U ⊆ Y是开集当且仅当φ−1(U) ⊆ X是开集，

4. Y的结构层OY是φ∗OX的包含不变函数的子层，即对于f ∈ Γ(U,φ∗OX) = Γ(φ−1(U),OX)是Γ(U,OY )的

元素当且仅当下图交换

G×S φ
−1(U) φ−1(U)

φ−1(U) A1,

σ

p2 F

F

其中F是f对应的态射，

那么称Y是G作用在X上的一个几何商(geometric quotient).

定义. 给定SchS中的群作用σ : G×S X → X和作用的范畴/几何商φ : X → Y，若对任意f : Y ′ → Y，下面的

纤维积

X ×Y Y
′ Y ′

X Y

f ′ f

φ

都使f ′是一个范畴/几何商，则称Y是万有范畴/几何商(universal - quotient).若以上只对平坦(flat)的成立，则

称Y是一致范畴/几何商(uniform - quotient)

命题 3.3. 设φ : X → Y是G作用在X上的几何商，那么φ : X → Y也是范畴商.

命题 3.4. 设X,Y都是S上的不可约、正规、Noetherian概型，φ : X → Y是有限型的、dominating态射，

Y中generic point的剩余域是特征0的，
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4 可约（reductive）代数群

定义. 设G是代数群，若它的radical是一个环（torus），那么称G是reductive的.

定理 4.1. 设X是k上的仿射概形，G是可约代数群，且σ : G ×k X → X是G在X上的作用.那么作用存在一致

范畴商(Y, φ)，且φ是universially submersive，且Y是仿射概形.若X还是代数的，那么Y也是k上代数的.

5 GIT商

6 空间和层

6.1 拓扑和位形

习题 6.1. U ∩ V = U ×X V .

定义. 给定范畴C，那么C上的Grothendieck拓扑(Grothendieck topology)是对于C中任意对象U都给定的一个
态射族{Ui → U}i∈I的全体Cov(U)的集合（注意Cov(U)不是一族态射集而是一些态射族组成的集合），满足

1. 任意同构{V → U}都在Cov(U)中，

2. 若{Ui → U}i∈I ∈ Cov(U)，那么对于C中的任意态射W → U，Ui ×U W存在且{Ui ×U W → W}i∈I ∈
Cov(W )，

3. 若{Ui → U}i∈I ∈ Cov(U)，那么对任意i ∈ I和{Ui,j → Ui}j∈Ji ∈ Cov(Ui)，那么

{Ui,j → Ui → U}i∈I,j∈Ji ∈ Cov(U).

称若Cov(U)中的态射族为U的开覆盖(covering of U).范畴C与上面的拓扑信息合称为一个位形(site).

例 4 (经典拓扑). 给定拓扑空间X，记Open(X)是X对应的开集范畴，对任意开集U ⊆ X，定义

Cov(U) :=

{
{Ui → U}i∈I

∣∣∣∣∣⋃
i∈I

Ui = U

}
,

这构成了一个位形.特别地，若X是一个概型，那么X的开子集都是概型，这称为X的（小）Zariski位形(small

Zariski site).

与上面做对比，考虑范畴Top，对任意拓扑空间X，定义

Cov(X) :=

{
{Xi → X}i∈I

∣∣∣∣∣Xi → X是开集的嵌入且
⋃
i∈I

Xi = X

}
,

那么这给出了（经典的）Top上的拓扑.类似地取范畴Sch，对任意的概型X定义

Cov(X) := {{Xi → X}i∈I | Xi → X是开子概型且
⋃
i∈I

Xi = X},

这称为Sch上的大Zariski位形(big Zariski site).
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习题 6.2. 给定位形C，那么对于任意C中的对象X，如下定义给出了C/X上的拓扑：对任意C/X中的对象Y →
X，

Cov(Y → X) := {{Yi → Y }i∈I | Yi → Y ∈ mor C/X, {Yi → Y }i∈I ∈ Cov(Y )}.

这样给出的位形称为C的局部位形(licalized site).

例 5. 事实上，给定位形C和图D : J → C，可以定义范畴C/J，满足

ob C/J := {(j, A→ F (j)) | j ∈ ob J,A ∈ ob C},

并且hom((j1, A1 → F (j1)), (j2, A2 → F (j2)))中的元素是态射对(f, f̃)，满足

A1 A2

F (j1) F (j2),

f̃

F (f)

此时给定C/J中的对象(j, A→ F (j))，C/J中的态射的全体

{{(ji, Ai)
(fi,f̃i)−−−−→ (j, A)}i∈I | fi : ji → j是同构且{Ai

f̃i−→ A}i∈I是A的覆盖}

给出了Cov(j, A→ F (j)).

习题 6.3. 求证Grothendieck拓扑等价于(C, τ)，τ给出了对应X 7→ Cov(X)，其中Cov(X)是X上的一族筛(sieves)，

满足

1. 对任意的对象X，hX ∈ Cov(X)，

2. 对任意的态射f : X → Y和u ∈ Cov(X)，u×hX
hY ∈ Cov(X)，

3. 对任意的态射f : X → Y和u ∈ Cov(X)，若对任意Y ∈ C, f ∈ Cov(Y )都有f∗(V ) ∈ Cov(Y )，则V ∈
Cov(X).

例 6. 给定概型X，设范畴Schét
/X是范畴Sch/X中所有平展态射组成的满子范畴，对任意对象U → X，

Cov(U) :=

{
{Ui → U}i∈I

∣∣∣∣∣∐
i∈I

Ui → U是满射

}

给出了Schét
/X上的小平展位形(small étale site).对于范畴Sch/X，

Cov(U) :=

{
{Ui → U}i∈I

∣∣∣∣∣∐
i∈I

Ui → U是满射且每个Ui → U都是平展的

}

给出了其上的平展位形(étale site).

例 7 (fppf(fidèlement plat de présentation finie)位形). 给定概型X，范畴Sch/X，

Cov(U) :=

{
{Ui → U}i∈I

∣∣∣∣∣∐
i∈I

Ui → U是满射，每个Ui → U都是平坦且局部有限展示（因此是忠实满射的）的

}

给出了其上的fppf位形(fppf site)，记为(Sch/X)fppf .
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例 8 (fpqc(fidèlement plate et quasi-compacte)位形). 给定概型X，范畴Sch/X .若开覆盖U = {Ui → U}i∈I满
足对U的任意仿射开子概型V，都存在有有有限限限集J和λ : J → I，对所有j ∈ J都有Uλ(j)的仿射开子概型Vλ(j)满

足
∐
j∈J Vλ(j) → V是满射，则称该开覆盖是拟紧(quasi-compact)的.那么

Cov(U) :=

{
{Ui → U}i∈I

∣∣∣∣∣∐
i∈I

Ui → U是满射，每个Ui → U都是平坦的且开覆盖是拟紧的

}

给出了其上的fpqc位形(fpqc site)，记为(Sch/X)fpqc.

习题 6.4. 求证若U = {Ui → U}i∈I是位形(Sch/X)fpqc中的开覆盖，那么{
∐
i∈I Ui → U}也是(Sch/X)fpqc中的

开覆盖.

习题 6.5. 给定位形(C, τ)，对任意态射的集合U := {Ui → U}i∈I，若U的加细在τ中则U也在τ中，则称拓扑τ是
饱和的(saturated).对任意的位形(C, τ)，它的饱和化(saturation)τ̄是加细在τ中的所有态射的集合.求证：

1. 任意拓扑τ的饱和化是饱和的，

2. τ的饱和化τ̄与τ是等价的拓扑，

3. T ⊆ τ̄，

4. C上的拓扑σ从属于τ当且仅当S ⊆ τ̄，

5. C上的拓扑σ与τ等价当且仅当σ̄ = τ̄，

6. C上的拓扑与唯一一个C上的饱和拓扑等价.

6.2 层和拓扑斯

定义. 给定范畴C，函子
F : C◦ → Set

被称为C上的一个预层(presheaf)，C上所有预层组成的范畴记为Ĉ.若C还是一个位形，

1. 若对C中的任意对象U和U的开覆盖{Ui → U}i∈I，F (U) →
∏
i∈I F (Ui)都是单射，则称F是分离的(separated)，

2. 若对C中的任意对象U和U的开覆盖{Ui → U}i∈I，F (U)恰好是∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ×U Uj)

的等值子，则称F是C上的一个层(sheaf).

如上的定义一个预层是一个函子，自然地定义预层之间的态射是函子之间的自然变换，分离预层和层之

间的态射是相应预层之间的态射.记C上全体分离预层的范畴为Funsep(C,Set)，C上全体层的范畴为Sh(C).

例 9.
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引理 6.1. 若F : Sch◦ → Set是Zariski层，那么它是fpqc层当且仅当对任意仿射满忠实映射f : V → U，

F (U) → F (V ) ⇒ F (V ×U V )

是等值子.

证明. 必要性根据定义是明显的，对于充分性我们分多步来完成证明.

第一步：归结到只有一个态射的情形.任意给定开覆盖U = {Ui → U}i∈I，令V :=
∐
i∈I Ui，那么根据习

题6.4{V → U}也是开覆盖.由于F是Zariski层，由自然嵌入诱导的F (V ) →
∏
i∈I F (Ui)是同构，于是在交换图

F (U) F (V ) F (V ×U V )

F (U)
∏
i∈I F (Ui)

∏
i,j∈I F (Ui ×U Uj)

pr∗1

pr∗2

pr∗1

pr∗2

中，每一列都是同构，于是上一行是等值子当且仅当下一行是等值子，这归结到了只有一个态射的第一行的

情形.

第二步：证明F是分离的.任意给定fpqc态射f : V → U，取U的一个仿射开覆盖U =
⋃
i∈I Ui和Vi =

f−1(Ui)，由于f是拟紧的，每个Vi可以由有限多个仿射开集覆盖，记为Vi =
⋃
a∈Λi

Vi,a，于是嵌入映射也诱

导了交换图

F (U) F (V )

∏
i∈I F (Ui)

∏
i∈I
∏
a∈Λi

F (Vi,a),

其中由于F是Zariski层，每一列都是单射；同时，因为Λi的有限性，
∐
a∈Λi

Vi,a也是仿射的，根据假设

F (Ui) →
∏
a∈Λi

F (Vi,a)

也是单射，因此交换图中F (U) → F (V )是单射.

第三步：归结到像集是仿射概型的情形.考虑任意fpqc态射f : V → U，同样地取U的一个仿射开覆盖U =⋃
i∈I Ui和Vi = f−1(Ui)，限制映射诱导了交换图

F (U) F (V ) F (V ×U V )

∏
i∈I F (Ui)

∏
i∈I F (Vi)

∏
i∈I F (Vi ×Ui

Vi)

∏
i,j∈I F (Ui ∩ Uj)

∏
i,j∈I F (Vi ∩ Vj),

pr∗1

pr∗2

ι∗1ι∗2

pr∗1

pr∗2

ι∗1ι∗2

由于F是Zariski层，第一列和第二列都是等值子.若命题对于像集是仿射概型的情形都正确，那么

F (Ui) F (Vi) F (Vi ×Ui
Vi)

pr∗1

pr∗2

是等值子，因此交换图中第二行也是等值子.做简单的追图：假设存在b ∈ F (V )使得pr∗1(b) = pr∗2(b)，记bi是b在Vi上

的限制，我们想要说明
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1. pr∗1(bi) = pr∗2(bi)对于所有i ∈ I成立，这因为图的交换性，

2. 存在ai ∈ F (Ui)使得bi = F (f |Ui
)(ai)，这是因为第二行是正合的，

3. ι∗1(ai) = ι∗2(ai)对于所有i ∈ I成立，这是因为第二列是正合的且图是交换的；于是存在a ∈ F (U)使

得ai是a在Ui上的限制，

4. F (f)(a) = b，这是因为单射性与图的交换性，

这样就证明了这一步.

第四步：归结到由仿射概型之间忠实平坦态射的情形.考虑任意fpqc态射f : V → U，其中U是仿射概型，

那么存在V的一个有限Zariski开覆盖V =
⋃n
i=1 Vi使得每个fi = f |Vi

: Vi → U都是忠实平坦的满射.假定仿射概

型之间忠实平坦态射的情形成立，对于图

F (U)
∏n
i=1 F (Vi)

∏n
i,j=1 F (Vi ×U Vj),

pr∗1

pr∗2

考虑W =
∐n
i=1 Vi，如前讨论这直接证明了上图是等值子图.再做同样的追图即可.

定理 6.1. 若X是概型，那么hX是Sch上的fpqc层.

证明. 根据命题1.1，当X是仿射概形时已完成证明.

定理 6.2. 嵌入函子

Sh(C) ↪→ Fun(C,Set)

存在左伴随函子.

证明. 事实上，我们将会证明范畴的嵌入

Sh(C) ↪→ Funsep(C,Set)

和

Funsep(C,Set) ↪→ Fun(C,Set)

都有左伴随，因此两个左伴随的复合就是我们想要的.

对于嵌入

Funsep(C,Set) ↪→ Fun(C,Set),

定义. 一个等价于位形上的层范畴的范畴成为拓扑斯(topos).

通常，对位形上拓扑斯的研究比位形本身更为重要，这样会带来更大程度上的方便，因为不同的位形可

能会给出等价拓扑斯.在SGA4中，这里定义的拓扑被称为预拓扑(pre-topology)，

例 10. Sch上的层范畴等价于AffSch上的层范畴.

例 11. 给定概型X和Sch/X上的平展拓扑，考虑Schaff,ét
/X 是Sch/X中仅包含满足U是仿射概型的平展满射U →

X的子范畴，那么位形Sch/X与位形Schaff,ét
/X 给出相同的拓扑斯.



7 纤维范畴 14

习题 6.6. 给定范畴C及其满子范畴D，且满足

1. 对任意C中的对象X，存在开覆盖{Ui → U}i∈I满足对所有的i ∈ I，Ui是D中的对象，

2. 若C中的开覆盖{Ui → U}i∈I满足对所有的Ui和U都是D中的对象，那么对任意D中的态射V → U，V ×U

Ui都是D中的对象，

证明可以给出D上的拓扑，满足{Ui → U}i∈I是D中的开覆盖当且仅当它是C中的开覆盖，并且证明位形C,D给
出相同的拓扑斯.

命题 6.3. 给定拓扑斯T和小范畴J，那么对任意的图D : J → T，极限limJ D存在.

证明.

定义. 给定位形C1, C2和对应地拓扑斯T1, T2，若函子F : C2 → C1满足对任意C2的对象X和它的开覆盖{Xi →
X}i∈I，{F (Xi) → F (X)}i∈I也是C1中对象F (X)的开覆盖，并且F与纤维积是交换的，则称F是连续的(continuous).

若F : C2 → C1是连续函子，那么存在自然诱导的函子F∗ : T1 → T2：

命题 6.4.

6.3 筛

7 纤维范畴

7.1 元素范畴和离散纤维

定义. 给定局部小的范畴C和反变函子F : C◦ → Set，如下范畴

1. 对象包含了所有的有序对(A, a)，其中A是C中的对象，a是F (A)中的元素，

2. hom((A, a), (B, b)) := {f ∈ homC(A,B) | F (f)(b) = a}

被称为F的元素范畴(category of elements)，记为
∫ C

F .

元素范畴事实上给出了一个函子 ∫ C
: Funct(C◦,Set) → CAT,

它的验证留着习题中.

习题 7.1. 验证构造元素范畴的函子性.

证明. 给定函子F,G : C◦ ⇒ Set和自然变换α : F ⇒ G，那么构造∫ C
η :

∫ C
F →

∫ C
G

(A, a) 7→ (A, ηA(a))

f 7→ f,

注意到G(f)(ηB(a)) = ηA(F (f)(a))，这是良定义的.
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注意到给定范畴C和反变函子F : C◦ → Set，存在自然的函子

P :

∫ C
F → C

(A, a) 7→ A

f 7→ f,

满足如下条件：

引理 7.1. 对任意对象(B, b) ∈
∫ C

F和g : X → B = P (B, b)，存在唯一的
∫ C

F中的态射f使得P (f) = g.

证明. 按照定义，唯一性是显然的，只要证明存在性即可.取X = (A, a)，其中a = F (f)(b)，那么显然这是良

定义的.

我们称满足引理7.1的函子P为离散纤维(discrete fibration).记DiscFib(C)是C上离散纤维组成的范畴，即DiscFib(C)中
的对象是离散纤维P : F → C，对象之间的态射是函子G : F1 → F2满足P1 = P2G.显然，DiscFib(C)是CAT/C的

满子范畴.一个重要的事情是范畴C上的离散纤维与C的预层一一对应：

定理 7.1. 存在范畴的等价

DiscFib(C) ≃ Funct(C◦,Set).

证明.

更进一步地，若函子是C◦ → Cat，我们同样有类似于元素范畴的构造，被称为Grothendieck构造：

定义. 给定局部小的范畴C和反变函子F : C◦ → Cat，如下范畴

1. 对象包含了所有的有序对(A, a)，其中A是C中的对象，a是F (A)中的对象，

2. hom((A, a), (B, b)) := {(f, g) | f ∈ homC(A,B), g ∈ homF (A)(F (f)(b), a)}，

3. 复合满足(h, k) ◦ (f, g) = (h ◦ f, g ◦ F (f)(k))

被称为F的Grothendieck构造(Grothendieck construction)，也记为
∫ C

F .

注意到此时同样存在自然的函子

P :

∫ C
F → C

(A, a) 7→ A

f 7→ f,

但该函子类似引理7.1的描述并不简单，为此我们需要新的概念.

7.2 笛卡尔态射

定义. 设P : F → C是C上的范畴，给定F中的态射f : A→ B，若对任意F中的对象C和态射h : C → B，只要

有C中的交换图
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P (C)

P (A) P (B),

g̃
P (h)

P (f)

都存在唯一F中的态射g : C → A使得P (g) = g̃，即

C

A B,

g h

f

则称f是（强）笛卡尔态射((strongly) cartesian morphism).

例 12. 设C是给定的范畴，A是C中的对象，于是我们有A上的斜线范畴C/A和自然的函子P : C/A→ C.对任意
的f/A : B → D，由定义P (f/A) = f : B → D.给定C/A中的对象u : B → A和w : D → A对任意C中的交换图

C

B D,

g h

f

给出了C/A中的对象C w◦h=w◦f◦g−−−−−−−→ D，且由于w ◦ f = u，g : C → B是C/A中的态射，这意味着C/A中的态射
都是笛卡尔的.

例 13. 设C是给定的范畴，且其中任意的纤维积存在，定义范畴Arr(C)如下，它的对象是C中的态射f : X →
A，态射α = (h, k) : f : X → A⇒ g : Y → B是交换图

X A

Y B.

h

f

k

g

考虑函子P : Arr(C) → C，它将Arr(C)中对象f : X → A映到A，将态射α = (h, k)映到k : A → B.明显地，

Arr(C) ∼= Funct([1], C).
我们要证明α是笛卡尔态射当且仅当X是α的定义交换图的拉回，简称α是一个笛卡尔图.

首先如果我们有C中的交换图

Z

X Y

C

A B,

w

u

v

f

h

g

p

q

k

使得X是C中的拉回，那么存在（唯一的）w : Z 99K X使得图交换，因此这是一个笛卡尔态射.另一方面我们

考虑若α = (h, k)是一个笛卡尔态射，由定义下图
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Z

X Y

A

A B

w

u

v

f

h

gk

k

有唯一的w : Z 99K X使得整幅图交换，因此X是拉回.

引理 7.2. 设P : F → C是C上的范畴，给定F中的态射f : A → B，那么f是笛卡尔态射当且仅当对任意C中的
对象C，映射

homF(C,A) → homF(C,B)×homC(P (C),P (B)) homC(P (C), P (A))

g 7→ (f ◦ g, P (g))

是一个双射.换句话说，图

homF(C,A) homF(C,B)

homC(P (C), P (A)) homC(P (C), P (B))

P

f∗

P

P (f)∗

是拉回图.

证明. 首先注意到，在纤维积homF(C,B)×homC(P (C),P (B))homC(P (C), P (A))中，homF(C,B) → homC(P (C), P (B))是

映射h 7→ P (h)，homC(P (C), P (A)) → homC(P (C), P (B))是映射g̃ 7→ P (f) ◦ g̃.
若f是笛卡尔态射，任意给定(h, g̃) ∈ homF(C,B) ×homC(P (C),P (B)) homC(P (C), P (A))，那么根据纤维积

的定义P (h) = P (f) ◦ g̃，于是存在唯一的g : C → A使得P (g) = g̃且f ◦ g = h，即该映射是双射.另一方面，

若这个映射是双射，那么给定对象C和h : C → B, g̃ : P (C) → P (A)满足P (h) = P (f) ◦ g̃恰好给出了纤维
积homF(C,B) ×homC(P (C),P (B)) homC(P (C), P (A))中的一个元素(h, g̃)，因此存在唯一的h : C → A，这就是

笛卡尔态射的定义.

引理 7.3. 设P : F → C是C上的范畴，给定F中的态射f : A→ C和g : B → C，满足

1. f : A→ C是笛卡尔态射，

2. P (A)×P (C) P (B)存在，

3. 存在F中的笛卡尔态射k : D → B满足P (D) = P (A) ×P (C) P (B)且P (k) = pr2 : P (A) ×P (C) P (B) →
P (B)，

那么A×C B存在且同构于D.

证明.

习题 7.2. 给定C上的范畴P : F → C，那么
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1. 笛卡尔态射的复合是笛卡尔态射，

2. 若态射A → B,B → C满足复合A → B → C是笛卡尔态射，那么A → B是笛卡尔态射当且仅当B →
C是笛卡尔态射，

3. 若F中的态射f : A→ B满足是P (f) : P (A) → P (B)同构，那么它是笛卡尔的当且仅当它本身是同构，

4. 若Q : G → F是函子，A → B是G中的态射，若A → B是Q : G → F的笛卡尔态射，P (A) → P (B)是P :

F → C的笛卡尔态射，那么A→ B是P ◦Q : G → C的笛卡尔态射.

定义. 设P : F → C是C上的范畴，若对任意F中的对象B和C中的态射f : X → P (B)，都存在F中的笛卡尔态
射g : A→ B使得P (g) = f

A B

X P (B),

g

f=P (g)

则称F是C上的纤维范畴(fibred category).

如上定义可以看作纤维范畴保证在另一种形式下（因为有的对应不是真正的态射）拉回图总是存在的，

并且习题7.2说明纤维范畴具有传递性.

引理 7.4. 给定局部小的范畴C和反变函子F : C◦ → Cat，那么自然的投影P :
∫ C

F → C是纤维范畴.

证明.

7.3 2范畴结构

当给定一个纤维范畴P : F → C时，F自然地可以看作一个“函子”C◦ → CAT，它将C中的对象X映
到F(X) := {A ∈ ob F | P (A) = X}，且

homF(X)(A,B) =

{
{f | P (f) = idP (A)} P (A) = P (B)

∅ P (A) ̸= P (B)
.

我们之后会具体解释这一个对应的函子性.

例 14. 给定范畴SchS，f : X → Y是其中取定的态射，那么对于任意的T → S，拉回X ×S T存在，并且范畴

论一般的理论说明所有的拉回在同构上是唯一的.但是，在通常的使用中我们需要选取一个对象作为拉回，而

不是自然地取唯一的一个拉回，这样的现象是叠理论发展中非平凡的技术性障碍.纤维范畴的引入就是为了解

决这一困难.

取范畴F满足对象是SchS中的拉回图

X ×S T X

T S,

态射是SchS中的态射T1 99K T2和X ×S T1 99K X ×S T2满足交换图
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X ×S T2 X ×S T1 X

T2 T1 S,

并且函子P : F → SchS将拉回图

X ×S T X

T S

映为T → S，那么对于任意T ∈ SchS，F(T )包含了所有的同构的X ×S T，并且任意F(T )中的两个对象都是

唯一同构的，即F(T )中的同构是唯一的（这由拉回的定义保证）.

引理 7.5. 给定C上的纤维范畴P : F → C，那么F中的任意态射f : A→ B都可以分解为

A
h−→ C

u−→ B,

其中h : A→ C是F(P (A))中的态射，且u : C → B是笛卡尔态射.

定义. 给定C上的纤维范畴P : F → C, Q : G → C，若函子H : F → G将F中的笛卡尔态射映到G中的笛卡尔态
射，且满足交换图（作为函子是相等而不是同构）

F G

C,

P

H

Q

则称H是纤维范畴的态射(morphism of fibred categories).我们记F到G的所有态射为

HOMC(F ,G).

若H1, H2 : F → G是两个纤维范畴的态射，若自然变换η : H1 ⇒ H2若满足对任意的A ∈ ob F，G中的态
射ηA : H1(A) → H2(A)在G(P (A))中，即Q(ηA) = idP (A)，则称η是保基自然变换(base-preserving natural

transformation).这样HOMC(F ,G)按照自然变换的复合事实上是一个范畴.

定理 7.2 (2-Yoneda). 映射

η : HOMC(C/A,F) → F(A)

(g : C/A→ F) 7→ g(idA)

是纤维范畴的态射，并且诱导了两个范畴的等价.

证明.

推论 7.2.1. 给定范畴C和对象A,B，那么

η : HOMC(C/A, C/B) → homC(A,B)

(g : C/A→ C/B) 7→ g(idA)

是范畴的等价.
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7.4 拟函子

任意给定纤维范畴P : F → C, Q : G → C之间的态射H : F → G，那么对于任意C中的对象A，如上定义
保证了H将F(A)映到G(A)，因此可以考虑函子HA : F(A) → G(A).

如果我们考虑的C上的范畴P : F → C过于一般，那么对于任意C中的态射f : A → B，存在可能性使

得F(A)是空但F(B)不是.这时候，纤维范畴的性质就解决了这样的问题.

给定C上的纤维范畴P : F → C和C中的态射f : X → P (B)，那么由定义存在A ∈ ob F和h : A → B使

得P (h) = f，通常称A是B关于f的拉回(pull-back)，记为A = f∗B

f∗B B

X P (B).

h

f=P (h)

若同时存在B1, B2和g : B1 → B2 ∈ F(B)，那么交换图

f∗B1 B1

f∗B2 B2

X

X P (B)

f∗(g)

h1

g

h2

f

f

说明存在唯一的f∗(g) : f∗B1 → f∗B2使得整幅图是交换的.

如上所述，纤维范畴事实上可以让我们在某种意义上取拉回！

定义. 给定纤维范畴P : F → C，它的一个cleavage是F中的一族笛卡尔态射K，使得对任意C中的态射f̃ :

X → Y和满足P (B) = Y的F中的对象B，存在唯一的f : A→ B ∈ K使得P (f) = f̃ .选择公理说明任意纤维范

畴的cleavage都是存在的.

定义之前的讨论似乎说明了给定纤维范畴P : F → C，F可以看作一个函子C◦ → CAT，任意的态射f :

X → Y给出了函子f∗ : F(Y ) → F(X).但是，实际上这样给出的对应f 7→ f∗并不具有函子性，一方面是因

为，单位态射idX的拉回id∗
X : F(X) → F(X)并不一定是单位函子；虽然可以选择cleavage使得单位态射拉回

是单位函子，但这并不“自然”，事实上，根据习题7.2中3，拉回保证了ϵX : id∗
XA → A是同构，于是这给出

了“函子”之间的同构ϵX : id∗
X → id.

更重要的问题是，考虑C中的态射X f−→ Y
g−→ Z，那么对于F中满足P (C) = W的对象C，f∗g∗C和(g ◦

f)∗C都是C沿g ◦ f的拉回，我们没有任何理由保证f∗g∗C = (g ◦ f)∗C，只能类似之前讨论的那样得到自然的
同构ηf,g(C) : f

∗g∗C → (g ◦ f)∗C.这样导致之前的构造实质上并没有函子性.但是，这距离真正的函子性并不

遥远，核心技术性的内容来自于所有的范畴组成一个2范畴，这样给了我们更多的结构方便讨论.

定义. 给定范畴C，那么C◦上的一个拟函子F (pseudo-functor, lax 2-functor)包含以下信息

(i) 对任意C中的对象X，F (X)是一个范畴，

(ii) 对任意C中的态射f : X → Y，f∗ : F (Y ) → F (X)是一个函子，
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(iii) 对任意C中的对象X，存在函子之间的自然同构ϵX : id∗
X ⇒ idF (X)，

(iv) 对任意C中的态射X f−→ Y
g−→ Z，存在函子之间的自然同构ηf,g : f

∗g∗ ⇒ (g ◦ f)∗，

满足

1. 任给定C中的态射f : X → Y和F (Y )中的对象B，

ηidX ,f (B) = ϵX(f
∗B) : id∗

Xf
∗B → f∗B

且

ηf,idY
(B) = f∗ϵX(B) : f∗B → id∗

Y f
∗B,

2. 任给定C中的态射W f−→ X
g−→ Y

h−→ Z和F (Z)中的对象D，下图交换

f∗g∗h∗D (gf)∗h∗D

f∗(hg)∗D (hgf)∗D.

ηf,g(h
∗D)

f∗ηg,h(D) ηgf,h(D)

ηf,hg(D)

命题 7.3. 任意纤维范畴p : F → C及其上的cleavage给出了一个拟函子F .

证明.

定义. 给定纤维范畴p : F → C及其上的cleavage K，若它包含所有的单位态射并在复合下封闭，则称K是分

裂的.

推论 7.3.1. p : F → C上cleavage K给出的拟函子是函子当且仅当K是分裂的.

例 15.

事实上，反过来的命题也是正确的，即给定一个范畴C上的拟函子都一定能够构造与之对应的纤维范畴
和cleavage.我们先从简单的情形——F : C◦ → CAT是一个函子开始，具体说来对任意C中的对象X，都有一
个范畴F (X)对应，对C中的任意态射f : X → Y，都有函子f∗ = F (f)对应，满足(idX)

∗ = F (idX) = idF (X)，

且对任意可复合的态射X
f−→ Y

g−→ Z，(g ◦ f)∗ = f∗ ◦ g∗.
此时，我们尝试构造相应的纤维范畴P : F → C，使得存在典范的范畴等价F(X) ≃ F (X)对任意C中的对

象X都成立：

(i) F中的对象定义为有序对(X,A)，其中X是C中的对象，A是F (X)中的对象，

(ii) 给定对象(X,A)和(Y,B)，态射是有序对(f, g)，其中f : X → Y是C中的态射，g : A → f∗B是F (X)中的

态射，

(iii) 给定态射(f, g) : (X,A) → (Y,B)和(h, k) : (Y,B) → (Z,C)，它们的复合定义为

(h, k) ◦ (f, g) = (h ◦ f, f∗(k) ◦ g) : (X,A) → (Z,C),

此时，存在自然的函子P : F → C，将对象(X,A)映到X，将态射(f, g)映到f .此时，这个函子使得P : F →
C是纤维范畴.

于是我们实际上证明了

定理 7.4.
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7.5 群胚纤维范畴

定义. C上的纤维范畴P : F → C若满足对任意C中的对象A，F(A)都是群胚，即F中被映到id的态射都是可逆

的，则称F是群胚纤维范畴(category fibred over groupoid).

例 16. 作为一个更特别的例子，考虑Bun是所有拓扑（连续）向量丛组成的范畴，其中的态射是丛态射.由

于拓扑向量丛的拉回依旧是拓扑向量丛，因此例13中的证明也说明了Bun → Top是一个纤维范畴.一般而言

这不是一个群胚纤维范畴，但给定拓扑群G，定义G的分类叠(classfying stack)如下，BG是Top，对象是G主

丛P → X，态射是丛态射，可以证明这个特殊情况是群胚纤维范畴.

命题 7.5. 设C上有纤维范畴P : F → C, Q : G → C，若F是集合纤维范畴，则范畴HOMC(F ,G)是一个集合，
若F是群胚纤维范畴，则范畴HOMC(F ,G)是一个群胚.

证明.

命题 7.6. 给定C上的范畴P : F → C，那么F是群胚纤维范畴当且仅当如下两条成立：

1. F中的所有态射都是笛卡尔态射，

2. 对任意F中的对象B和C中的态射f : X → P (B)，都存在F中的态射f̃ : A→ B满足P (f̃) = f .

证明. 假定如上两条成立，那么我们要证明F是群胚纤维范畴；P : F → C明显是纤维范畴，因此只要证明对
任意f : A → B ∈ F，若P (f) = idX，则f是F(X)中的同构即可.由条件1，f是笛卡尔映射，因此根据定义存

在唯一的g : B → A满足f ◦ g = idB；同理g的左逆存在，因而f是同构.

反过来假设P : F → C是群胚纤维范畴，只要证明条件1就立即有条件2.

定义. 给定C上的纤维范畴P : F → C，对于C中的对象X和F(X)中的对象A,B，存在如下的预层：

Iso(A,B) : C◦/X → Set,

对于Y
f−→ X，由给定的cleavage选定拉回f∗A和f∗B（它们都是F(Y )中的对象），那么

Iso(A,B)(Y
f−→ X) := homF(Y )(f

∗A, f∗B).

对于C/X中的态射h : Y → Z，函子得到的限制映射是

homF(Y )(f
∗A, f∗B)

h∗

−→ homF(Z)(g
∗f∗A, g∗f∗B) ∼= homF(Z)((fg)

∗A, (fg)∗B).

习题 7.3. 验证上述定义中的h∗是良定义的.

7.6 拉回和推出

习题 7.4. 若G,H1,H2都是群胚，且存在函子Fi : Hi → G，那么H1 ×G H2.

定义. 设D上的范畴P : F → D是纤维范畴，G : C → D是函子，则对象是配对(X ∈ ob C, A ∈ F(f(X)))，态

射f : (X,A) → (Y,B)是满足P (f) ∈ homD(F(f(X)),F(f(Y )))的F中的态射f : X → Y的范畴G−1(F)被称

为F关于G的拉回.
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G−1(F) F

C D.

G−1(P ) P

G

在上面的定义中，我们没有把纤维范畴的拉回写为“对称”的，这是因为，虽然我们可以证明G−1(F)就

是范畴的纤维积F ×D C，但是下面的事情说明定义对于纤维性并不对称：

引理 7.6. G−1(F)是C上的纤维范畴.

定义.

例 17.

8 下降法

在代数几何当中，我们知道，当局部存在拟凝聚层时，只要它们满足被称为“条件”的相容性，就存在同

构意义下唯一的拟凝聚层使得它在局部的限制恰好为给定的拟凝聚层.当前一段中的“局部”所指是“Zariski局

部”的时候，这个命题并不难证明，但我们同样可以证明命题在“平坦局部”的情形下依旧成立，而这个命

题的证明就会困难很多.对这个局部性的讨论就需要Grothendieck拓扑，但只要接受对一个层F复合态射的拉

回有自然的同构f∗g∗F ∼= (gf)∗F，它依旧是一个自然并且简单的命题.

但问题是，之前得到的只是一个同构而不是一个相等，为保证证明的严格性，我们必须建立一套理论，

使得可以最终得到想要的由局部信息“粘合”的对象，这样的理论就是下降法(descent theory)，而下降法成

立的范畴就被称为叠(stack).

引理 8.1. 设C是存在纤维积的范畴，{∗}是终对象，那么对任意A ∈ ob C，f : A→ {∗}给出了范畴的嵌入

f∗ : C/A → C

使得f∗是一个函子.

证明.

引理 8.2. 设C是存在纤维积的范畴，A ∈ ob C且C/A是对象A上的范畴，那么对于任意B ∈ ob C，函子hB :=

homC(−, B)在C/A上的限制是hB×A := homC/A
(−, B ×A).

证明.

8.1 几何对象的下降

8.2 纤维范畴的下降

考虑范畴SchS，X是其中的对象，若函子F : Sch◦
S → Set满足它在SchX上的限制是可表的，

定义. 给定一个位形C和上面的纤维范畴P : F → C，且我们选定一个cleavage.设U := {ιi : Ui → U}i∈I是C中U的
一个覆盖.U上的一个下降信息对象(an object with descent data on U)是一族对象(Ai, φi,j)，其中Ai是F(Ui)中

的对象，φi,j是同构

φi,j : pr
∗
1Ai

∼= pr∗2Aj ,
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且对于任意的i, j, k满足如下的上闭链条件(cocycle condition)：

pr∗1,3φi,k = pr∗2,3φj,k ◦ pr∗1,2φi,j : pr∗1Ai → pr∗2Aj → pr∗3Ak.

其中，φi,j被称为转移同构(transition isomorphism).

下降对象的态射

η : (Ai, φi,j) → (Bi, ψi,j)

是一族态射ηi : Ai → Bi满足交换图

pr∗1Ai pr∗2Aj

pr∗1Bi pr∗2Bj .

φi,j

pr∗1ηi pr∗2ηj

ψi,j

我们记所有下降对象组成的范畴为F(U) = F({ιi : Ui → U}i∈I).

例 18. 在例16中，我们说明了Bun → Top是一个纤维范畴.考虑一个给定的拓扑空间B和开覆盖U = {ιi :

Ui → B}i∈I，使得向量丛p : E → B满足φi : p−1(Ui) → Ui × F是拓扑空间的同胚，其中F是纤维；于是如上

的局部性说明p−1(Ui) ∈ ob Bun(Ui).此外，向量丛的定义还给出了同构

(Ui ∩ Uj)× F
φ−1

j |(Ui∩Uj)×F

−−−−−−−−−→ p−1(Ui ∩ Uj)
φi|Ui∩Uj−−−−−→ (Ui ∩ Uj)× F,

记它为φj,i.注意到Ui ∩ Uj = Ui ×U Uj，第一个(Ui ∩ Uj)× F是作为Uj × F的子空间，于是

(Ui ∩ Uj)× F = pr∗2Aj ,

并且由于每个(Ui ∩ Uj ∩ Uk)× F是同一个E的子空间的同构像，故上闭链条件自动满足.于是，这说明了给定

拓扑向量丛p : E → B也就给定了U上的下降信息.反过来，拓扑中证明了粘合引理，于是给定了下降信息对象

也就给定了（同构唯一的）拓扑向量丛.

给定一个拉回的选择，那么对于任意的对象A ∈ F(U)，都存在一个U := {ιi : Ui → U}i∈I上的下降对
象(Ai, φi,j)，其中Ai根据拉回的选择而给出，而同构恰好由笛卡尔映射的性质？？？给出，因为pr∗1Ai,pr

∗
2Aj都

是F(Ui ×U Uj)中的对象.同样地，对任意的C中的态射f : U → V，我们可以得到ι∗i f : Ai → Bi，于是这是一

个函子F(U) → F(U).

习题 8.1. 假定给定两个拉回的选择，分别得到下降对象的范畴F(U)和F(U).求证两个范畴同构，且这个同构
与之前提到的函子F(U) → F(U)交换.

定义. F(U)中的对象(Ai, φi,j)若同构于F(U)的象，则称它是有效的(effective).

事实上，我们还有不需要给定拉回选择定义下降资料的方法：

定义. 给定一个位形C和上面的纤维范畴P : F → C，U := {ιi : Ui → U}i∈I是C中U的一个覆盖.U上的一个下
降信息对象是一族对象({Ai}i∈I , {Ai,j}i,j∈I , {Ai,j,k}i,j,k∈I)，其中Ai ∈ F(Ui), Ai,j ∈ F(Ui,j), Ai,j,k ∈ F(Ui,j,k)，

且对任意三个指标都有如下交换图
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Ai,j,k Aj,k

Ai,j Aj

Ai,k Ak,

Ai

其中每个箭头都是笛卡尔态射，且函子P : F → C作用在图上得到C中的一个覆盖图.

两个对象({Ai}i∈I , {Ai,j}i,j∈I , {Ai,j,k}i,j,k∈I)和({Bi}i∈I , {Bi,j}i,j∈I , {Bi,j,k}i,j,k∈I)之间的态射是一族F中的
态射

η : ({Ai}, {Ai,j}, {Ai,j,k}) → ({Bi}, {Bi,j}, {Bi,j,k})

ηi : Ai → Bi,

满足

pr∗1ηi = pr∗2ηj : Ai,j → Bi,j .

我们记这个范畴为Fdesc(U).

习题 8.2. 验证Fdesc(U)中态射的定义同于给定态射ηi : Ai → Bi, ηi,j : Ai,j → Bi,j , ηi,j,k : Ai,j,k → Bi,j,k，且它

们满足相应的相容性关系.

一旦给定一个拉回的选择，就存在一个函子Fdesc(U) → F(U)，将对象({Ai}i∈I , {Ai,j}i,j∈I , {Ai,j,k}i,j,k∈I)映
到(Ai, φi,j)，其中

φi,j : pr
∗
1Ai

∼= Ai,j → pr∗2Aj
∼= Ai,j

由拉回给出.同样给定拉回的选择后，也有函子F(U) → F(U)desc.

习题 8.3. 验证范畴的同构

Fdesc(U) ≃ F(U).

注意到定义中并不存在交换图右下角的对象，这个对象恰好对应覆盖图当中的终对象.但是如果我们定义

范畴Fcomp(U)，其中的对象是(A, {Ai}i∈I , {Ai,j}i,j∈I , {Ai,j,k}i,j,k∈I)满足A ∈ F(U), Ai ∈ F(Ui), Ai,j ∈ F(Ui,j), Ai,j,k ∈
F(Ui,j,k)，且如下交换图

Ai,j,k Aj,k

Ai,j Aj

Ai,k Ak

Ai A
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成立，其中所有的箭头都是笛卡尔态射.类似于范畴Fdesc(U)，对象之间的态射定义为相应项之间的满足相容
性条件的态射.值得注意的是，Fcomp(U)与范畴F(U)同构.

习题 8.4. 验证范畴的同构

Fcomp(U) ≃ F(U).

8.3 模的平坦下降

给定交换环R和R代数α : R→ A，给定一个R模那么自然地有A模A⊗RM，记

αM :M → A⊗RM

m 7→ 1⊗m,

此时，存在自然的A模同构ψM : A⊗RM → M ⊗R A, a⊗m 7→ m⊗ a.反过来若给定一个A模N，那么在什么

情况下存在R模M使得N ∼= A⊗RM？

我们首先从如下问题开始，给定一个A模N，那么有两种方式使得N成为一个A⊗R A模，即要么是N ⊗R

A要么是A⊗RN，它们的数乘结构都定义为(a1⊗a2)(x1⊗x2) = (a1x1)⊗ (a2x2)；同时我们有自然的A⊗RA模

的同构

ψN : A⊗R N → N ⊗R A

a⊗ n 7→ n⊗ a.

任意给定一个同构ψ : A⊗R N → N ⊗R A，使N成为A⊗R A⊗R A模有对应的A⊗R A⊗R A模同构

ψ1 : A⊗R A⊗R N → A⊗R N ⊗R A

ψ2 : A⊗R A⊗R N → N ⊗R A⊗R A

ψ3 : A⊗R N ⊗R A→ N ⊗R A⊗R A,

分别取第一、第二和第三项为恒同映射，具体而言，若ψ(a⊗n) =
∑K

i=1 yi⊗xi，那么ψ1 = idA⊗ψ : b⊗a⊗n 7→∑K
i=1 a⊗ yi⊗ xi, ψ3 = ψ⊗ idA : a⊗ n⊗ b 7→

∑K
i=1 yi⊗ xi⊗ b，并且ψ2 = (idA⊗ψN ) ◦ (idA⊗ψ) ◦ (ψA⊗ idN ) :

a⊗ b⊗ n 7→ b⊗ a⊗ n 7→ b⊗
∑K

i=1 yi ⊗ xi 7→
∑K

i=1 yi ⊗ b⊗ xi（这里ψN和ψ不是同一个映射）.一般情况下这

三个映射没有关系，但如果N = A⊗RM，定义

ψ = ψA,M : A⊗R (A⊗RM) → (A⊗RM)⊗R A

a⊗ b⊗m 7→ a⊗m⊗ b,

这样有

ψ2 = ψ3 ◦ ψ1.

仿照如上的讨论，定义范畴α−Mod，对象是有序对(N,ψ)，其中N是A模，ψ是同构

ψ : A⊗R N → N ⊗R A,

满足如下定义的ψ1 = idA ⊗ ψ,ψ2 = (idA ⊗ ψN ) ◦ (idA ⊗ ψ) ◦ (ψA ⊗ idN ), ψ3 = ψ ⊗ idA有关系

ψ2 = ψ3 ◦ ψ1.
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注意到这里并不要求ψ是映射a⊗n 7→ n⊗a.给定两个对象(N,ψ), (P, ξ)，那么一个态射是A模同态φ : N → P满

足交换图

A⊗R N N ⊗R A

A⊗R P P ⊗R A.

ψ

idA⊗φ φ⊗idA

ξ

注意到，

F : R−Mod → α−Mod

M 7→ (A⊗RM,ψM : A⊗R (A⊗RM) → (A⊗RM)⊗R A)

给出了一个函子，其中ψM = idA ⊗ ψ : a ⊗ b ⊗m 7→ a ⊗m ⊗ b.对任意的R模同态φ : M1 → M2，F (φ)定义

为idA ⊗ ψ.

习题 8.5. 验证如上给出的ψA,M是A⊗R A模同态，并且(A⊗RM,ψA,M )是α−Mod中的对象.

如上正合性的证明的思路实际上是先提升到A模范畴中，借用已经存在的截面映射证明正合性，在直接

下降到R模范畴中.

现在我们可以讨论最重要的结果了：

定理 8.1. 若α : R→ A是忠实平坦的，那么函子

F : R−Mod → α−Mod

给出了范畴的等价.

证明. 定义函子G : α−Mod → R−Mod，将α−Mod中的对象(N,ψ)映到N的子模

G(N) := {n ∈ N | n⊗ 1 = ψ(1⊗ n)} = {n ∈ N | ψ−1(n⊗ 1) = 1⊗ n},

态射φ : (N,ψ) → (P, ξ)映到φ|G(N).接下来分别需要验证G ◦ F和F ◦G同构于相应范畴上的恒同函子.

注意到

(ι1 − ι2)⊗ idM (a⊗m) = a⊗ 1⊗m− 1⊗ a⊗m = ψ−1
A,M (a⊗m⊗ 1)− 1⊗ a⊗m,

因此

G(F (M)) = G(A⊗RM) = {a⊗m | ψ−1
A,M (a⊗m⊗ 1)− 1⊗ a⊗m = 0}

恰好是Ker (ι1 − ι2)⊗ idM，这样引理1.1说明同构

αM :M → Im αM = Ker (ι1 − ι2)⊗ idM

给出了自然同构α : idR−Mod ⇒ G ◦ F .
另一方面，任给定α模(N,ψ)，考虑M := G(N,ψ) = {n ∈ N | n⊗ 1 = ψ(1⊗ n)}，定义

θM : A⊗RM → N

a⊗m 7→ am,

这样我们需要验证θM是α−Mod的同构，这样θ : id ⇒ F ◦G就是所需要的自然同构（自然性从定义中是明显
的）.

首先来验证θM是α−Mod中的态射，即有交换图
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A⊗R A⊗RM A⊗RM ⊗R A

A⊗R N N ⊗R A.

idA⊗θM

idA⊗ψM

θM⊗idA

ψN

直接按照定义验证有

ψN (idA ⊗ θM )(a⊗ b⊗m) = ψN (a⊗ bm)

= ψN ((a⊗ b)(1⊗m))

= (a⊗ b)ψN (1⊗m)

= (a⊗ b)(m⊗ 1)

= am⊗ b

= (θM ⊗ idA)(a⊗m⊗ b)

= (θM ⊗ idA)(idA ⊗ ψM )(a⊗ b⊗m),

于是良定义得证.为验证θM是同构，考虑α, β : N → A ⊗R N，分别定义为α(n) = 1 ⊗ n, β(n) = ψ−1(n ⊗ 1)，

于是由定义立即可得M = Ker α− β.考虑图

0 M ⊗R A N ⊗R A A⊗R N ⊗R A

0 N A⊗R N A⊗R A⊗R N

i⊗idA

θM◦ψ−1
M

(α−β)⊗idA

ψ−1 ψ−1
1

αN (ι1−ι2)⊗idN

其中i :M ↪→ N是自然的嵌入，引理1.1第二行是正合的，由A的平坦性第一行是正合的，计算

αN ◦ θM ◦ ψ−1
M (m⊗ a) = 1⊗ am

= (1⊗ a)(1⊗m)

= (1⊗ a)ψ−1(m⊗ 1)

= ψ−1((1⊗ a)(m⊗ 1)) = ψ−1(m⊗ a)

说明左边方块是交换的，计算

ψ−1
1 ◦ (β ⊗ idA)(n⊗ a) = ψ−1

1 (ψ−1(n⊗ 1)⊗ a)

= ψ−1
1 ◦ ψ−1

3 (1⊗ n⊗ a)

= ψ−1
2 (1⊗ n⊗ a)

= (ι1 ⊗ idN ) ◦ ψ−1(n⊗ a),

且明显地ψ−1
1 ◦ (α⊗ idA) = (ι2 ⊗ idN ) ◦ ψ−1，这说明右边方块是交换的，根据5引理θM ◦ ψ−1

M 是同构.

9 叠

定义. 设F,G是函子C◦ → Set，自然态射η : F ⇒ G若满足对任意C中的对象A和自然态射ϵ : hA ⇒ G，纤维积

函子

hA ×G F : C◦ → Set

是可表的，则称F是相对于G可表的(representable relative to G).
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定义. 给定函子F,G : Aff◦
/S → Set，自然态射η : F ⇒ G若满足

1. η是相对可表的，

2. 对任意Aff◦
/S中的对象A和自然态射ϵ : hA ⇒ G，hA ×G F ⇒ hA是一个开（相对的闭）嵌入，

则称η是仿射开（相对的，闭）嵌入(affine open (resp. closed) embedding).

定义. 给定一个位形C和上面的纤维范畴P : F → C，若对于任意覆盖U := {ιi : Ui → U}i∈I，函子F(U) →
F(U)是范畴的等价，则称F是C上的叠(stack).若函子F(U) → F(U)是满忠实的，则称F是C上的预叠(pre-

stack).

我们具体来解释一下如上的定义.

例 19. 在例16中，我们说明了Bun → Top是一个纤维范畴，事实上这还是一个叠.

例 20. 设C是一个位形，考虑

例 21. 我们来验证若X是S上的概型，则自然的忘却函子P : Sch/X → Sch/S是叠.

10 代数空间

命题 10.1. 满射，正规，分裂，拟紧是稳定性质

定义. 给定概型S和Sch/S上平展拓扑层的态射f : F → G，

1. 若对任意S概型T和态射T → G，纤维积F×GT都是一个概型，则称f由概型代表(representable by schemes)，

2. 若P是一个概型态射的稳定性质，且f由概型代表，若对任意S概型T和态射T → G，pr2 : F ×G T也具有

性质P，则称f具有性质P (has property P ).

F ×G T事实上是F ×G hT，注意层范畴是完备的，因此该纤维积一定存在.

定义. 给定概型S，函子X : Sch◦
/S → Set若满足

1. X是Sch/S平展拓扑上的层，

2. ∆ : X → X ×S X可由概型表示，

3. 存在平展满射的S态射X → X，

则称X是S上的代数空间(algebraic space).

10.1 平展等价关系

定义. 给定概型S，S概型X上的平展等价关系(étale equivalence relation)R是S概型的单态射

R ↪→ X ×S X,

满足
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1. 对任意S概型T，T点

R(T ) ⊆ X(T )×X(T )

是集合上的等价关系，

2. 由投影X ×S X → X诱导态射s, t : R→ X都是平展的.

给定S概型X上的平展等价关系R，那么有预层

Sch◦
/S → Set

T 7→ X(T )/R(T ),

记它对应的在Sch/S上平展拓扑的层为X/R.

命题 10.2. 1. X/R是S上的代数空间，

2. 任意给定S上的代数空间X和平展覆盖U → X，那么

R := U ×X U

是一个概型，且单射

R ↪→ U ×S U

是U上的平展等价关系，自然存在的态射U/R→ X是同构.

10.2 例子

例 22. 给定一个（离散）群G，假定G在如下意义下在X ∈ Sch/S有一个作用：对每个S概型T，存在集合上

的作用

σT : G×X(T ) → X(T ),

并且这个作用关于T是自然的.如果进一步地态射

G×X → X ×X

是单态射，那么称这个作用是自由的(free).

给定一个自由的离散群作用G ⟳ X，那么单态射

G×X → X ×X

给出了一个平展等价关系，因此根据命题10.2，这给出了一个代数空间.

11 代数叠

12 BG

定义. 设C位形，且G是C上的群层.若C上的层P有G（逐点定义且满足自然性的）作用1，满足

1具体说来，对任意C中的对象A都存在集合的作用σA : G (A) × P(A) → P(A)且这一族作用σ关于A是自然的.
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1. 对任意C中的对象U，存在开覆盖U := {Ui → U}i∈I满足P(Ui) ̸= ∅对所有i ∈ I成立，

2. 态射

G × P → P × P

是同构，

则称P是一个G挠子(torsor).

定义. 设G是代数群，P,X ∈ Sch/S且π : P → X是光滑的满态射，若存在态射σ : G×S P → P满足

1. 下图交换：

G×G× P G× P

G× P P,

(µ,idP )

(idG,σ) σ

σ

2. 存在恒等截面e : X → P满足

P G×S P P
(e,idP )

idP

交换，

3. 态射σ × pr2 : G× P → P ×X P是同构，

则称P是G主从(principal G-bundle).

13 商叠

X X/G

{∗} BG

A 附录：点函子

定义. 设X是S上的概型，则X的一个T点是一个态射f : T → X满足交换图

T X

S.

f

任意给定概形X，我们说明所有X上的点都是某个T点.令(R,m)是局部环，f : Spec R → X是态射，

x是m对应的（闭）点，于是这给出了芽局部环之间的局部态射

f# : OX,x → OSpec R,m = Rm = R.
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引理 A.1 (01J5). 设X概形，(R,m)是局部环，那么如上给出了一一对应

{态射f : Spec R→ X} ↔ {(x, φ) | x ∈ X,φ : OX,x → R}.

证明.

进一步地，

定理 A.1. 给定概形X，那么X上的点一一对应于某个K点，其中K是域.

如果给定一个S上的概型X，那么函子

hX := homS−Sch(−, X) : S − Sch → Set

给出了所有可能的T点，即给定的概型确定其上所有的点.反过来这个事情是否成立？下面的命题给出了部分

答案：

命题 A.2. 设R是交换环，S = Spec R，那么函子

h : S − Sch → Funct(R−Alg,Set)

X 7→ hX

是范畴的等价.

证明. url

例 23. 考虑函子

F : CommRing → Set

R 7→ hSpec Z[x](Spec R),

可以证明hSpec Z[x](Spec R)自然同构于R，理解为Spec Z[x]的R点具有R的特征，这也是我们称Spec Z[x]为仿
射直线的原因.

例 24. 考虑函子

F : CommRing → Set

R 7→ R×,

可以证明F ∼= homCommRing(Z[x, x−1],−).

例 25. 给定素数p，考虑函子

F : CommRing → Set

R 7→ {x ∈ R | px = 0},

可以证明F ∼= hSpec Fp[x]/(xp).

习题 A.1. 设X是局部Noether的概型，求证hX可以被限制到Noether环的满子范畴上.

https://math.stackexchange.com/questions/3062013/example-of-sheaf-on-mathrmring-that-does-not-come-from-mathrmsch
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我们考虑如下的例子：X = Spec R[x]/(x2 + 1)，由于R[x]/(x2 + 1) ∼= C是个域，故该概形只有一个点，
但是如果考虑XC = Spec C[x]/(x2 + 1) = Spec(C[x]/(x+ i)×C[x]/(x− i)).注意到X不是一个R点（因为若有
环同态φ : R[x]/(x2 + 1) → R，那么φ(x) ∈ R满足0 = φ(x2 + 1) = φ(x)2 + 1），这很容易理解——在这个点上

的层不是R.对于一个概型，即便它是定义在

例 26. 给定函子

F : R−Algebra → Set

A 7→ {(P, s1, · · · , sr) | 满足P是投射A模，si ∈ P且s0, · · · , sn生成P}/ ∼,

其中(P, s0, · · · , sn) ∼ (Q, t0, · · · , tn)当且仅当存在A模的同构f : P → Q使得f(si) = ti，那么可以证明这个函

子同构于hPn .

我们考虑复合函子

SchS → Fun(Sch◦
S ,Set) → Fun(Ring,Set),

其中第一个是Yoneda嵌入，第二个函子是Fun(Spec −,Set).第一个函子显然是满忠实的，但第二个函子不是
的.考虑homSchS

(Spec −,PnS)和homSchS
(Spec −,PmS )两个函子，它们都是映到空集的常值函子（从仿射概型

到射影），但他们间有非平凡的态射诱导的自然变换.问题在于它们的复合是满忠实的

定义. 给定概型X，点x ∈ X是对任意仿射概型Spec R，都给定

xR ∈ HomSch(Spec R,X) = X(R),

并且这样的对应是自然的.

定义. 设F,G : C → Set是两个给定的函子，若自然变换η : F ⇒ G满足对任意对象A ∈ ob C，映射

ηA : F (X) → G(X)

都是单射，则称F是G的子函子(subfunctor).

定义. 设F,G,H : C → Set是给定的函子，η : F ⇒ H, ξ : G ⇒ H是自然变换，那么F与G的纤维积(fibre

product)F ×H G是函子

F ×H G : C → Set

A 7→ {(a, b) ∈ F (A)×G(A) | ηA(a) = ξA(b) ∈ H(A)}

定义. 设η : F ⇒ G : Sch/S → Set是子函子，若对任意



索引

∫ C
F , 15

Grothendieck构造, 15

元素范畴, 14

34


	代数几何预备知识
	一般的模问题
	几种不同的商
	可约（reductive）代数群
	GIT商
	空间和层
	拓扑和位形
	层和拓扑斯
	筛

	纤维范畴
	元素范畴和离散纤维
	笛卡尔态射
	2范畴结构
	拟函子
	群胚纤维范畴
	拉回和推出

	下降法
	几何对象的下降
	纤维范畴的下降
	模的平坦下降

	叠
	代数空间
	平展等价关系
	例子

	代数叠
	BG
	商叠
	附录：点函子

