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1 定义与基本概念

在这份材料中如非特殊声明，分次环都是 N 分次的交换环.

定义. 给定一个分次环 S =
⊕

n∈N Sn，令 S+ =
⊕

n∈N∗ Sn，我们可以做构造 Proj S 使得它成为一个概型：
其中它的底拓扑空间

|Proj S| := {p | p是 S 的齐次素理想且不包含S+},

称 |Proj S| 中的理想为相关素理想 (relavant prime ideal)，对任意齐次理想 I，

V+(I) := {p | p是相关素理想且I ⊆ p}

是 |Proj S| 中的闭集且 |Proj S| 的拓扑完全由此给出；最后要给出 Proj S 的结构层 OProj S，取 S 中次
数为正的一个齐次元素 f，令开集

D+(f) := |Proj S| − V+(f),

作为集合 |D+(f)| ∼= |Proj S[f−1]|，同时后者和 S[f−1] 中所有的 0 次元素组成的环 S[f−1]0 中的素理想
一一对应，即有双射

φf : |Proj S[f−1]| → |Spec S[f−1]0|

且它是连续的，这样我们可以给 |D+(f)| 同于 Spec S[f−1]0 的概型结构，这样只要选取足够多的 f 使得
|D+(f)| 构成一个开覆盖即可（后面的习题会给出这样一个开覆盖）.

例 1. 考虑 S := k[x0, · · · , xn]，其中对任意的 1 ≤ i ≤ n，degxi = 1. 于是，x0, · · · , xn 生成的理想是 S+，那
么 {D(xi)}i=0,··· ,n 构成了 Proj S 的一个开覆盖.

Ui ∩ Uj 上的粘合

例 2. 考虑 S := k[x0, · · · , x3]/(x0x2 − x21, x1x3 − x22, x0x3 − x1x2)，U0 = Spec k[x1, · · · , x3]/(x31 − x3, x32 −
x23, x1x2 − x3) = Spec [x0 = 1]

引理 1.1. 设 S 是 Z 分次的环，f ∈ S 是阶数为正的元素，且它的逆存在. 那么 S 中的相关素理想与 S0

中的素理想一一对应.
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证明. 记 Spec S 中的齐次素理想的集合为 H，deg f = d，构造集合的映射

φ : H ⇆ |Spec S0| : ψ

p 7→ p ∩ S0√
qS 7→q.

由于 p ∩ S0 是 p 在嵌入映射 S0 ↪→ S 下的拉回，故 φ 是良定义的.
另一方面，由于 q 只包含阶数为 0 的元素，因此 qS 是齐次理想. 任取 g ∈

√
qS，它可以写成齐次元素的

和

g =
n∑

i=1

gi,

满足 deg g1 < deg g2 < · · · < deg gn，由于 deg f > 0，存在正整数 m 使得 deg(fmg1) ≥ 0. 同时，fmg ∈
√
qS

意味着存在整数 N 使得

(fmg)N =

(
fm

n∑
i=1

gi

)N

= fmNgNn +其他低阶项 ∈ qS.

但 qS 是齐次理想，因此 fmNgNn ∈ qS，进而(
fmNdgNd

n

fmNd+N deg gn

)
∈ qS ∩ S0 = q.

由于 q 是素理想，
(

gd
n

fdeg gn

)N
∈ q 意味着 gd

n

fdeg gn
∈ q，故 gdn ∈ qS，即

gn ∈
√

qS.

这样 g − gn ∈
√
qS，于是归纳地可证明 gi ∈

√
qS，因此

√
qS 是齐次的.

再证明
√
qS ∩ S0 = q. 显然 q ⊆

√
qS ∩ S0. 对任意 g ∈

√
qS ∩ S0，存在正整数 M 使得 gM ∈ qS，阶数计

算说明 gM ∈ qS ∩ S0 = q，再根据 q 的素性 g ∈ q，因此
√
qS ∩ S0 ⊆ q.

若 a =
∑m

i=1 ai, b =
∑n

j=1 bj 满足 ab ∈
√
qS，那么由刚刚的证明 anbm ∈

√
qS，由于 an, bm 都是齐次元

素，故
adn

fdeg an

bdm
fdeg bm

=
adnb

d
m

fdeg an+deg bm
∈
√
qS ∩ S0 = q,

再次由于 q 是素理想， ad
n

fdeg an
∈ q 或 bdm

fdeg bm
∈ q，于是 an ∈

√
qS 或 bm ∈

√
qS，归纳可以得到

√
qS 是素理

想，而它不包含 f，因此是相关素理想，故 ψ 也是良定义的.
之前证明了 ψ ◦ φ(q) =

√
qS ∩ S0 = q，于是，只需要再证明 φ ◦ ψ = id. 显然 (p ∩ S0)S ⊆ p，因此√

(p ∩ S0)S ⊆ p. 反过来任取 p 中的齐次元素 a， ad

fdeg a ∈ p ∩ S0，因此 ad ∈ (p ∩ S0)S，即 a ∈
√

(p ∩ S0)S，
这意味着 p ⊆

√
(p ∩ S0)S.

习题 1.1. 1. 验证所有的 V+(I) 构成闭集.

2. 验证集合的双射 φf : |Proj S[f−1]| → |Spec S[f−1]0| 及它是同胚.

3. 验证若 S+ 中由齐次元素组成的子集 T 满足它生成理想的根理想
√
⟨T ⟩ = S+，那么

{D(f) | f ∈ T}

构成 Proj S 的一组开覆盖.
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4. 验证
D+(f) ∩D+(g) = D+(fg) = D+(f

mgn),

其中 m,n ∈ N∗.

5. 证明
(S[f−1][(g/f)−1])0 ∼= S[f−1]0[(g

deg f/fdeg g)−1] ∼= S[f−1, g−1]0.

6. 证明以上给出的同构是相容的，即
说明以上的验证了之前的定义给出了一个概型.

证明. 1. 一方面，若 p ∈ V+(I) ∪ V+(J)，那么相关素理想 p 满足 I ⊆ p 或 J ⊆ p，不妨设前者成立，于
是 I ∩ J ⊆ I ⊆ p，p ∈ V+(I ∩ J). 另一方面若 p ∈ V+(I ∩ J)，则由交换代数 I ⊆ p 或 J ⊆ p，因此
p ∈ V+(I) ∪ V+(J).

再考虑 p ∈
∩

λ∈Λ V+(Iλ)，那么 Iλ ⊆ p 对所有 λ ∈ Λ 成立，因此
∩

λ∈Λ V+(Iλ) ⊆ V+(
∪

λ∈Λ Iλ). 反过来若
p ∈ V+(

∪
λ∈Λ Iλ)，那么 Iλ ⊆

∪
λ∈Λ Iλ ⊆ p，因此 p ∈

∩
λ∈Λ V+(Iλ).

2. 构造

φf : |Proj S[f−1]|⇆ |Spec S[f−1]0| : ψf

p 7→ p ∩ S[f−1]0√
qS[f−1] 7→q,

引理 1.1说明二者是双射，于是只要验证二者连续即可. 若 J 是 S[f−1]0 的理想，那么

ψf (V (J)) = ψf ({q | q ⊇ J})

= {
√
qS[f−1] | q ⊇ J},

显然 JS[f−1] ⊆
√
qS[f−1]，于是 ψf (V (J)) ⊆ V (JS[f−1]) = V (

√
JS[f−1])；反过来，若 p ∈ V (

√
JS[f−1])，

那么
p = ψf (φf (p)),

因此 ψf (V (J)) = V (JS[f−1])，这样 φf 是连续的.

另一方面，对 |Proj S[f−1]| 中的闭集 V (I) ∩ |Proj S[f−1]|，

φf (V (I) ∩ |Proj S[f−1]|) = {p ∩ S0 | p ∈ V (I) ∩ |Proj S[f−1]|}

⊆ V (I ∩ S0),

而且对任意 q ∈ V (I ∩ S0)，
q = φf (ψf (q)),

因此 φf (V (J)) = V (I ∩ S0)，这样 ψf 是连续的.

3. 任取 p ∈ Proj S，由定义存在 f ∈ S+ 使得 f /∈ p，由于 S 是分次环，

f = (f1 + · · ·+ fn)
N ,

使得每个 fi ∈ T 都是齐次的. 这样一定存在 i0 使得 fi0 /∈ p，因此 p ∈ D+(fi0).
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4. 若 p ∈ D+(fg)，那么 fg /∈ p，显然 f /∈ p 且 g /∈ p，所以 D+(fg) ⊆ D+(f) ∩ D+(g). 反过来，若
p ∈ D+(f) ∩D+(g)，按定义 f /∈ p 且 g /∈ p，因为 p 是素理想，故 D+(f) ∩D+(g) ⊆ D+(fg)，这意味
着 D+(f) ∩D+(g) = D+(fg). 同样根据 p 是素理想，D+(fg) = D+(f

mgn).

5. 构造

φ : S[f−1][(g/f)−1] ⇆ S[f−1, g−1] : ψ
r
fn

(g/f)m
7→ r

fn−mgm
r

fn+m

(g/f)m
7→ r

fngm
,

显然二者是良定义的, 它们是齐次环同态，且互为逆映射. 于是，S[f−1, g−1]0 ∼= (S[f−1][(g/f)−1])0. 若齐
次元素

r

fngm
∈ S[f−1, g−1]

满足 deg r
fngm = 0，那么由定义

deg r = mdeg g + ndeg f.

同时，
r

fngm
=
gm deg f−mfm deg g

gm deg f−mfm deg g

r

fngm
=

(
fdeg g

gdeg f

)m
gm deg f−mr

fn+m deg g
,

且 deg
(

fdeg g

gdeg f

)m
gm deg f−mr
fn+m deg g = deg gm deg f−mr

fn+m deg g = deg r + deg g(mdeg f −m) − deg f(n +mdeg g) = 0. 这
意味着 S[f−1, g−1]0 = S[f−1]0[(g

deg f/fdeg g)−1]，得证.
以上的验证中，前三条说明了存在一个仿射的开覆盖，第四条说明开覆盖当中两个的交集是什么样的——

它也是开覆盖中的一个，因此可以用前面的方式得到上面的层结构——第五条证明了层结构的相容性. 这样，
Proj S 是一个概型.

特别地，我们记 Pn
Z := Proj Z[x0, · · · , xn].

引理 1.2. 设 S, T 是给定的分次环，φ : S → T 是分次环同态（即 φ(Sn) ⊆ Tn），那么

1. U := {q ∈ Proj T | φ(S+) ̸⊆ q} 是 Proj T 中的开集.

2. φ 诱导了态射 U → Proj S.

证明. 1. 记 X = Proj T . 要证明 U 是开集，只要证明 X − U 是闭集即可. 令 J := (φ(S+))，那 T 中的齐次
素理想 q 包含 φ(S+) 当且仅当它包含 J . 于是根据定义，X − U = V+(J) 是闭集，得证.

2. 首先给定映射 f : U → Proj S，它将素理想 q 映到 (φ−1(q))，我们要验证它是连续的. 任取 Proj S 中
的闭集 V+(I)，

f−1(V (I)) = {q ∈ U | f(q) ∈ V+(I)}

= {q ∈ U | φ−1(q) ⊇ I}

= {q ∈ Proj T | φ−1(q) ⊇ I} ∩ U,
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这是 U 中的闭集，因此 f 是连续映射.
接下来要给出层的态射 f# : OProj T |U → f∗OProj S . 注意到

G = {s ∈ S | s是齐次元素且deg s > 0}

生成的理想的根理想是 S+，于是 {D+(s) | s ∈ G} 是 Proj S 的一个开覆盖，于是只需要给出一族相容的环同
态

(f#)s : OProj S(D+(s))→ f∗OProj T (D+(s)).

注意到

f∗OProj T (D+(s)) = OProj T (f
−1(D+(s)))

= OProj T (D+(φ(s)) ∩ U).

注意到 D+(φ(s)) = Spec T [φ(s−1)]0 是仿射概型，因此 (f#)s 可以定义为复合

OProj S(D+(s)) = S[s−1]0 → OProj T (D+(φ(s))) = T [φ(s−1)]0 → OProj T (D+(φ(s)) ∩ U),

其中第一个映射由 φ 诱导，第二个映射是 OProj T 所给的信息.
对于相容性，给定 s1, s2 ∈ S，只要证明图

OProj S(D+(s1)) f∗OProj T (D+(s1))

OProj S(D+(s1s2)) f∗OProj T (D+(s1s2))

(f#)s1

(f#)s1s2

是交换的，即

S[s−1
1 ]0 T [φ(s−1

1 )]0 OProj T (D+(φ(s1)) ∩ U)

S[s1s
−1
2 ]0 T [φ(s1s

−1
2 )]0 OProj T (D+(φ(s1s2)) ∩ U)

是交换的，但这由构造是明显的.

例 3. 考虑环同态
φ : k[x0, x1, x2, x3]→ k[y0, y1]

满足
(x0, x1, x2, x3) 7→ (y30 , y

2
0y1, y0y

2
1 , y

3
1)

命题 1.1. 设 R 是任意交换环，S = R[x0, · · · , xn]，那么 Proj S = Pn
R := Pn

Z × Spec R.

证明.

例 4. 考虑 P1
k，我们具体来说明定义是如何将

习题 1.2. 证明 Pr
R 是开集 Ar

R 和闭集 Pr−1
R 的不交并.
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习题 1.3. 任意给定 Pn
R 中的两不同点 P,Q，求证存在超平面 H 使得 P ∈ H 且 Q /∈ H.

命题 1.2. 设 R 是交换环，S = R[x0, · · · , xn]，那么态射 Proj S → Spec R 是正规的.

证明. 回顾概型之间的态射 f : X → Y，是有限型的、分离的，且满足

例 5. 给定 R 上的概型 X，f : X → P1
R 是一个 R 概型态射，由于 P1

R = A1
0 ∪A1

∞，记 X0 := f−1(A1
0), X∞ :=

f−1(A1
∞)，那么 f 是 f |X0

和 f |X∞ 的粘合，其中 f |X0
: X0 → A1

0 和 f |X∞ : X∞ → A1
∞ 都是到仿射概型的态

射，因此二者分别对应于 a ∈ Γ(X0,OX |X0
), b ∈ Γ(X1,OX |X1

) 满足

a|X0∩X1
· b|X0∩X1

= 1,

后面的条件是粘合所必须的.
反过来，若给定如上的组合信息，即X 的开覆盖X = X0∪X∞，开覆盖上的整体截面 a ∈ Γ(X0,OX |X0

), b ∈
Γ(X1,OX |X1

) 满足
a|X0∩X1

· b|X0∩X1
= 1,

那么整体截面对应到态射 f |X0
: X0 → A1

0 和 f |X∞ : X∞ → A1
∞，其中二者对应的环同态是 R[s] →

Γ(X0,OX |X0
), s 7→ a 和 R[t] → Γ(X1,OX |X1

), t 7→ b. 限制到交集之后的关系说明二者可以按照 s · t = 1

来粘合，这恰好给出了态射 X → P1
R.

习题 1.4. 分类所有的态射
Spec Z→ P1

Z.

例 6. 借助上一个例子，我们来证明 Proj R[x0, x1, x2, x3]/(x0x3 − x1x2) ∼= P1
R × P1

R. 为此需要验证相应的泛
性质，即

X

Proj R[x0, x1, x2, x3]/(x0x3 − x1x2) P1
R = Proj R[u, v]

P1
R = Proj R[s, t] Spec R,

为此需要找到自然的投影态射 Proj R[x0, x1, x2, x3]/(x0x3 − x1x2) → P1
R，对任意的 R 概型 X 构造态射

X 99K Proj R[x0, x1, x2, x3]/(x0x3 − x1x2) 并验证它的唯一性.
首先对上面的结论加以解释，如上的方程 x0x3 − x1x2 来自于 Segre 嵌入 ([s, t], [u, v]) 7→ [su, sv, tu, tv]，

于是应当有对应关系 D+(x0) ∼= D+(s) ×D+(u), D+(x1) ∼= D+(s) ×D+(v)，这样 D+(x0) ∪D+(x1) 就是 A1
t

的原像（这里的下标表示 t 可取 0 不可取 ∞ 的仿射开集），这样只需要计算

Γ(D+(x0) ∪D+(x1)) = R

[
x2
x0

]
= R

[
x2
x0
,
x3
x1

]
/

(
x2
x0
− x3
x1

)
= R

[
x3
x1

]
,
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直觉上这是因为 D+(x0) ∪D+(x1) ∼= D+(s)× P1
k，在上面是 s 可取逆.

第一步是构造态射 Proj R[x0, x1, x2, x3]/(x0x3−x1x2)→ P1
R := Proj R[s, t]，它对应于自然的投影态射，按

例 5的结果，只需要找到 Proj R[x0, x1, x2, x3]/(x0x3−x1x2)上的两个开集 Us = (Proj R[x0, x1, x2, x3]/(x0x3−
x1x2))s, Ut = (Proj R[x0, x1, x2, x3]/(x0x3 − x1x2))t 和两个开集上结构层的全局截面 a, b 满足

a|Us∩Ut
· b|Us∩Ut

= 1.

注意到 Γ(D+(x0)) = R[x1

x0
, x2

x0
, x3

x0
]/(x3

x0
− x1

x0

x2

x0
),Γ(D+(x1)) = R[x0

x1
, x2

x1
, x3

x1
]/(x0

x1

x3

x1
− x2

x1
)（习题 1.5说明 D+(xi)

是仿射平面），并且

Γ(D+(x0) ∩D+(x1)) = Γ(D+(x0 · x1))

= (R[x0, x1, x2, x3]/(x0x3 − x1x2))[(x0 · x1)−1]0

= R[
x0
x1
, 1,

x2
x1
,
x3
x1
,
x1
x0
,
x2
x0
,
x3
x0
,
x22
x0x1

,
x2x3
x0x1

,
x23
x0x1

]/(
x3
x1
− x2
x0

)

= R[
x0
x1
,
x1
x0
,
x2
x0

],

这恰好对应了 D+(x0 · x1) 应当是 D+(s)×D+(uv) = Spec R[t, u, u−1]，于是有交换图

Γ(D+(x0) ∪D+(x1)) R[x1

x0
, x2

x0
, x3

x0
]/(x3

x0
− x1

x0

x2

x0
)

R[x0

x1
, x2

x1
, x3

x1
]/(x0

x1

x3

x1
− x2

x1
) R[x0

x1
, x1

x0
, x2

x0
],

并且根据开覆盖的性质它是拉回图，因此

Γ(D+(x0) ∪D+(x1)) = R

[
x2
x0
,
x3
x1

]
/

(
x2
x0
− x3
x1

)
.

这也符合直觉，D+(x0) ∪D+(x1) 应当是 A1
R × P1

R. 同样地，

Γ(D+(x2) ∪D+(x3)) = R

[
x0
x2
,
x1
x3

]
/

(
x0
x2
− x1
x3

)
,

于是取 Us = D+(x0)∪D+(x1), Ut = D+(x2)∪D+(x3)，两个整体截面分别是 x2

x0
= x3

x1
和 x0

x2
= x1

x3
. 这给出了态

射 Proj R[x0, x1, x2, x3]/(x0x3−x1x2)→ P1
R := Proj R[s, t]，另一个态射 Proj R[x0, x1, x2, x3]/(x0x3−x1x2)→

P1
R := Proj R[u, v] 可以类似地给出.
第二步，作为例 5的类比，我们考虑从任意概型 X 到 Proj R[x0, x1, x2, x3]/(x0x3 − x1x2) 的态射.
最后，我们来验证

习题 1.5. 给定交换环 R，求证存在 R 代数同态

R[x, y, z]/(z − xy) ∼= R[s, t].



2 射影空间的闭子概型 8

证明. 考虑（由此扩张的）环同态

R[x, y, z]/(z − xy) ⇆ R[s, t]

x 7→ s

y 7→ t

z 7→ st

x←[ s
y ←[ t,

明显地给出了同构.

习题 1.6. 设 S 是分次交换环，对任意正整数 d，定义 S 的第 d 个 Veronese 子环为

S(d) :=
⊕
n≥0

Sdn.

1. 证明 Proj S ∼= Proj S(d).

2. 证明若 S = R[x, y]，作为分次环（甚至只作为环）S 与 S(d) 不同构.

证明. 1. 由于 S(d) 自然地是 S 的子环，我们将 S(d) 的元素当作 S 中的元素. 对任意 f ∈ Sdn，记

D
(d)
+ (f) := |Proj S(d)| − V (d)

+ (f),

那么可以构造映射

φf : D
(d)
+ (f) ⇆ D+(f) : ψf

p 7→
√
pS

q ∩ S(d) 7→q,

显然 ψf 是良定义的，另一方面 √
pS =

√
(p ∩ S0)S

2 射影空间的闭子概型

命题 2.1. 设 I 是分次交换环 S 的齐次理想，那么存在集合的包含

|Proj S/I| ⊆ |Proj S|,

并且子集 |Proj S/I| 与任意仿射开集 (Proj S)f 的交都是 (Proj S)f 中的闭集，并且交集对应的子概型同
构于 (Proj S/I)f . 因此 Proj S/I 可看作 Proj S 的闭子概型.

证明.
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定义. 给定交换环 R，取 S = R[x0, · · · , xn] 和 Pn
R = Proj S 中的闭集（投影代数簇）X，那么 S 的齐次

理想
I(X) := ⟨f ∈ S | f是其次元素且f([a0 : · · · : an]) = 0⟩

被称为代数簇 X 的理想 (ideal).

0→ IY → OX → OY → 0

例 7. 考虑分次 S 模
0→ S(−1) ·xi−−→ S → S/(xi)→ 0

诱导了
0→ O(−1)→ OPn

R
→ OPn−1

R
→ 0,

例 8. 在例 6中我们讨论了 P1 × P1 作为 P3 中的一个闭子概型的坐标，借助它我们可以证明 P1 × P1 ⊆ P3 中
的闭曲线都是由如下类型的多项式

F = F (u0, u1, v0, v1)

给出，其中 F 在 (u0, u1) 和 (v0, v1) 上分别是阶数为 d0, d1 的齐次多项式.

例 9. 在例 2中我们讨论了 C，接下来我们将说明 C 是 P1 × P1 的闭曲线，且例 8中描述的多项式是

F = u0v
2
1 − u1v20 .

在进行接下来的讨论前，我们首先回顾一些交换代数中的结果.

定义. 1. 给定 k[x1, · · · , xn] 中的理想 I，I 的首项系数理想 (ideal of leading terms)LT (I) 是 I 的所有
首项系数生成的（k[x1, · · · , xn] 中的）理想，即

LT (I) := ⟨LT (f) | f ∈ I⟩.

2. 给定域 k 和多项式环 k[x1, · · · , xn] 上的单项序 ≥，理想 I ⊆ F [x1, · · · , xn] 的 Gröbner 基 (Gröbner
basis) 是 I 的一组生成元 {g1, · · · , gm} 使得 I 的首项系数理想由这组生成元的首项系数生成，即

I = (g1, · · · , gm), LT (I) = (LT (g1), · · · , LT (gm)).

定理 2.2. 给定 R = F [x1, · · · , xn] 上的一个单项序 ≥，且 {g1, · · · , gm} 是非零理想 I 的一组 Gröbner
基，那么



3 射影空间上的层 10

1. 任意多项式 f(x) ∈ R 可以唯一地写成
f = fI + r

的形式，其中 fI ∈ I 且余数 r 的任意单项都不可以被首项系数 LT (g1), · · · , LT (gm) 整除.

2. fI 和 r 都可以用多项式带余除法来计算，且与 {g1, · · · , gm} 的选取顺序无关.

3. 余数 r 给出了 R/I 中的唯一代表元，特别地 f ∈ I 当且仅当 r = 0.

例 10. 考虑考虑 S := k[x0, · · · , x3] 中的多项式 f1 = x0x2 − x21, f2 = x0x3 − x1x2, f3 = x1x3 − x22，它们在字
典序下的首项分别为 m1 = x0x2,m2 = x0x3,m3 = x1x3. 首先注意到齐次多项式 m ∈ Sd 被任意 mi 整除当
且仅当

1. m = xa0x
d−a
1 满足 0 < a < d，或

2. m = xa1x
d−a
2 满足 0 < a < d，或

3. m = xa2x
d−a
3 .

注意到这样的单项式共有 3d+ 1 个.
我们接着例 9，如上的讨论实际上说明了理想 (f0, f1, f2) 是素理想.

3 射影空间上的层

定理 3.1. 给定交换环 R 和 R 上的概型 X，

1. 若 f : X → Pn
R 是 R 同态，那么 f∗O(1) 是 X 上的可逆层，且由全局截面 {si := f∗(xi)}i=0,··· ,n 生

成，

2. 反过来给定 X 上的可逆层 L，且 L

定义. 给定分次环 S 和分次 S 模 M，如下构造给出 M̃：按定义 D+(f) 给出 Proj S 的一族仿射开覆盖，
取

M̃(D+(f)) = (Mf )0,

其中 (Mf )0 是 M 关于 f 局部化的阶数为 0 的部分.
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定义. 给定分次环 S，则 Proj S 上的层 O(n) 是 S̃(n)，其中 S(n) 定义为分次 S 模，满足

S(n)d := Sn+d.

例 11. 我们来考虑射影空间 Pn
R 的可逆层 O(1). 记 S = R[x0, · · · , xn]，按照例 1的分析，Pn

R 有仿射开覆盖
{Ui := Spec R[x0

xi
, · · · , xn

xi
]}i=0,··· ,n，于是

O(1)(Ui) = ((S(1))xi
)0 =

⟨
f

xdi

∣∣∣∣ f是S中的齐次元素且deg f = d+ 1

⟩
,

最后一个等式是由于做局部化时 xi ∈ S 满足阶数为 1，且张成是 R 模在 (S(1))xi
中的. 于是映射

f

xdi
7→ f

xd+1
i

恰好给出了 R[x0

xi
, · · · , xn

xi
] 模同构 ((S(1))xi

)0 ∼= R[x0

xi
, · · · , xn

xi
]，这意味着 O(1) 是局部自由的.

另一方面，考虑如上给出的局部平凡化的转移函数，在 D+(xi) ∩D+(xj) = D+(xixj) 上，考虑

φi,j : (O(1)|Ui
)|Ui∩Uj

→ (O(1)|Uj
)|Ui∩Uj

(((S(1))xixj
)0) ∼= R[

x0
xi
, · · · , xn

xi
] xj
xi

→ R[
x0
xj
, · · · , xn

xj
] xi
xj

∼= (((S(1))xixj
)0),

其中按照之前的描述，

((S(1))xixj
)0 =

⟨
f

xdi x
d
j

∣∣∣∣ f是S中的齐次元素且deg f = 2d+ 1

⟩
并且同构是 f

xd
i x

d
j
7→ f

xd+1
i xd

j

，另一个对应地是 f
xd
i x

d
j
7→ f

xd
i x

d+1
j

，这样转移函数很明显的是

f

xd+1
i xdj

7→ f

xdi x
d+1
j

=
f

xd+1
i xdj

xi
xj
.

非常类似地，Pn
R 上的层 O(m) 也是可逆层，转移函数是 ·

(
xi

xj

)
.

在古典代数几何中，给定 k 代数簇 X，D 是 X 的余维数为 1 的不可约子簇，那么可以定义

OX,D := {f ∈ k[X] | f在X的开集U上有定义且U ∩D ̸= ∅}

定义. 给定分次环 S 和 Proj S 上的层 F，那么分次 S 模

Γ∗(F ) :=
⊕
n∈N

H0(F (n))

称为 F 对应的分次 S 模 (graded S-module associated to F ).
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命题 3.2. 给定环 R 和 R 上的多项式环 S := R[x0, · · · , xn]，那么

Γ∗(OProj S) ∼= S.

证明.

这个命题对非多项式环并不成立；但是反过来我们有

命题 3.3. 给定分次环 S，满足 S 是 S1 生成的 S0 代数，那么对于 Proj S 上的任意拟凝聚层 F 存在自
然的同构

Γ̃(F ) ∼= F .

证明.

引理 3.1. 给定概型 X 和可逆层 L，取 f ∈ Γ(X,L )，定义 Xf := {x ∈ X | fx /∈ mxLx}，且 F 是 X

上的拟凝聚层.

1. 若 X 是拟紧的，那么若 F 的全局截面 s ∈ Γ(X,F ) 满足 s|Xf
= 0，那么存在 n > 0 使得

fns ∈ Γ(X,F ⊗L n) 为 0 截面，

2. 进一步假设 X 可以由有限多个仿射开集 {Ui}i=1,··· ,m 覆盖，满足 L |Ui
是自由的且 Ui ∩ Uj 是拟紧

的，那么对于任意的 t ∈ Γ(Xf ,F )，存在 n 使得 fnt 延拓为 F 的一个全局截面.

定理 3.4. 给定 Noether 环 R 和 R 上射影概型 X 的凝聚 OX 模 F，那么存在正整数 N 使得对所有的
n > N，F (n) 都是全局生成的.

证明. 设 i : X ↪→ Pn
R 是闭浸入，且 i∗OPn

R
(1) = OX(1)，那么 i∗F 是 Pn

R 上的凝聚层，并且 (i∗F )(n) =

i∗(F (n)). 这样 (i∗F )(n) 是全局生成的当且仅当 i∗(F (n)) 是全局生成的（事实上二者的生成元是相同的），
于是这个问题归结到 Pn

R 上的凝聚 OPn
R
模 F .

按照之前的讨论，我们有仿射开覆盖 Pn
R =

∪n
i=0 Ui，于是存在有限生成的 R[x0, · · · , x̂i, · · · , xn]模F |Ui

=

M̃i.对任意的 i，取定 Mi 的一族（有限多个）生成元 {si,j}，根据引理 3.1存在（一致的）自然数 n使得 xni si,j

扩张为 F (n) 的全局截面 ti,j .

例 12. 记 C 是例 2中的曲线，我们现在来说明

0→ OP3(−3)2 A−→ OP3(−2)→ IC → 0
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是正合的，其中 A 是矩阵


x0 x1

x1 x2

x2 x3

.

事实上，这还是一个局部结果，比如考虑开子集 U0 = {x0 = 1}，在其上 I0 = (x2 − x21, x3 − x1x2)，令
x = x1

x0
, y = x2

x0
, z = x3

x0
，矩阵

A =


1 x

x y

y z

 ∼

1 0

0 y − x2

0 z − xy

 ,

行列变换取自 k[x, y, z].
于是我们有正合列

0→ OP3(−3)2 A−→ OP3(−2)3 → OP3 → OC → 0,

而事实上这个层正合列来自于 S 模的正合列

0→ S(−3)2 A−→ S(−2)3 → S → S/I → 0.

4 全局 Proj 构造

定理 4.1.

5 切空间和切锥

习题 5.1. 给定域 k，求证 Pn
k 中的所有 d 阶超平面自然地构成 PN

k ，其中 N =
(
n+d
n

)
− 1.

证明.
Xd = {

∑
alx

l = 0} ↔ {al}.

例 13. 我们尝试分类 P1
k 上的所有线丛.

6 Blow-up 构造和图

图是特殊的 blow-up.

7 射影空间的上同调

定理 7.1. 给定 Noether 环 R，S := R[x0, · · · , xd]，Pd
R = Proj S 是 R 上的 d 维射影空间，O(1) 是 Serre

扭曲层，那么
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1. 自然存在的分次 S 模同构
S → Γ∗(OPd

R
) :=

⊕
n∈N

H0(OPd
R
(n)),

2. 对任意的 0 < i < d 和 n ∈ Z，H i(Pd
R,OPd

R
(n)) = 0，

3. Hd(Pd
R,OPd

R
(−d− 1)) ∼= R，

4. 对任意的 n ∈ Z，映射

H0(Pd
R,OPd

R
(n))×Hd(Pd

R,OPd
R
(−d− n− 1))→ Hd(Pd

R,OPd
R(−d− 1)) ∼= R

是有限生成自由 R 模的配对.

推论 7.1.1. 如定理的假定，

Hq(Pd
R,OPd

R
(n)) =


(R[x0, · · · , xd])n q = 0,

0 q ̸= 0, d,

( 1
x0···xd

R[ 1
x0
, · · · , 1

xd
])n q = n.

定理 7.2. 给定 Noether 环 R，X 是 R 上的射影概型，O(1) 是 X 的一个相对于 Spec R 的极丰可逆层，
F 是 X 上的凝聚层，那么

1. 对任意的 i ≥ 0，H i(X,F ) 是有限生成的 R 模，

2. 存在依赖于 F 的正整数 N 使得对任意 n > N 和 i > 0，H i(X,F (n)) = 0.

证明.

命题 7.3. 给定 Noether 环 R 和 Spec R 上的正规概型 X，L 是 X 上的可逆层，那么如下等价：

1. L 是丰满的，

2. 对任意 X 上的凝聚层 F，都存在（依赖于 F 的）正整数 N 使得对任意 n > N 和 i > 0，H i(X,F⊗
L n) = 0.

定理 7.4 (Pn
k 的对偶). 给定域 k 和 Pn

k = Proj k[x0, · · · , xn]，那么

1. Hn(Pn
k , ωPn

k
) ∼= k，并且接下来选定一个同构，
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2. 对任意 Pn
k 上的凝聚层 F，自然存在的配对

Hom(F , ω)×Hn(Pn
k ,F )→ Hn(Pn

k , ω)
∼= k

是非退化的，

3. 对任意的 i ≥ 0，存在自然的同构

Exti(F , ω) ∼= Hn−i(Pn
k ,F )∨.

8 Hilbert

定义. 给定射影概形 X ⊆ Pn
k，S 是其射影坐标环，那么 S 的 Hilbert 多项式（函数或级数）被称为概形 X 的

Hilbert 多项式（函数或级数）(Hilbert polynomial, function, series).

例 14. 假设 k 是无限域，S := R[x0, · · · , x3]，给定 P2
k = Proj S 中的三点 p1, p2, p3，那么 M := S/I(p1, p2, p3)

的 Hilbert 函数满足如下描述：

1. 它的 0 阶多项式只有 0，因此 hM (0) = 0；它其中的 1 阶多项式的全体 I1(p1, p2, p3) 满足

I1(p1, p2, p3) =

{
k · f p1, p2, p3共线且f是经过三点的唯一直线
0 p1, p2, p3不共线,

因此

hM (1) =

{
1 p1, p2, p3共线
0 p1, p2, p3不共线.

2. 考虑

φ : k[x0, x1, x2]2 → k3

f 7→ f(p1, p2, p3),

明显地 ker φ = I2(p1, p2, p3)，只要能说明 φ 是满射就可以说明

hM (2) = dimkM2 = dimk k[x0, · · · , x3]− dimk I(p1, p2, p3)2 = dimk Im φ = 3.

事实上，由于 k 是无限域，存在只经过三点中其中一点 pi 的线性多项式 Li，于是 LiLj 是只经过 pi, pj

（可重复）的二阶多项式，因而 
1

0

0

 ,

0

1

0

 ,

0

0

1


在 φ 的像中，因此是满射.

3. 如上的讨论事实上证明了 hM (n) = 3 对所有的 n ≥ 2 成立.
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若多项式 p(z) ∈ Q[z]满足对充分大的 n ∈ Z，p(n) ∈ Z，则称 p(z)是数值多项式 (numerical polynomial).

引理 8.1. 若 p(z) 是 d 阶数值多项式，那么存在整数 c0, · · · , cd 使得

p(z) =
d∑

i=0

ci

(
z

i

)
,

其中，
(
z
i

)
= z(z−1)···(z−i+1)

i!
.

证明. 首先证明对任意的单项式 zn 是
{(

z

i

)}
i=1,··· ,k−1

的 Q 线性组合. 显然当 n = 0 和 n = 1 时成立. 归纳

假设当 n = 1, · · · , k − 1 时，zn 是
{(

z

i

)}
i=1,··· ,k−1

的 Q 线性组合，同时注意到

(
z

k

)
=
z(z − 1) · · · (z − i+ 1)

k!
=
zk

k!
+其他低阶项,

按照归纳假设 zk 也是
{(

z

i

)}
i=1,··· ,k−1

∪{(
z

k

)}
的线性组合.如上结果说明若 p(z)是整系数多项式则 p(z)

是
{(

z

i

)}
i=1,··· ,k−1

的 Q 线性组合. 这个线性组合是唯一的，因为基变换矩阵是上三角矩阵.

回到引理，若 d = 0，那么 p(z)是整数，满足引理.归纳假设当 d = 1, · · · , n时，引理成立.现在假设 p(z)

是 n+ 1 阶数值多项式，由前面的结果

p(z) =
d∑

i=0

ci

(
z

i

)
,

其中 ci ∈ Q. 考虑

∆p(z) := p(z + 1)− p(z) =
d∑

i=0

ci

(
z

i

)
,

这实际上来源于等式 (
z

i

)
+

(
z

i− 1

)
=

(
z + 1

i

)
.

此时 deg∆p(z) = n，于是归纳假设说明 ci ∈ Z. 最后 c0 ∈ Z 是显然的.

定义. 给定射影概形 X ⊆ Pm
k ，且 dimX = n，那么其 Hilbert 多项式首项系数的 n! 倍被称为 X 的阶数

(degree).

例 15.

例 16.

引理 8.2. 任意射影概形 X ⊆ Pm
k 的阶数是整数.

证明. 设 pX(z) 是 X 的 Hilbert，根据 8.1

p(z) =
d∑

i=0

ci

(
z

i

)
=
cd
d!
zd + · · · ,

于是结果是明显的.
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