
几何中的向量丛

G.Li

1 流形的切丛

给定一个n维的微分流形M，有光滑函数层C∞(−)，进而可以定义一点x的光滑函数芽

C∞
x := colimx∈UC

∞(U),

由于流形的局部完全由Rn中的开集决定，且可以选取足够小的的邻域而不改变光滑函数芽.点x上的一个切向

量是一个R线性映射
v : C∞

x → R

满足Leibnitz定律

v(f · g) = v(f)g(x) + f(x)v(g).

例如，对M上过点x的可微曲线γ : (−ϵ, ϵ) →M（满足γ(0) = x），

v(f) :=
d

dt
(f ◦ γ(t))

∣∣∣∣
t=0

是切向量.切向量实际是方向导数.

一点x ∈ M上的所有切向量组成的集合有自然的R线性空间结构，称这个空间为M在点x的切空间，记
为TxM .切空间TxM的维数恰好等于流形M的维数，这因为可以选取x附近充分小的邻域(U, x1, · · · , xn)使得
对应到Rn中是一个球B(0, ϵ)，如前例子取M中的曲线

γj : (−ϵ, ϵ) →M, 1 ≤ j ≤ n,

满足xi(γj(t)) = δijt，其中δ
i
j是Kroneker记号.定义

∂

∂xj
:=

d

dt
(− ◦ γj(t))

∣∣∣∣
t=0

,

这些构成了TxM的一组基.TxM的对偶空间称为余切空间，它的对偶基记为{dxi}1≤i≤n，任给定一个函数f ∈
C∞
x ，都有余切向量df满足 〈

df,
∂

∂xj

〉
= df

(
∂

∂xj

)
=

∂

∂xj
f.

给定光滑流形间的光滑映射φ :M → N，自然诱导了一个映射

φ∗ : C∞
φ(x) → C∞

x

f 7→ f ◦ φ,

1
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于是这自然可以称为一个映射

φ∗ : TxM → Tφ(x)N

v 7→ v(− ◦ φ),

该映射称为切映射.

定理 1.1. 设M是n维光滑流形，令

TM :=
∐
x∈M

TxM

是M上的切向量的全体，那么存在TM上的拓扑和光滑结构使得TM是一个2n维光滑流形.

证明. 按定义，TM中的点是形如(x, v)的配对，其中x ∈M，v ∈ TxM .定义映射

π : TM →M

(x, v) 7→ x,

这样对于任意一点x ∈M，π−1(x) = TxM .

假定M的光滑结构是{(Uλ, φλ : Uλ → Rn)}λ∈Λ，考虑

π−1(Uλ) =
⋃
x∈Uλ

TxM,

于是TM =
⋃
λ∈Λ π

−1(Uλ).借助φλ，我们给定局部的同胚

ψλ : Uλ × Rn → π−1(Uλ)

满足对于x ∈ Uλ, y = (y1, · · · , yn) ∈ Rn，

ψλ(x, y) =
n∑
i=1

yi
∂

∂xiλ

∣∣∣∣∣
x

其中xiλ = (φλ)
i, i = 1, · · · , n是Uλ上由坐标映射φλ给出的局部坐标系.很明显这个映射是集合上的双射.

借助局部的乘积空间，可以给出TM一个拓扑结构.考虑TM中的子集族

B := {ψλ(W ) |W是Uλ × Rn中的开集},

这可以构成TM的一个拓扑基：首先{(Uλ}λ∈Λ是M的一个开覆盖，因此B是TM的开覆盖；接下来还需要验证
对任意(x, v) ∈ TM，若有B1, B2 ∈ B使得(x, v) ∈ B1∩B2则有B ∈ B满足(x, v) ∈ B ⊆ B1∩B2.由于Uλ×Rn具有
乘积拓扑结构，因而可以找到Uλ, Uµ中的开集D1, D2和Rn中的开集V1, V2使得ψλ(D1×V1) ⊆ B1, ψµ(D2×V2) ⊆
B2，这样只要证明存在某个Uν中的开集D和Rn中的开集V使得

(x, v) ∈ ψν(D × V ) ⊆ ψλ(D1 × V1) ∩ ψµ(D2 × V2),

如此可得到TM上的拓扑，并且这是一个第二可数的Hausdorff空间.

在上述假定下，

x = π(x, v) ∈ D1 ∩D2 ⊆ Uλ ∩ Uµ
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且

v =
n∑
i=1

yi
∂

∂xiλ

∣∣∣∣∣
x

=
n∑
i=1

ỹi
∂

∂xiµ

∣∣∣∣∣
x

=
n∑

i,j=1

ỹj
∂xiλ
∂xjµ

(φλ(x))
∂

∂xiλ

∣∣∣∣∣
x

,

其中(y1, · · · , yn) ∈ V1，(ỹ1, · · · , ỹn) ∈ V2，因此它们之间有关系式

yi =

n∑
i=1

ỹi
∂xiλ
∂xjµ

,

∂xi
λ

∂xj
µ
是光滑流形M从局部坐标系(Uλ, x

i
λ)到(Uµ, x

i
µ)的坐标变换Jacobi矩阵.

考虑映射Φλ,µ : (Uλ ∩ Uµ)× Rn ⊆ Uµ × Rn → (Uλ ∩ Uµ)× Rn ⊆ Uλ × Rn使得

Φλ,µ(x, (ỹ
1, · · · , ỹn)) = (x, (y1, · · · , yn)),

其中(y1, · · · , yn)与(ỹ1, · · · , ỹn)服从之前计算的关系式，因此yi是关于x, ỹ1, · · · , ỹn的光滑函数.由于

det
∂xiλ
∂xjµ

̸= 0,

所以Φλ,µ有逆映射Φµ,λ = Φ−1
λ,µ，且它也是光滑的，这意味着Φλ,µ : (Uλ ∩Uµ)×Rn → (Uλ ∩Uµ)×Rn是光滑同

胚.由定义可知

ψλ ◦ Φλ,µ ◦ ψ−1
µ = id : π−1(Uλ ∩ Uµ) → π−1(Uλ ∩ Uµ),

即有交换图

Uµ × Rn Uλ × Rn

π−1(Uλ ∩ Uµ).

Ψλ,µ

ψµ ψλ

在先前的设定下不妨取D1 = D2 = D1 ∩ D2，由于Ψλ,µ(D2 × V2)是Uλ × Rn的开集，并且Φλ,µ ◦ ψ−1
µ (x, v) =

ψ−1
λ (x, v) ∈ D1×V1，所以开集Φλ,µ(D2×V2)与开集D1×V1相交非空，因此存在点Φλ,µ◦ψ−1

µ (x, v) = ψ−1
λ (x, v)在

开集Φλ,µ(D2 ×V2)∩D1 ×V1中的邻域D×V，其中D是Uλ 的开子集，V是Rn的开子集.这样ψλ(D×V ) ∈ B且

(x, v) ∈ ψλ(D × V ) ⊆ ψµ(D2 × V2) ∩ ψλ(D1 × V1),

于是B是TM的拓扑基.

事实上，在TM上建立拓扑的直观意义很明确，在给定两个邻近的切向量(x1, v1), (x2, v2)时，首先它们的

起点x1, x2是邻近的，因而可以落在同一个坐标邻域内，于是经过坐标变换v1, v2可以在同一个坐标系内表示

出来.那么，切向量(x1, v1), (x2, v2)相互邻近的第二个要求就是当它们在同一个坐标系内表示出来时，分量的

差别很小.这就是这里给定的拓扑.

接下来再建立微分结构.如前所述，{π−1(Uλ)}λ∈Λ构成了TM的一个开覆盖，对每个指标λ ∈ Λ，定义映

射

ξλ : π−1(Uλ) → R2n

n∑
i=1

yi
∂

∂xi

∣∣∣∣∣
x

7→ (x1λ, · · · , xnλ, y1, · · · , yn).
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这样ξλ是从π
−1(Uλ)到R2n中的开集φλ(Uλ)×Rn的同胚，因此(π−1(Uλ), ξλ)λ∈Λ是TM的一个坐标卡，使得它成

为一个拓扑流形.如此，还需要证明坐标卡是C∞相关的.注意到π−1(Uλ)与π
−1(Uµ)相交非空的充要条件是Uλ ∩

Uµ ̸= ∅，此时坐标变换
ξµ ◦ ξ−1

λ : φλ(Uλ ∩ Uµ)× Rn → φµ(Uλ ∩ Uµ)× Rn

由下式给出

(x1λ, · · · , xnλ, y1, · · · , yn) 7→ (x1µ, · · · , xnµ, ỹ1, · · · , ỹn),

其中xiµ = (φµ ◦ φ−1
λ )i(x1λ, · · · , xnλ)，且

ỹi =
n∑
i=1

yi
∂xiµ

∂xjλ
.

这样，xiµ, ỹ
i都是xiλ, y

i的光滑函数，因此TM是光滑流形.

注意到在TM的这个光滑结构下，映射π : TM →M限制在局部坐标π−1(U)上的表达式为

φλ ◦ π ◦ ξ−1
λ (x1λ, · · · , xnλ, y1, · · · , yn) = (x1λ, · · · , xnλ),

于是π是光滑映射.另外，

ξλ ◦ ψλ(x, (y1, · · · , yn)) = ξλ

(
n∑
i=1

yi
∂

∂xiλ

∣∣∣∣∣
x

)
= (x1λ, · · · , xnλ),

所以ψλ : Uλ × Rn → π−1(Uλ)是光滑同胚.同时该光滑同胚满足对所有的(x, y) ∈ Uλ × Rn，

π ◦ ψλ(x, y) = x,

即有交换图

Uλ × Rn π−1(Uλ)

Uλ.

ψλ

pr1 π

再固定x ∈ Uλ，考虑映射

ψλ(x,−) : Rn → π−1(x)

y 7→ ψλ(x, y),

按定义它将(y1, · · · , yn)映到
∑n

i=1 y
i ∂
∂xi

λ

∣∣∣
x
，因此是一个线性同构.这样当x ∈ Uλ ∩ Uµ时，存在两个线性同

构ψλ(x,−), ψµ(x,−) : Rn → π−1(x)，因而有线性同构

ψµ(x,−) ◦ ψλ(x,−)−1 : Rn → Rn,

这个同构是证明中的映射

(y1, · · · , yn) 7→ (ỹ1, · · · , ỹn),

恰好是局部坐标变换φµ ◦ φ−1
λ

例 1. 考虑S2 ⊆ R3，有嵌入S2 = {(x, y, z) | x2 + y2 + z2 = 1}.那么S2的切丛可表示为

TS2 = {((x, y, z), (u, v, w)) | xu+ yv + zw = 0} ⊆ S2 × R3.
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2 流形的向量丛

将切丛的概念做推广，我们得到了如下流形上向量丛的概念：

定义. 设E,B是两个光滑流形，π : E → B是光滑的满映射.若存在M的一个开覆盖{Uλ}λ∈Λ以及一组被称为局

部平凡化(local trivialization)的光滑同胚

ψλ : Uλ × Rn → π−1(Uλ)

使得

1. 下图交换

Uλ × Rn π−1(Uλ)

Uλ.

ψλ

pr1 π

2. 对任意给定的x ∈ Uλ，由局部平凡化诱导的

ψλ(x,−) : Rn → π−1(x)

v 7→ ψλ(x,v)

是拓扑空间的同胚，且对于任意x ∈ Uλ ∩ Uµ，复合映射

gµ,λ(x) := ψ−1
µ (x,−) ◦ ψλ(x,−) : Rn → π−1(x) → Rn

是线性同构，即gµ,λ ∈ GLn(R).

3. 上一部分确定的映射

gµ,λ : Uλ ∩ Uµ → GLn(R)

是光滑的.

都满足，则称(E, π)是B上的秩(rank)为n的向量丛(vector bundle).

对任意x ∈ B，Ex := π−1(x)被称为E在点x上的纤维(fibre)，ψλ称为局部平凡化(local trivialization).其

中第一条是描述局部平凡化是局部的“丛映射”，只在相同的纤维上做对应；第二条是说，不同的局部平凡化

只是用不同的方式看纤维上的线性结构；第三条决定了丛的属性，这里是光滑向量丛.

我们注意到，

例 2. 设Gk(Rn)是Grassmann流形，定义

γk,n := {(V, v) ∈ Gk(Rn)× Rn | v ∈ V ⊆ Rn},

π : γk,n → Gk(Rn)是映射(V, v) 7→ V .如下的构造使得π : γk,n → Gk(Rn)是一个向量丛，称为万有向量
丛(universal bundle).对于流形Gk(Rn)，存在开覆盖

Ui1,··· ,ik := {A ∈Mn,k(R) | detAi1,··· ,ik ̸= 0}

其中1 ≤ i1 < · · · < ik ≤ n是k个不同的正整数，Ai1,··· ,ik是取A中第i1, · · · , ik行组成的子矩阵.存在唯一的

列变换（这里只能用列变换，因为我们不想改变生成的子空间）使得Ai1,··· ,ik = Ik，而剩余行组成A对应

到Rk×(n−k)中的坐标.于是，可以构造以下的结构



2 流形的向量丛 6

Ui1,··· ,ik × Rk π−1(Uλ)

Ui1,··· ,ik ,

ψi1,··· ,ik

pr1 π

其中ψi1,··· ,ik是映射

命题 2.1. 若π : E → B是n秩光滑向量丛，则E上任意点x上的纤维Ex都有自然的线性结构使得Ex是n维向量

空间.

事实上，我们并不需要一个向量丛的基是流形，对于一般的（好的）拓扑空间，同样可以定义向量丛：

定义.

定义. 给定空间B及其上的两个向量丛π1 : E1 → B, π2 : E2 → B，

定理 2.2. 设f : D → B是连续映射，p : E → B是秩为n的向量丛，那么拓扑空间

f∗E := {(d, e) ∈ D × E | f(d) = p(e)}

是D上的向量丛.f∗E称为向量丛E的拉回(pullback)，如下图

f∗E E

D B.

p

事实上，这个结果对于纤维丛也正确.

证明.

引理 2.1. 对任意丛态射

D E

B1 B2,

f̃

p q

f

都存在拓扑空间的同胚

g : D → f∗E

x 7→ (p(x), f̃(x))

使得二者是B1上同构的纤维丛.

习题 2.1. 设i : Y ↪→ X是子空间的嵌入映射，证明

i∗(E) ∼= E|Y .

习题 2.2. CPn的tautological线丛的Thom空间是CPn+1.

例 3. 所有光滑流形的切丛都可以称为某个向量丛的拉回.
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拓扑上，向量丛的分类是一个核心而且有趣的问题.

命题 2.3. 设π : E → B是秩为n的光滑向量丛，那么它的转移函数族{gµ,λ : Uλ ∩ Uµ → GLn(R)}满足下列相
容性条件：

1. gλ,λ(p) = I对所有点p ∈ Uλ成立，其中I是单位矩阵；

2. 若Uλ ∩ Uµ ∩ Uη ̸= ∅，那么对任意p ∈ Uλ ∩ Uµ ∩ Uη，

gλ,µ(p) · gµ,η(p) = gλ,η(p).

定理 2.4. 设M是n维流形，{Mλ}λ∈Λ是一个开覆盖.若对任意一对指标λ, µ，在Uλ ∩Uµ ̸= ∅时都指定了一个光
滑映射

gλ,µ : Uλ ∩ Uµ → GLr(R),

满足命题??中的条件，则存在同构下唯一的r秩向量丛π : E →M，以{gλ,µ}λ,µ∈Λ为转移函数.

2.1 截面

定义. 给定空间B及其上的向量丛π : E → B，若连续映射s : B → E满足π ◦ s = idB，则称s是E的截

面(section).空间B上的向量丛E的截面的全体记为Γ(B,E).

例 4. 考虑光滑流形M及其上的平凡线丛M × R，我们尝试写出截面的具体含义.给定一个截面s，那么s是映

射

M →M × R,

记s(x) = (s1(x), s2(x))，其中s1(x) ∈ M是流形中的点，s2(x) ∈ R.π ◦ s = id说明s1(x) = x，于是s完全由映

射s2 :M → R决定；但由于s本身是连续的因此s2也是连续的，故上面的讨论说明M ×R上的截面对应于M上
的连续函数.

当向量丛并不是平凡的时候，截面则并不能如此简单地描述.考虑向量丛π : E → B的截面s : B → E，局

部平凡化在开覆盖U = {Ui}i∈I上给出了映射

φi : π
−1(Ui) → Ui × Rn,

因此复合

Ui
s|Ui−−→ π−1(Ui)

φi−→ Ui × Rn

是映射x 7→ (x,fi(x))，其中fi(x)是Rn中的向量，且取值关于x ∈ Ui是连续的.类似地，取另一个局部坐标的

时候复合

(id,fj) : Uj
s|Uj−−→ π−1(Uj)

φj−→ Uj × Rn

同样给出了连续函数fj : Uj → Rn.同时，交换图

Ui × Rn

Ui π−1(Ui ∩ Uj)

Uj × Rn

φj◦φ−1
i

s|Ui∩Uj

φi

φj



3 复流形的向量丛 8

例 5. 考虑光滑流形M及其上的切丛TM，

定义. 纤维丛平凡化

命题 2.5. 给定纤维丛E → B和开集U ⊆ B，那么存在一一对应

Γ(U,E) ↔ {U上的平凡化h : π−1(U) → U × F}.

2.2 向量丛的构造

引理 2.2. 任意给定拓扑空间X的两个开覆盖U ,V，都存在同时从属于它们的开覆盖W.

定理 2.6. 设E,F是B上的两个向量丛，那么H om(E,F ) :=
∐
x∈B Hom(Ex, Fx) = {(x,A) | x ∈ B,A ∈

Hom(Ex, Fx)}有自然的拓扑结构使得H om(E,F )成为B上的向量丛，且每个截面s : B → H om(E,F )都是一

个向量丛态射E → F .

证明. 根据定义，设U = {Ui}i∈I和V = {Vj}j∈J是B的开覆盖，分别可以给出E与F的局部平凡化.依据拓扑中

的结论，可以找到U与V共同的加细使得E,F在这个开覆盖上都有平凡化，依旧记这个加细为U .
明显地存在自然的投影映射

π : H om(E,F ) → B

(x,A) 7→ x,

在这个映射下π−1(x) = Hom(Ex, Fx)，我们需要给出H om(E,F )上的拓扑结构，使得π是连续的，并且可以

给定转移函数.取B从属于开覆盖U的一组开集基，
对任意Ui ∈ U，E,F在Ui上都有平凡化，分别记为φi : π−1

E (Ui) → Ui ×Rn和ψi : π−1
F (Ui) → Ui ×Rm，于

是可以构造

H om(φi, ψi) : π
−1(Ui) → Ui ×Hom(Rn,Rm)

推论 2.6.1. 若φ ∈ ΓH om(E,F )满足对每个x ∈ B，φx都是同构，那么φ−1存在且φ−1是连续的.

习题 2.3. 设E是X上的向量丛，证明存在自然同构

H om(E,F ) ∼= E∗ ⊗ F.

例 6. 设π1 : E1 → B, π2 : E2 → B是两个

3 复流形的向量丛

在之前的一节中我们提到了
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4 概型的向量丛

例 7. 考虑X = Spec R[x, y, z]/(x2 + y2 + z2 − 1)，M是R = R[x, y, z]/(x2 + y2 + z2 − 1)模R⊕R⊕R的子模

{(u, v, w) ∈ R⊕R⊕R | xu+ yv + zw = 0},

那么M̃是局部自由的，它对应了一个向量丛.

例 8. 考虑X = Spec Z[
√
−5] = Spec R，I = (2, 1 +

√
−5).这个理想不是主理想，因而R ̸∼= I.但是R2

∼=
I2, R3

∼= I3，且D(2), D(3)是Spec R的开覆盖，因此Ĩ是局部自由的.

5 G主丛

考虑李群G作用在给定的流形M上，如果作用是自由的，那么任意点x ∈M的轨道Ox ∼= G.例如，SO(2)在R2−
{(0, 0)}的作用.

定义. 给定拓扑群G和纤维丛π : P → B，满足如下条件

1. G在P上有自由的（右）作用σ，

2. 存在同胚f : B → P/G满足

P P

B P/G,

id

π

f

即P → B与P → P/G作为纤维丛是同构的，

则称P → B是一个G主丛(principal G-bundle).

命题 5.1. 若P
π−→ B是G主从，则

1. 群G的作用是在纤维上的，即对任意b ∈ B和g ∈ G，π−1(b) · g ⊆ π−1(b).

2. 群G作用在纤维F上的作用是可迁的，于是F ∼= G.

证明. 1. 假设b1 ̸= b2 ∈ B满足存在x1 ∈ π−1(b1)，使得x2 := x1 · g ∈ π−1(b2)，这样

f(b1) = [x1] = [x2] = f(b2),

其中[x1]是x1在商映射P → P/G下的像，与f是同胚矛盾，得证.

2. 任取x, y ∈ π−1(b)，

[x] = f(π(x)) = f(π(y)) = [y],

于是存在g ∈ G使得x · g = y.

例 9. Hopf纤维化S1 ↪→ S3 → S2是一个S1主丛.
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例 10. 任意给定一个光滑流形M，且维数dimM = n，定义空间LM →M如下：对任意点x ∈M，

LxM := {(e1, · · · , en) | {e1, · · · , en}构成TxM的一组基} ∼= GL(n,R),

且LM :=
∐
x∈M LxM，类似于之前TM的构造，给LM一个由M诱导的坐标图卡.

接下来我们说明LM是一个GL(n,R)主丛.

例 11. 给定离散群G，我们如下地构造空间EG：

定义. 设P1
π1−→ B1和P2

π2−→ B2分别是给定的G1主丛和G2主丛，那么一个主丛态射(morphism)是映射对(f :

P1 → P2, g : B1 → B2, φ : G1 → G2)，满足图

P1 P2

B1 B2

f

π1 π2

g

是交换图，且f关于φ是等变的.

丛态射意味着将纤维映到纤维，准确地说，

引理 5.1. 给定流形B上的两个G主丛π1 : P1 → B和π2 : P2 → B，若f : P1 → P2是主丛态射，那么f是同构.

证明. 设P1中的两点x, y满足f(x) = f(y)，那么由于f是丛态射，因此π1(x) = π1(y)，这样x, y在同一点的纤

维上，于是存在唯一的g ∈ G使得x = y · g.这样，

f(x) = f(y · g) = f(y) · g = f(y),

于是g = e，这意味着x = y.

另一方面，对任意的z ∈ P2，任取x ∈ π−1(π(z)).命题??说明群作用是可迁的，于是存在g ∈ G使得f(x) ·
g = z，再根据f的等变性，f(x · g) = z，即f是满射.

这意味着给定基流形的所有主丛的范畴是一个群胚.

定理 5.2. G主丛π : P → B是平凡的当且仅当存在截面s : B → P .

证明. 考虑映射

g : B ×G→ P

(b, g) 7→ s(b) · g,

若能够证明它是主丛态射，则根据引理??这必然是同构.

定理??说明纤维丛的拉回是纤维丛，特别地，

推论 5.2.1. 给定G主丛P → B，则P ×B P → P是一个平凡G主丛，它的平凡化映射可以由

σ × pr2 : P ×G→ P ×B P

给出，
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证明. 拉回的泛性质说明存在对角截面

P

P ×B P P

P B,

因此P ×B P → P是平凡G主丛.

推论 5.2.2. 给定群G和纤维丛P → B，则P → B是G主丛当且仅当σ × pr2 : P ×G→ P ×B P是同构.

例 12. 考虑S2的GL(2,R)主丛LS2，

定理 5.3. 给定G主丛π : P → B和G在空间F的左作用，那么存在空间P ×G F使得P ×G F → B是以F为纤维

的纤维丛.

证明. 定义

P ×G F := P × F/ ∼,

其中等价关系定义为(x · g, y) ∼ (x, g · y).于是，映射p : P ×G F → B定义为

(x, y) 7→ π(x),

注意到这是个良定义，因为若(x1, y1) ∼ (x2, y2)，那么存在g ∈ G使得y1 = g · y2，这样x2 = x1 · g，因此二者
在同一点的纤维上.

考虑任意b ∈ B，那么对任意x ∈ π−1(b)，存在连续映射

F → p−1(b)

y 7→ (x, y)

和它的逆映射

F → p−1(b)

y 7→ (x, y)

最后来证明局部平凡化.

定理??中的构造P ×G F被称为Borel构造(Borel construction).

例 13. 任意给定底空间B和G主丛P → B，考虑G在空间F上的平凡作用，那么直接由定义，

例 14. 设M是给定的n维流形，LM →M是GL(n,R)主丛，考虑GL(n,R)在Rn上的自然作用，那么

命题 5.4. 任意给定纤维丛F ↪→ E
p−→ B并选定F的自同构群Aut(F )，那么存在Aut(F )主丛π : P → B使

得E ∼= P ×Aut(F ) F .
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证明. 任意给定b ∈ B，令

Pb := {φ : F → p−1(b) | φ是同构},

那么有自然的Aut(F )在Pb上的作用.于是定义

P :=
∐
b∈B

Pb.

5.1 分类空间

定义. 给定G主丛P → B，若P是可缩的则称P → B是万有主丛(universal principal bundle).

定理 5.5. 给定纤维丛E → B和连续映射f0, f1 : X → B，若f0 ≃ f1则f∗
0 (E) ∼= f∗

1 (E).

定理 5.6. 给定拓扑群G，则存在拓扑空间BG满足对任意拓扑空间X，

[X,BG] ∼= PrinG(X),

其中[−,−]是拓扑空间连续函数的同伦等价类，


