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第一章 导出函子

1.1 上链和正合性

定义. 给定加性范畴A中的一族对象及态射构成的图

X• : · · · d
n−1

−−−→ Xn dn−→ Xn+1 dn+1

−−−→ · · · ,

满足dn ◦ dn−1 = 0对任意n都成立，则称(X•, d•)是A中的一个上链(cochain).

有时为强调，我们也记(X•, d•)Z.若X
i = 0对任意i < 0都成立，则记为(X•, d•)≥0，称复形X

•是正阶数

的().

定义. 给定加性范畴A中上链(X•, d•X), (Y
•, d•Y )，一族A中的态射{fn : Xn → Y n}n∈Z，满足

dnY ◦ fn = fn+1 ◦ dnX ,

即图

Xn Xn+1

Y n Y n+1

dnX

fn fn+1

dnY

是交换的，则称这族态射是上链态射(morphism)，记为f• : X• → Y •.

Com•(A)

引理 1.1. 给定Abel范畴A，则Com•(A)也是Abel范畴.

证明. 我们一步步完成验证：

1. 核和余核：给定上链间的态射f• : X• → Y •，定义

7



8 第一章 导出函子

定义. 设(X•, d•)是A中的上链，满足Xn = 0对所有的n < 0都成立.若有η : A → X0使得d
0 ◦ η = 0，则

称(X•, d•)是增广的(augmented).若还有Hn(X•) = 0对所有的n > 0都成立，且η诱导了同构A ∼= H0(X•)，

则称(X•, d•)是A的消解(resolution).

对偶地，我们也有加性范畴A中的链(chain)的概念.我们记

例 1.1. 给定代数R，若M是R模，且P •和I•分别是M的投射消解和内射消解，则如下三个横向的序列是R −
Mod中的一个上链

· · · P−2 P−1 P 0 0 0 · · ·

· · · 0 0 M 0 0 · · ·

· · · 0 0 I0 I1 I2 · · · ,

d−2 d−1 d0

ϵ

η

d0 d1 d2

且他们有相同的上同调.

例 1.2. 设(X•, d•)是A中的一个上链，定义上链定义上链τ̃≤n(X•, d•)为

· · · d
n−2

−−−→ Xn−1 dn−1

−−−→ Xn 0−→ 0→ · · · ,

此时，

H i(τ̃≤n(X•)) =


H i(X•) i < n

Xn/Im dn−1 i = n

0 i > n.

对偶地有构造τ̃≥n(X
•, d•)，

· · · → 0→ Xn dn−→ Xn+1 dn+1

−−−→ Xn+2 → · · · ,

且

H i(τ̃≥n(X
•)) =


H i(X•) i > n

Ker dn+1 i = n

0 i < n.

例 1.3. 设(X•, d•)是A中的一个上链，给定整数n，定义上链τ≤n(X•, d•)为

· · · d
n−2

−−−→ Xn−1 dn−1

−−−→ Ker dn
0−→ 0→ · · · ,

那么我们可以证明，

H i(τ≤n(X•)) =

{
H i(X•) i ≤ n

0 i > n
,

类似地我们也有构造τ≥n(X
•, d•)，

· · · → 0→ Xn/Im dn−1
d̄n−→ Xn+1 dn+1

−−−→ Xn+2 → · · · ,

对比例1.2，
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例 1.4. 给定交换环R和（可能非交换的）R代数A，M是A双模，那么可以定义Chevalley-Eilenberg映射

δn :M ⊗R
n∧
i=1

A→M ⊗R
n−1∧
i=1

A

m⊗ a1 ∧ · · · ∧ an 7→
n∑
i=1

(−1)i[m, ai]⊗ a1 ∧ · · · ∧ âi ∧ · · · ∧ an

+
n∑

1≤i<j≤n

(−1)i+j−1m⊗ [ai, aj ] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an,

我们来验证这给出一个R模链复形.

事实上，Chevalley-Eilenberg同调只依赖于A的Lie代数结构和M的Lie代数模结构

定义. 给定Abel范畴A中上链(X•, d•)，.

定理 1.1. 设

0→ X•
f−→ Y •

g−→ Z• → 0

是Abel范畴A中上链的正合列，那么存在上同调的长正合列

· · · → Hn(X•)→ Hn(Y •)→ Hn(Z•)→ Hn+1(X•)→ · · · .

链复形也有完全对偶的同调版本，表述与证明几乎是完全等同的，在此

证明. 我们将长正合序列具体写出来

0 ker dnX ker dnY ker dnZ

0 Xn Y n Zn 0

0 Xn+1 Y n+1 Zn+1 0

coker dnX coker dnY coker dnZ 0,

于是存在如下交换图，且横向序列由蛇形引理都是正合的：

coker dn−1X coker dn−1Y coker dn−1Z 0

0 ker dn+1
X ker dn+1

Y ker dn+1
Z ,

d̄nX d̄nY d̄nZ

其中d̄nX : coker dn−1X → ker dn+1
X 是下图（习题A.4）
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ker dn+1
X

Xn−1 Xn Xn+1 Xn+2

coker dn−1X

由dnX : Xn → Xn+1诱导的coker dn−1X 99K ker dn+1
X （在R模的情形就是选取一个代表元素Xn/im dn−1X

∼=
coker dn−1X ，然后用dnX将代表元映到ker dn+1

X 中）.再次根据蛇形引理，有长正合序列

ker d̄nX → ker d̄nY → ker d̄nZ → coker d̄nX → coker d̄nY → coker d̄nZ .

但是，分解

Xn dnX−−→ Xn+1 = Xn → coker dn−1X

d̄nX−−→ ker dn+1
X ↪→ Xn+1

说明ker d̄nX = ker(coker dn−1X

d̄nX−−→ ker dn+1
X ↪→ Xn+1)，根据定义

ker d̄nX = Hn(X•),

对偶地

coker d̄nX = Hn+1(X•),

这样就得到了希望的长正合序列.

在蛇形引理的证明中，态射ker d̄nZ → coker d̄nX是困难的，并且在长正合序列中它对应了阶数提升的态

射Hn(Z•) → Hn+1(X•).这里有必要将整个态射详细清楚地描述出来.定理A.13的证明中详细描述了一般的构

造，特别地，当A是R模复形时，

coker dn−1X coker dn−1Y coker dn−1Z 0

0 ker dn+1
X ker dn+1

Y ker dn+1
Z

d̄nX d̄nY d̄nZ

对应的连接同态是明确的：任取ker d̄nZ中的元素z̄ ∈ coker dnZ，根据ḡ是满射，存在ȳ ∈ coker dnY使得它在ḡ下的

像是z̄，根据证明中的说明，d̄nY (ȳ)是将d
n
Y作用在ȳ的任意代表元上得到ker dn+1

Y 中的元素，根据右侧的交换性

存在x ∈ ker dn+1
X 使得fn+1|ker dn+1

X
(x) = d̄nY (ȳ)，于是

δ : Hn(Z•)→ Hn+1(X•)

将Hn(Z•)中以z̄代表的元素映到Hn+1(X•)中x代表的元素，满足

fn+1|ker dn+1
X

(x) = d̄nY (ȳ).

换句话说，δn的行为基本同于d̄nY .

定义. (quasi-isomorphism)
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例 1.5. 给定Abel范畴A中的短正合序列

0→ X → Y → Z → 0,

那么

0 X Y 0

0 0 Z 0

和

0 X 0 0

0 Y Z 0

都是拟同构.

习题 1.1. 给定一族Abel范畴A中的对象{Xn}n∈N和态射

d
[n]
i : Xn → Xn−1, 0 ≤ i ≤ n

满足单纯条件

d
[n−1]
i d

[n]
j = d

[n−1]
j−1 d

[n]
i

对0 ≤ i < j ≤ n成立，则称{Xn}n∈N是预单纯的(pre-simplicial)，且d
[n]
i 是面映射(face maps).求证

1. 定义

∂n :=
n∑
i=0

(−1)id[n]i

满足∂n−1∂n = 0，于是一个预单纯对象{Xn, d
X,[n]
i }n∈N,0≤i≤n给出一个链复形.

2. 给定A中的预单纯对象{Xn, d
X,[n]
i }n∈N,0≤i≤n, {Yn, dY,[n]i }n∈N,0≤i≤n，{fn : Xn → Yn}n∈N是A中的一族态

射，满足

fn−1d
X,[n]
i = d

Y,[n]
i fn,

则f给出了链复形之间的态射.称这样一族态射为预单纯态射(pre-simplicial morphism).
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证明. 1. 按定义，

∂n−1∂n =

(
n−1∑
i=0

(−1)id[n−1]i

)(
n∑
j=0

(−1)jd[n]j

)
=

∑
i=0,··· ,n−1
j=0,··· ,n

(−1)i+jd[n−1]i d
[n]
j

=
∑

i=0,··· ,n−1
j=0,··· ,n
i<j

(−1)i+jd[n−1]i d
[n]
j +

∑
i=0,··· ,n−1
j=0,··· ,n
i≥j

(−1)i+jd[n−1]i d
[n]
j

=
∑

i=0,··· ,n−1
j=0,··· ,n
i<j

(−1)i+jd[n−1]j−1 d
[n]
i +

∑
i=0,··· ,n−1
j=0,··· ,n
i≥j

(−1)i+jd[n−1]i d
[n]
j 单纯条件

=
∑

i=0,··· ,n−1
j−1=0,··· ,n−1

j−1≥i

(−1)i+(j−1)+1d
[n−1]
j−1 d

[n]
i +

∑
i=0,··· ,n−1
j=0,··· ,n
i≥j

(−1)i+jd[n−1]i d
[n]
j

= 0.

2. 直接验证

fn−1∂
X
n = fn−1

(
n∑
i=0

(−1)idX,[n]i

)
=

n∑
i=0

(−1)ifn−1dX,[n]i =
n∑
i=0

(−1)idY,[n]i fn = ∂Yn fn.

习题 1.2 (Hopf迹定理). 设V •,W •是域k上有界（∃N > 0使得当|n| > N时V n = 0）上链，且对任意n，

V n和Wn都是有限维k向量空间，f : V • → W •是链同态，f∗ : Hn(V •) → Hn(W •)是诱导的上同调群同

态.求证 ∑
n∈Z

(−1)nTr fn =
∑
n∈Z

(−1)nTr fn∗ .

[归纳地构造向量空间合适的基.]

1.2 链同伦

另一方面，我们希望从拓扑的角度解释这样称呼他们的原因，设f : X → Y是拓扑空间的连续函数，那

么f的映射柱是拓扑空间(X × I)
∐
f Y，其中粘合依赖于f : X × {1} → Y，它在同伦的定义中起到了重要的

作用.回顾拓扑中映射f, g的一个同伦是一个连续映射H : X × I → Y，满足H|X×{0} = f且H|X×{1} = g，用交

换图表示即为

X X × I X

Y ,
f

i

H
g

j

其中i : X → X × I, x 7→ (x, 0)且j : X → X × I, x 7→ (x, 1).用到拓扑空间中余积是不交并的事实，上图又可以

表示为
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X
∐
X X × I

Y,
f
∐
g

i
∐
j

H

注意到X × I恰是idX : X → X的映射柱，因而映射同伦的存在性恰由映射柱描述.这样的事情同样发生

在Com•(A)中，一个上链映射的同伦s : f ≃ g可以给出一个Com•(A)的交换图

X• ⊕X• Cyl(idX)
•

Y •,

习题-将给出验证.

引理 1.2. 任意给定加性函子F : A → B，那么F将Com•(A)中的同伦链映为同伦链.

习题 1.3. 习题1.1中给了预单纯复形的定义.假定{Xn, d
X,[n]
i }n∈N,0≤i≤n, {Yn, dY,[n]i }n∈N,0≤i≤n是Abel范畴A中的

预单纯链复形，且态射h
[n]
i : Xn → Xn+1满足关系

d
[n+1]
i h

[n]
j = h

[n−1]
j−1 d

[n]
i , ∀ i < j

d
[n+1]
i h

[n]
i = d

[n+1]
i h

[n]
i−1, i = j 或 i = j + 1

d
[n+1]
i h

[n]
j = h

[n−1]
j d

[n]
i−1, ∀ i > j + 1,

d0h0 = f, dn+1hn = g.

求证h :=
∑n

i=0(−1)hi给出了链同伦.

证明.

习题 1.4. 1. 习题1.2给出了对于有限复形的迹，求证迹映射是加性的，即若有上链短正合列间的态射

0 X• Y • Z• 0

0 X• Y • Z• 0,

f g h

则Tr g = Tr f +Tr h.

2. 接下来的部分考虑若给出的f, g和h不再是链同态时（此时它们同伦交换），迹不再是加性的.1

(a) 设R是包含平方为零元素e的（含幺）环，即e ̸= 0, e2 = 0.构造X• = R[1], Z• = R[0]，即X,Z是分

别集中于1, 0阶的1维自由R模；Y 0 = Y 1 = R，d0 = e，且其余Y的项都为0.这样

R R

R R

e

1这个反例取自[1].
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给出了短正合列

0→ X• → Y • → Z• → 0.

求证f = 0, h = 0且g =

(
0

e

)
: Y → Y给出了同伦交换的图

R R

R R

R R

R R.

e

0 0

0 e

e

(b) 求证Tr g = −e，且Tr f = Tr h = 0.

1.3 映射锥和映射柱

给定Abel范畴A，且设X• = (Xn, dnX) ∈ Com•(A)是A中对象组成的复形，那么我们可以定义一个新的复
形X[n]•，满足(X[n])i = Xn+i，diX[n] = (−1)ndn+iX : (X[n])i → (X[n])i+1.若f : X• → Y •是一个链同态，则

我们有诱导的链同态f [n] : X[n]• → Y [n]•，满足f [n]i = fn+i : (X[n])i → (Y [n])i.

我们称[1]为平移函子(translation by 1 functor)，它是拓扑中−×[0, 1]的类比.之后这个函子将给出了？？？？

上的一个三角结构(triangulated structure).

对偶地，

定义. 给定Abel范畴A的一个链同态f : X• → Y •，那么f的映射锥(mapping cone)是A中对象组成的一个
链Cone(f)•满足

Cone(f)i := X[1]i ⊕ Y i

和

diCone(f) :=

(
diX[1] 0

f [1]i diY

)
:

Xn+1 Xn+2

Y n Y n+1,

⊕ ⊕

类似地我们可以定义f的映射柱(mapping cylinder)，它是A中对象组成的一个链Cyl(f)• := X• ⊕X[1]• ⊕
Y •，其中

diCyl(f) :=


diX −idX[1] 0

0 diX[1] 0

0 f [1]i diY

 .
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这样微分映射的定义很明显是合理的，它们都是上链：

di+1
Cone(f) ◦ d

i
Cone(f) =

(
di+1
X[1] 0

f [1]i+1 di+1
Y

)(
diX[1] 0

f [1]i diY

)
=

(
di+1
X[1] ◦ diX[1] 0

f [1]i+1 ◦ diX[1] + di+1
Y ◦ f [1]i di+1

Y ◦ diX[1]

)
= 0,

且

di+1
Cyl(f) ◦ d

i
Cyl(f) =


di+1
X −idX[1] 0

0 di+1
X[1] 0

0 f [1]i+1 di+1
Y



diX −idX[1] 0

0 diX[1] 0

0 f [1]i diY


例 1.6. 设X•, Y •是单对象上链，f : X• → Y •是链映射，那么由定义

Cone(f) = · · · → 0→ X0 f−→ Y 0 → 0→ · · · ,

其中Y 0所在的位置是0阶位置，且有H0 = coker f,H−1 = ker f .这意味着我们可以将Cone可以视作ker和coker的

推广，这在后面三角范畴的讨论中是关键的问题.

对偶地，

引理 1.3. Abel范畴A的一个链同态f : X• → Y •诱导了同构f∗ : H∗(X•) → H∗(Y •)当且仅

当H∗(Cone(f)) = 0.

证明. 如下短正合列

0→ Y •
i−→ Cone(f)

p−→ X[1]• → 0

（其中i是嵌入p是投影）诱导了上同调群的长正合列

· · · → Hn(Cone(f))→ Hn(X[1])→ Hn+1(Y )→ Hn+1(Cone(f))→ · · · ,

于是Hn(X[1]) = Hn+1(X) ∼= Hn+1(X)当且仅当Hn(Cone(f)) = 0对所有n成立，于是只要说明诱导长正合序

列的连接态射是由f诱导的即可.考虑？？？？？

命题 1.2. 设Abel范畴A的一个链同态f : X• → Y •满足Cone(f) ≃ 0，那么f是链同伦等价.

证明. 令i : Y • → Cone(f)是嵌入p : Cone(f)→ X[1]•是投影.

首先，i ≃ 0当且仅当f有右同伦逆，即存在链映射g : Y • → X•使得fg ≃ idY • .一方面，若i ≃ 0，那么存

在h : Y • → Cone(f)[−1]满足
dn−1Cone(f) ◦ h

n + hn+1 ◦ dnY = i,

按照直和分解Cone(f) := X[1]•⊕Y •，存在s : Y • → Y [−1]•和g : Y • → X•满足h = s+ g，于是上式可以写为(
dn−1X[1] 0

f [1]n−1 dn−1Y

)(
gn

sn

)
+

(
gn+1

sn+1

)
dnY =

(
0

idY

)
.
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这意味着g : Y • → X•是链映射，且

f [1]n−1 ◦ gn + dn−1Y ◦ sn + sn+1 ◦ dnY = idY ,

即g是右同伦逆.另一方面，f有右同伦逆，记为链映射g : Y • → X•和s : Y • → Y [−1]•，那么之前证明中的矩
阵等式成立，于是找到了h := s+ g满足dn−1Cone(f) ◦ hn + hn+1 ◦ dnY = i，即i ≃ 0.

再来，p ≃ 0当且仅当f有左同伦逆，即存在链映射h : Y • → X•使得hf ≃ idY • .

最后，我们回到命题的证明来.Cone(f) ≃ 0意味着idCone(f) ≃ 0，于是i = idCone(f) ◦ i ≃ 0 ◦ i = 0并

且p = p ◦ idCone(f) ≃ p ◦ 0 = 0，于是根据前面的讨论，f同时有左右同伦逆，因此f是同伦等价.

拓扑上，考虑

定理 1.3. 任给定Abel范畴A的一个链同态f : X• → Y •，都存在如下Com•(A)的正合列：

0 Y • Cone(f) X•[1] 0

0 X• Cyl(f) Cone(f) 0

X• Y •

π̄

α

π

id

f̄

id

π

β

f

推论 1.3.1.

定义. 给定Abel范畴A，称Com•(A)中的图

X•
f−→ Y •

g−→ Z•
h−→ X•[1]

为其中的一个三角(triangle)，三角间的态射(morphism)是如下交换图

X• Y • Z• X•[1]

K• L• M• K•[1]

f

u

g

v

h

w u[1]

i j k

给定三角，若存在f使得三角同构于

X• Cyl(f) Cone(f) X•[1]
f π δ

则称它是特异三角(distinguished triangle).

如上定义给出的是
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X• Z•

Y •,

u

w

v

其中w

命题 1.4. Com•(A)中的任意短正合序列0→ X•
f−→ Y •

g−→ Z• → 0都拟同构于某个特异三角.

证明. 考虑如下交换图

0 X• Y • Z• 0

0 X• Cyl(f) Cone(f) 0

f

u

g

v

h

w

f π

习题 1.5. 设

(
X• ⊕ Y •, d =

(
α β

γ δ

))
是上链复形，(Y •, δ•)可缩上链复形且h : Y • → Y •[−1]是链同伦，求证

(id,−hγ) : (X•, α− βhγ) ↪→ (X• ⊕ Y •, d)

是拟同构.这个练习说明消去可缩子复形不影响上同调.

证明. 首先来验证(X•, α− βhγ)是链复形.由于

d2 =

(
α2 + βγ αβ + βδ

γα+ δγ γβ + δ2

)
= 0,

因此

(α− βhγ)2 = α2 − αβhγ − βhγα+ (βhγ)2

= α2 + βδhγ + βhδγ + βhγβhγ

= α2 + β(hδ + δh)γ + βhδ2hγ,

由于δ是微分映射且h : id ≃ 0是收缩同伦，故如上计算(α− βhγ)2 = α2 + βγ = 0.

再来验证(id,−hγ)是链映射，这等价于图

Xn Xn+1

Xn ⊕ Y n Xn+1 ⊕ Y n+1

αn−βnhn+1γn

 id

−hn+1γn


 id

−hn+2γn+1


αn βn

γn δn


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是交换的.注意到 (
αn βn

γn δn

)(
id

−hn+1γn

)
=

(
αn − βnhn+1γn

γn − δnhn+1γn

)
且 (

id

−hn+2γn+1

)
(αn − βnhn+1γn) =

(
αn − βnhn+1γn

−hn+2γn+1αn + hn+2γn+1βnhn+1γn

)
.

根据d2 = 0，γn+1βn = −δn+1δn = 0，于是

−hn+2γn+1αn + hn+2γn+1βnhn+1γn = −hn+2γn+1αn.

又由于γn+1αn = −δn+1γn，

δnhn+1γn − hn+2γn+1αn = δnhn+1γn + hn+2δn+1γn

= (δnhn+1 + hn+2δn+1)γn

= γn,

这就证明了图的交换性.

最后，嵌入映射

(id,−hγ) : (X•, α− βhγ) ↪→ (X• ⊕ Y •, d)

的余核(Y •, δ)是零调的，因此长正合序列说明了嵌入是拟同构.

1.4 内射消解和投射消解

定义. (augmented )

1.5 δ函子和导出函子

定义. 给定Abel范畴A,B，A → B的（协变）上同调δ函子(δ-functor)是一族函子{T i : A → B}i∈N，和对
任意A中的短正合序列

0→ X → Y → Z → 0,

都有态射δiZ,X : T i(Z)→ T i+1(X)，满足

1. 对任意给定的A中的短正合序列0→ X → Y → Z → 0，都存在长正合列

2. 若有A中的短正合列交换图那么态射δiZ,X给出了自然的交换图

T i(Z1) T i+1(X1)

T i(Z2) T i+1(X2).

δiZ1,X1

δiZ2,X2
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对偶地，（协变）上同调δ函子(δ-functor)是一族函子{Ti : A → B}i∈N，和对任意A中的短正合序列

0→ X → Y → Z → 0,

都有态射δZ,Xi : Ti(Z)→ Ti−1(X)，满足

1. 对任意给定的A中的短正合序列0→ X → Y → Z → 0，都存在长正合列

2. 若有A中的短正合列交换图那么态射δZ,Xi 给出了自然的交换图

Ti(Z1) Ti−1(X1)

Ti(Z2) Ti−1(X2).

δ
Z1,X1
i

δ
Z2,X2
i

其中的态射族δ统称为链接态射(connecting morphism).

在定义的记号中，链接态射关于的肩标（脚标）只记录了短正合列的第一和第三项，但实际它与整个短

正合列都相关，并且相关性是自然的.严格的表述如下：

习题 1.6.

定义. 给定Abel范畴A,B和加性函子F : A → B，若对任意A中的对象X，都存在单态射i : X → I使

得F (i) = 0，则称F是effecable的.对偶地，若对于任意任意A中的对象Z，都存在单态射p : P → Z使

得F (p) = 0，则称F是coeffecable的.

定理 1.5. 给定Abel范畴A,B和δ函子(T i, δ)i∈N，若对于任意i > 0，T i都是有效的函子，那么(T i, δ)i∈N在

所有δ函子中是始对象，即

证明.

推论 1.5.1. 右导出函子是有效的，反之也成立.
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第二章 Tor函子和Ext函子

2.1 R模同调与Tor函子

引理 2.1. 给定环同态φ : R→ S，(C•, ∂•)是S右模复形，那么存在自然的R右模同构

Hn(C̃•) ∼= H̃n(C•),

其中C̃•是将S模视作R模得到的复形， Hn(C̃•)是这个对应复形的同调； H̃n(C•)是先取复形C•的同

调Hn(C•)再将其视为R模得到的R右模.

换句话说，模范畴的复形同调与基环的选取无关.

定义. 给定（右）R模链复形(C•, ∂•)和（左）R模N，则以N为系数的C•的同调(the homology of C• with

coefficient in N)为

Hn(C•;N) := Hn(C• ⊗R N),

其中复形C• ⊗R N是

· · · → Cn+1 ⊗R N
∂n+1⊗RN−−−−−−→ Cn ⊗R N

∂n⊗RN−−−−−→ Cn+1 ⊗R N → · · · .

定理 2.1.

推论 2.1.1. 给定R模短正合列

0→M → N → P → 0,

满足P是平坦的，那么

1. M是平坦的当且仅当N是平坦的，

2. 对任意R模Q，0→M ⊗R Q→ N ⊗R Q→ P ⊗R Q→ 0也是正合列.

21
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2.2 R模上同调与Ext函子

2.2.1 R模同调与上同调的转换

2.3 特殊链复形和万有系数定理

2.3.1 特殊链复形

引理 2.2. 设(P•, ∂•)是投射R模链复形，Hn(P•) = 0对任意n成立，且所有的Im ∂n+1也都是投射的，

则P• ≃ 0.

证明. 令Zn := Ker ∂n, Bn := Im ∂n+1，那么对所有的整数n我们有短正合序列

0→ Zn ↪→ Pn
∂n−→ Bn−1 → 0.

根据投射R模的提升性质，存在hn−1 : Bn−1 → Pn使得下图交换：

Bn−1

0 Zn Pn Bn−1 0.

hn−1

∂n

因此Pn = Zn ⊕ hn−1(Bn−1).由于Hn(P•) = 0，Zn = Bn，于是复形可以重写为

· · · → Zn+1 ⊕ hnZn
∂n+1−−−→ Zn ⊕ hn−1Zn−1

∂n−→ Zn−1 ⊕ hn−2Zn−2 → · · · ,

满足∂n|Zn
= 0, ∂n|hn−1Zn−1

= (hn−1)
−1，于是

· · · Zn+1 ⊕ hnZn Zn ⊕ hn−1Zn−1 Zn−1 ⊕ hn−2Zn−2 · · ·

· · · Zn+1 ⊕ hnZn Zn ⊕ hn−1Zn−1 Zn−1 ⊕ hn−2Zn−2 · · ·

∂n

hn−1 hn−2

∂n

给出了链同伦id ≃ 0.

作为推论，考虑投射R模链复形的态射f :M• → N•诱导了同构f∗ : H∗(M•)→ H∗(N•)，那么Hn(Cone(f)) =

0对任意n成立.但是，Cone(f)也是投射R模链复形，由刚刚的引理Cone(f) ≃ 0，于是根据命题1.2的对偶，

f是链同伦.这样我们证明了

命题 2.2. 若投射R模链复形的态射f :M• → N•诱导了同构f∗ : H∗(M•)→ H∗(N•)，那么f是链同伦.

事实上，我们还可以证明更强的结论：如果同调群的同构H∗(M•) ∼= H∗(N•)并不是由特定的态射诱导的

话，给定的自由R模链复形M•, N•依旧依旧是同伦等价的，即：
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定理 2.3. 若是hereditary且(M•, ∂
M
• ), (N•, ∂

N
• )是自由R模链复形，那么M• ≃ N•当且仅当Hn(M•) =

Hn(N•)对任意n成立.

为了证明定理2.3，我们需要建立由同调群映射到链复形态射的提升，即

命题 2.4. 给定R模链复形M•, N•且M•是投射链复形，且Ker ∂Mn , Im ∂Mn+1都是投射的，则对于任意上同

调群的同态φ∗ : H∗(M•)→ H∗(N•)都可以找到链复形态射f :M• → N•，使得f∗ = φ∗.

证明. 按照假设ZMn := Ker ∂n, B
M
n := Im ∂n+1都是投射的，于是存在交换图

0 BM
n ZMn HM

n 0

0 BN
n ZNn HN

n 0,

f̃n|BM
n

πM
n

f̃n φn

πN
n

其中上下两行的正合性说明，对任意∂Mn+1(m) = b ∈ BM
n ，

πNn ◦ f̃n(b) = πNn ◦ f̃n(∂n+1(m)) = φn(π
M
n ◦ ∂Mn+1(m)) = 0,

因此f̃n(b) ∈ Ker πNn = BN
n ，这样只需要将f̃n扩张到Mn即可.

考虑2.2中的分解Mn = ZMn ⊕ hn−1(BM
n−1)，在如下交换图中

0 ZMn Mn BM
n−1 0

BM
n−1

0 ZNn Nn BN
n−1 0,

f̃n

f̃n|BM
n−1

hn−1

kn−1

再次根据自由模的投射性质存在kn−1 : B
M
n−1 → Nn.于是，定义

fn :Mn → Nn

(z, hn−1(b)) 7→ f̃n(z) + kn−1(b),

这样只需要验证f是链映射且f∗ = φ∗即可.计算得

fn∂
M
n+1((z, hn(b))) = fn(b, 0) = f̃n(b) = ∂Nn+1 ◦ kn(b) = ∂Nn+1(f̃n+1(z) + kn(b)) = ∂Nn+1fn+1((z, hn(b))),

于是f是链映射，且f∗([z]) = [f̃n(z)]，f̃n的定义交换图说明φn ◦πMn = πNn ◦ f̃n，这样[f̃n(z)] = φn([z])，即f∗ =

φ∗.

结合命题2.2，此时定理2.3已经完成了证明.更进一步地，我们还有
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命题 2.5. 给定R模投射链复形M•, N•， 且Ker ∂Mn , Im ∂Mn+1,Ker ∂Nn , Im ∂Nn+1都是投射的，

若H∗(M•), H∗(N•)也都是投射的，且态射f, g : M• → N•诱导相同的同态f∗ = g∗ : H∗(M•) → H∗(N•)，

那么f ≃ g.

证明. 令ZMn := Ker ∂Mn , B
M
n := Im ∂Mn+1, Z

N
n := Ker ∂Nn , B

N
n := Im ∂Nn+1，将H∗(M•)看作（边缘算子为0的）

链复形，那么显然H∗(M•) = H∗(H∗(M•))（这里固定一个同构视为相等），根据命题2.4，存在链映射j• :

M• → H∗(M•)使得j∗是同构H∗(M•) = H∗(H∗(M•)).根据命题2.2，j•存在同伦逆，记为j
−1
• .类似地，存在链

映射k• : N• → H∗(N•)使得k∗是同构H∗(N•) = H∗(H∗(N•))，k
−1
• 是同伦逆.于是

f ≃ (k ◦ k−1) ◦ f ◦ (j ◦ j−1) = k ◦ (k−1 ◦ f ◦ j) ◦ j−1.

另一方面，链复形H∗(M•), H∗(N•)的边缘算子都是0，链映射H∗(M•) → H∗(N•)和它诱导的H∗(H∗(M•)) →
H∗(H∗(N•))没有差别，因此

k−1 ◦ f ◦ j = (k−1 ◦ f ◦ j)∗ = k−1∗ ◦ f∗ ◦ j∗ = id ◦ f∗ ◦ id = f∗,

同理k−1 ◦ g ◦ j = g∗，综合起来

f ≃ k ◦ (k−1 ◦ f ◦ j) ◦ j−1 = k ◦ f∗ ◦ j−1 = k ◦ g∗ ◦ j−1 = k ◦ (k−1 ◦ g ◦ j) ◦ j−1 ≃ g.

2.3.2 万有系数定理

定理 2.6. 给定环R和平坦右R模组成的复形P•，使得所有的子模Im ∂n+1也都是平坦的，那么对于任意的

左R模N和n ∈ Z，都存在正合序列

0→ Hn(P•)⊗R N → Hn(P•;N)→ TorR1 (Hn−1(P•), N)→ 0,

natural.

证明. 首先对任意n ∈ Z存在正合列
0→ Zn ↪→ Pn

∂n−→ Bn−1 → 0,

根据推论2.1.1，Zn也都是平坦的，且诱导的

0→ Zn ⊗R N → Pn ⊗R N → Bn−1 ⊗R N → 0

也是正合列.这样，存在Abel群复形的短正合序列

0→ Z• ⊗R N → P• ⊗R N → B[−1]• ⊗R N → 0,
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并且诱导了长正合序列

· · · → Hn+1(B[−1]• ⊗R N)
δ−→ Hn(Z• ⊗R N)→ Hn(P• ⊗R N)→ Hn(B[−1]• ⊗R N)→ · · · .

注意到(Z•, ∂•|Z)和(B[−1]•, ∂•|B)的边缘算子都是0，故Hn(Z•⊗RN) = Zn⊗RN,Hn(B[−1]•⊗RN) = Bn−1⊗R
N .这样，之前的长正合序列是

· · · → Bn ⊗R N
δn−→ Zn ⊗R N → Hn(P• ⊗R N)→ Bn−1 ⊗R N → · · · ,

其中，映射δ : Bn ⊗R N → Zn ⊗R N恰好是嵌入in : Bn → Zn在−⊗R N下的象，这样有正合列

0→ Coker δn → Hn(P• ⊗R N)→ Ker δn−1 → 0.

注意到

0→ Bn → Zn → Hn(P•)→ 0

是Hn(P•)的平坦消解，因此根据Tor诱导的长正合序列

0→ TorR1 (Hn(P•), N)→ Bn ⊗R N
δn−→ Zn ⊗R N → Hn(P•)⊗R N → 0,

代入即可.

对偶地，有上同调的万有系数定理：

定理 2.7. 给定环R和投射右R模组成的复形P•，使得所有的子模Im ∂n+1也都是投射的，那么对于任意的

左R模N和n ∈ Z，都存在正合序列

0→ Ext1R(Hn−1(P•), N)→ Hn(P•;N)→ HomR(Hn(P•), N)→ 0.

引理 2.3. 给定主理想整环R和自由R模M，则M的子模也是自由的.

定义. 设M•是R模上链复形，若对每一个n ∈ Z，Mn都是自由R模，则称M•是自由链复形(free cochain

complex).

推论 2.7.1. 若P•是承袭环R模的投射链复形，那么存在自然的正合序列

0→ Hn(P•)⊗R N → Hn(P•;N)→ Tor(Hn−1(P•), N)→ 0,

（非典范的）分裂.对偶地，

证明.

例 2.1. 若M•是主理想整环R模的自由链复形，给定一个拓扑空间X，
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2.3.3 零调模型

定理 2.8. 给定环R的链复形C•, D• ∈，满足C•是自由链复形，且D•是零调的.设φ0 : H0(C•)→ H0(D•)是

同态，则

1. 存在链同态f : C• → D•使得(f∗)0 = φ0，

2. 任意满足如上性质的链同态都是同伦的.

2.4 双复形和链复形中的乘法对象

2.4.1 双复形和全复形

定义. 分次模/分次对象

定义. 设M,N是分次R模，若R模态射f :M → N满足存在整数d，使得对任意n ∈ Z都有f :Mn → Nn+k，

则称f是阶数为k的分次映射(graded map of degree k).

命题 2.9. 若M
f−→ N

g−→ P分别是阶数为k, l的分次映射，则g ◦ f是阶数为k + l的分次映射.

定义. 一个双分次模(bigraded module)是一族有两个指标的R模

M := {Mp,q}(p,q)∈Z×Z,

一般我们记为M••.若M,N是双分次模，一族映射

f = {fp,q :Mp,q → Np+k,q+l}(p,q)∈Z×Z

若都是R模映射，则称f是阶数为(k, l)的双分次映射.

接下来我们都用上同调的序号记号.
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定义. 设M是双分次R模，d→, d↑是两个阶数分别为(1, 0)和(0, 1)的双分次微分映射（即dp+1,q
→ ◦ dp,q→ = 0，

dp,q+1
↑ ◦ dp,q↑ = 0）.若映射满足

dp,q+1
→ ◦ dp,q↑ = dp+1,q

↑ ◦ dp,q→ ,

则称(M,d→, d↑)是一个双复形(bicomplex).

p

q

d→

d↑
d→

d↑
d→

d↑

例 2.2. 设M是双分次R模，d→, δ是两个阶数分别为(1, 0)和(0, 1)的双分次微分映射，使得dp,q+1
→ ◦δp,q+δp+1,q ◦

dp,q→ = 0（注意这和双复形差了一个符号！），那么我们可以通过符号变换构造一个双复形.令dp,q↑ = (−1)pδp,q，
那么

dp,q+1
→ ◦ dp,q↑ = dp+1,q

↑ ◦ dp,q→ .

定义. 给定环R和M• ∈ Com•(Mod−R), N• ∈ Com•(R−Mod)，定义M• ⊗N•是一个Ab上的双复形

M• ⊗N• = (M i ⊗R N j ,di,j→ = diM ⊗R idNj :M i ⊗R N j →M i+1 ⊗R N j

di,j↑ = idMi ⊗R djN :M i ⊗R N j →M i ⊗R N j+1)(i,j)∈Z×Z,

如下图

M i ⊗R N j+1 M i+1 ⊗R N j+1

M i ⊗R N j M i+1 ⊗R N j .

di+1,j
→

di,j↑

di,j→

di,j+1
↑
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注意到

(di,j+1
→ ◦ di,j↑ + di+1,j

↑ ◦ di,j→ )(m⊗ n)

= (−1)i(diM ⊗R idNj+1) ◦ (idMi ⊗R djN )(m⊗ n) + (−1)i+1(idMi ⊗R dj+1
N ) ◦ (diM ⊗R idNj )(m⊗ n)

= (−1)i((diM ⊗R d
j
N )(m⊗ n)− (diM ⊗R d

j
N )(m⊗ n))

= 0,

因此M• ⊗N•是双复形.

定义. 设M是双分次R模，那么

Tot(M)n :=
⊕
p+q=n

Mp,q

和Dn : Tot(M)n → Tot(M)n+1，

Dn :=
∑
p+q=n

(dp,q→ + (−1)pdp,q↑ )

称为M的全复形(total complex).

p

q

p+ q = n p+ q = n+ 1

x0,n

x1,n−1

. . .

xn,0

y0,n+1

y1,n

y2,n−1

. . .

yn+1,0

(2.1)

引理 2.4. 若M是双复形，则(Tot(M), D)是复形.

很多时候，我们关心的上同调问题是某个双复形的全复形的上同调群，而谱序列就是一种计算全复形上

同调群的某种技巧.

例 2.3. 给定一个第一象限的双复形(D, d→, d↑)，取
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习题 2.1. 给定链复形的态射f : X• → Y •，求证Cone f ∼= Tot .

例 2.4. 设M是双分次R模，(D, d→, d↑)是一个双复形，那么我们可以定义双复形的转置M
T：这意味着

Tot(M) = Tot(MT ).

命题 2.10. 给定第一象限的双复形(X•,•, d→, d↑)，若对任意q ≥ 0，X•,q都是正合的，则Tot(X)也是正合

的.

证明. 任取n阶上闭链x =
∑n

p=0 x
p,n−p（若没有第一象限的有限性条件，这一步不正确，见习题2.2），我们首

先证明存在与x在同一D同伦类的元素x̃ =
∑n−1

p=0 x̃
p,n−p，即有如图

p

q

x0,n

x1,n−1

. . .

xn,0

xn−1,1

∼

p

q

x̃0,n

x̃1,n−1

. . .

x̃n−1,1

所示的代表元.由于x =
∑n

p=0 x
p,n−p是上闭链，D(x) = D

(
n∑
p=0

xp,n−p

)
= 0，特别地

d→(x
n,0) = 0.

由于双复形X•,•的行都是正合的，因此存在yn−1,0 ∈ Xn−1,0使得d→(y
n−1,0) = xn,0.按定义

D(yn−1,0) = d→(y
n−1,0) + (−1)n−1d↑(yn−1,0)

如上的讨论可以持续进行下去，

推论 2.10.1. 给定第一象限的双复形(X•,•, d→, d↑)，若存在(C•, dC)和增广态射a• : C• → D•,•，对任意p ≥
0，

0→ Cp
ap−→ D0,p d0,pI−−→ D1,p d1,pI−−→ D2,p → · · ·

都是正合列，则a•诱导了同构

H∗(C•) ∼= H∗(Tot(D•,•)).
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证明. 我们要证明诱导的态射a∗ : H∗(C•)→ H∗(Tot(D•,•))同时是单态射和满态射.

任取H∗(C•)中的上闭链αn，并且假设它有代表元
∑n

i=0 x
i,n−i.由于D(αn) = 0，第一象限意味着dn,0I (xn,0) =

0，再根据行正合的性质存在wn−1,0使得dn−1,0I (wn−1,0) = xn,0.

习题 2.2. 求证如下给出的双复形满足命题2.10的条件，即对任意q，X•,q都是正合的，但其全复形的上同调不

为零：给定整数p，定义

Xp,q :=

{
Z q = −p或者q = −p+ 1

0 其他情况,

且dp,−p↑ : Xp,−p → Xp,−p+1 = 2，dp,−p→ : Xp,−p → Xp+1,−p = 1，其余为0.

Hp,q(Tot(X•,•)) :=

{
Z/2Z q = −p+ 1

0 其他情况.

定理 2.11. 给定第一象限的双复形(X•,•, d→, d↑)，若Hp,q
→ H↑(X)只在某一行中，则

Hp,q
→ H↑(X) ∼= Hp+q(Tot(X)).

证明. 假设Hp,q
→ H↑(X) ̸= 0当且仅当q = q0，如图所示：

p

q

q0

我们首先注意到以下事实：

1. 任意给定元素[x] ∈ Hp,q
→ H↑(X)，那么可以找到x ∈ Hp,q

↑ (X)是[x]的代表元，满足dp,q→ (x) = 0 ∈ Hp,q+1
↑ (X)，

而这意味着存在代表元xp,q ∈ Xp,q使得

d→(x
p,q) = d↑(x

p+1,q−1),
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而xp,q是x的代表元则意味着d↑(x
p,q) = 0，即

0

xp,q d→(x
p,q) = d↑(x

p+1,q−1)

xp+1,q−1.

d→

d↑

d↑

(2.2)

2. 若元素[x] ∈ Hp,q
→ H↑(X)为零，由xp,q ∈ Xp,q给出的代表元x ∈ Hp,q

↑ (X)是d→的像，即存在x
p−1,q使得

d→([x
p−1,q]) = x = [xp,q] ∈ Hp,q

↑ (X),

这意味着存在元素xp,q−1使得

xp,q − d→(xp−1,q) = d↑(x
p,q−1),

其中由于xp−1,q是d↑上同调的代表元d↑(x
p−1,q) = 0，即代表元为图

0

xp−1,q xp,q = d↑(x
p,q−1) + d→(x

p−1,q)

xp,q−1.

d→

d↑

d↑

(2.3)

一方面，任取n阶上闭链x =
∑n

q=0 x
n−q,q，不妨设n > q0，我们首先证明存在与x在同一D同伦类的元

素x̃ =
∑q0

q=0 x̃
n−q,q，即有如图

p

q

q0

x0,n

x1,n−1

. . .

xn,0

xn−1,1

∼

p

q

q0

x̃n,0

x̃n−1,1

x̃n−q0,q0

所示的代表元.根据定义，

D(x) = D

(
n∑
q=0

xn−q,q

)
=

n∑
q=0

D(xn−q,q),
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由于X−1,n+1 = 0，D(x)的(0, n+1)项只能来源于d↑(x
0,n)，因而由上闭链知d↑(x

0,n) = 0，进而根据等式2.2知x0,n给

出了H0,n
→ H↑(X)中的一个元素，于是根据Hn,0

→ H↑(X) = 0知，存在y0,n−1使得

d↑(y
0,n−1) = x0,n,

（实际上应当是d↑(y
0,n−1) + d→(z

−1,n) = x0,n但z−1,n = 0）于是

n∑
q=0

xn−q,q = d↑(x
0,n−1) +

n∑
q=1

xn−q,q = D(x0,n−1) + (x1,n−1 − d→(x0,n−1)) +
n∑
q=2

xn−q,q,

令x̃1,n−1 := x1,n−1 − d→(x0,n−1)，则意味着x与

x̃1,n−1 +
n∑
q=2

xn−q,q

代表相同的D上同调类.同样的道理，x̃1,n−1也给出了H1,n−1
→ H↑(X)中的元素，若H1,n−1

→ H↑(X) = 0则存在y1,n−2, z0,n−1使

得

d→(z
0,n−1) + (−1)1d↑(y1,n−2) = x̃1,n−1

且d↑(z
0,n−1) = 0，于是

x̃1,n−1 +
n∑
q=2

xn−q,q = d→(z
0,n−1) + (−1)1d↑(y1,n−2) +

n∑
q=2

xn−q,q

= D(z0,n−1) +D(y1,n−2) + (x2,n−2 − (−1)1d→(y1,n−2)) +
n∑
q=3

xn−q,q,

取x̃2,n−2 = x2,n−2 − (−1)1d→(y1,n−2)，则x与

x̃2,n−2 +
n∑
q=3

xn−q,q

代表相同的D上同调类.这样的构造可以一直进行到第q0行，使得

x ∼ x̃n−q0,q0 +
n∑

q=q0+1

xn−q,q (2.4)

此时我们定义

f : Hp+q(Tot(X))→ Hp
IH

q
II(X)

[x] 7→ [x̃n−q0,q0 ].

另一方面，任意给定满足图2.2的Hp,q
→ H↑(X)的代表元xp,q，若q ̸= q0则按照图2.3存在元素yp−1,q, yp,q−1使

得

xp,q = d→(y
p−1,q) + d↑(y

p,q−1)

且d↑(y
p−1,q) = 0.此时我们定义

g : Hp
→H

q
↑(X)→ Hp+q(Tot(X))

[x] 7→ [xp,q + d→(y
p,q−1)].

(2.5)
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接下来考虑q = q0的情形.注意到

d↑d→(x
p+1,q−1) = d→d↑(x

p+1,q−1) = d→d→(x
p−1,q) = 0,

故d→(x
p+1,q−1)给出了Hp+2,q−1

↑ (X)中元素的代表元，特别地此时q = q0，H
p+2,q−1
→ H↑(X) = 0，因此图2.3说

明存在yp+1,q−1和xp+2,q−2满足

0

yp+1,q−1 d→(x
p+1,q−1) = d↑(y

p+1,q−1) + d→(x
p+2,q−2)

xp+2,q−2.

d→

d↑

d↑

取x̃p+1,q−1 = xp+1,q−1 − yp+1,q−1，此时

x̃p+1,q−1 d→(x̃
p+1,q−1) = d↑(x

p+2,q−2) 0

xp+2,q−2,

d→ d→

d↑

这意味着

g : Hp
→H

q
↑(X)→ Hp+q(Tot(X))

[x] 7→ [x+ x̃p+1,q−1 + x̃p+2,q−2 + · · · ].

我们需要验证如上的映射是良定义的，并且互为逆.

这就是说，横行正合的增广双复形的全上同调同于增广列的上同调.

2.4.2 复形中的乘法对象

定义. 给定R模复形M•和N•，那么它们的张量积(tensor product)(M ⊗N)•满足

(M ⊗N)n :=
⊕
i+j=n

M i ⊗R N j ,

微分映射由

dn : (M ⊗N)n → (M ⊗N)n+1

x⊗ y 7→ dnM (x)⊗ y + (−1)deg xx⊗ dnN (y)

扩张给出.

我们来验证如上定义给出了一个上链复形：

如下命题说明这样的定义是自然的：
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命题 2.12. 给定R模复形M•和N•，记M• ⊗N•是双复形
此处有图

那么

Tot(M• ⊗N•) ≃ (M ⊗N)•.

证明.

引理 2.5. 给定R模复形同态的同伦f•1 ≃ f•2 :M•1 →M•2和g
•
1 ≃ g•2 : N•1 → N•2，那么存在链同伦

f•1 ⊗ g•1 ≃ f•2 ⊗ g•2 : (M1 ⊗N1)
• → (M2 ⊗N2)

•,

特别地若有链同伦等价M•1 ≃M•2 , N•1 ≃ N•2，则有(M1 ⊗N1)
• ≃ (M2 ⊗N2)

•.

如果将引理的链同伦换为拟同构，则结论并不正确.

Mac Lane, Homology, Theorem 9.3 page 164.

例 2.5.

Z[m]⊗ Z[n] = Z[m+ n],

(Z/kZ)[m]⊗ Z[n] = Z[m]⊗ (Z/kZ)[n] = (Z/kZ)[m+ n]

习题 2.3. 求证上链复形(Z/kZ)[m]⊗ (Z/lZ)[n]的上同调群是

Hq((Z/kZ)[m]⊗ (Z/lZ)[n]) =

{
Z/gcd(k, l)Z q = m+ n,m+ n+ 1

0 q ̸= m+ n,m+ n+ 1.

命题 2.13. 给定R模复形M•和N•，那么双线性函数

Mp ×N q → (M ⊗N)p+q

(x, y) 7→ x⊗ y

诱导了上同调之间的映射

Hp(M•)×Hq(N•)→ Hp+q((M ⊗N)•).

证明. 任取(x, y) ∈ Zp(M•)× Zq(N•)，按照定义

d(x⊗ y) = dpM (x)⊗ y + (−1)deg xx⊗ dqN (y) = 0,

于是−×−(Z•(M•)× Z•(M•)) ⊆ Z•((M ⊗N)•).类似地，任意(dn−1M (x), y) ∈ Bp(M•)× Zq(N•)满足

d(x⊗ y) = dp−1M (x)⊗ y + (−1)deg xx⊗ dq−1N (y) = dp−1M (x)⊗ y,
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因此−×−(B•(M•)× Z•(M•)) ⊆ B•((M ⊗N)•)，对偶地−×−(Z•(M•)×B•(M•)) ⊆ B•((M ⊗N)•).于是

诱导的映射

Hp(M•)×Hq(N•)→ Hp+q((M ⊗N)•)

满足([zp], [zq]) 7→ [zp ⊗ zq]是良定义的，线性性是根据定义直接的.

推论 2.13.1. 给定交换环R和R模上链复形S•，对任意指标p, q存在双线性映射−⌣ − : Sp × Sq → Sp+q满足

d(α ⌣ β) = d(α)⌣ β + (−1)degαα ⌣ d(β), (2.6)

那么有诱导的“乘法”

−⌣ − : Hp(S•)×Hq(S•)→ Hp+q(S•).

证明. 根据张量积的泛性质，存在R线性映射Sp ⊗R Sq 99K Sp+q（也记为⌣）满足交换图

Sp × Sq Sp+q

Sp ⊗R Sq,

⌣

⊗

于是等式2.6说明诱导的⌣: Sp ⊗R Sq 99K Sp+q是链映射，因此存在

⌣: Hp+q((S ⊗ S)•)→ Hp+q(S•).

复合命题2.13给出的上同调之间的映射，这样得到了所希望的−⌣ − : Hp(S•)×Hq(S•)→ Hp+q(S•).

例 2.6. 给定拓扑空间，那么在S•(X)上有定义的乘积

命题 2.14. 上同调的张量积满足：

1. 结合性：对任意x ∈ Hp(M•), y ∈ Hq(N•), z ∈ Hr(L•)，

(x⊗ y)⊗ z = x⊗ (y ⊗ z),

2. 自然性：任意给定上链映射f :M• → U•和g : N• → V •，那么对任意的x ∈ Hp(M•), y ∈ Hq(N•)，

(f ⊗ g)p+q(x⊗ y) = fp(x)⊗ gq(y).

定理 2.15 (Künneth). 给定环R和平坦右R模组成的复形P•和左R模复形Q•，使得所有的子模Im ∂n+1也

都是平坦的，那么对于任意的和n ∈ Z，都存在正合序列

0→
⊕
p+q=n

Hp(P•)⊗R Hq(Q•)→ Hn((P ⊗Q)•)→
⊕

p+q=n−1

TorR1 (Hp(P•), Hq(Q•))→ 0.
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推论 2.15.1. 给定主理想整环R的自由R模上链复形M•1 ,M
•
2 , N

•
1 , N

•
2，满足H

n(M•1 )
∼= Hn(M•2 ), H

n(N•1 )
∼=

Hn(N•2 )对所有的n ∈ Z成立，那么Hn(M•1 ⊗M•2 ) ∼= Hn(N•1 ⊗N•2 )对所有的n ∈ Z成立.

推论 2.15.2. 给定主理想整环R的自由R模上链复形M•, N•，使得Hn(N•)都是有限生成的自由模，那么

H∗(M• ⊗N•) ∼= H∗(M•)⊗H∗(N•).

这一小节的所有内容都可以形式地对偶到链复形的范畴上，得到相同的结果.

2.4.3 同调与上同调

这里我们只讨论上同调由同调给出的情形，另一种情形完全对偶地可以得出.此时，假定(M•, ∂
M
• ), (N•, ∂

N
• )是

给定的R模链复形，(M• = HomR(M•, R), d
•
M = HomR(∂

M
• , R)), (N

• = HomR(N•, R), d
•
N = HomR(∂

N
• , R))是

诱导的上链复形.

事实上，如此的设定并不是必须的，在后面的所有构造和证明中，我们真正用到的是给定一个R模复

形(M•, ∂
M
• )和R模上链复形(M•, d•M )，存在R双线性的映射

⟨−,−⟩ :Mn ×Mn → R

满足

⟨d(f),m⟩ = ⟨f, ∂(m)⟩

对任意f ∈Mn,m ∈Mn, n ∈ Z都成立.但是，在本小节我们还是选择最初具体的假定，以帮助理解.

首先，命题2.13的对偶给出了链复形层面的张量积，而它本身给出了上链复形层面的张量积.当上链复形

是由链复形诱导时，张量积同样可以被诱导：

引理 2.6. 双线性函数

Mp ×N q → (M ⊗N)p+q

(α, β) 7→ (α⊗ β : (m,n) 7→ α(a)β(n))

诱导了(M ⊗N)•的微分映射

dn : (M ⊗N)n → (M ⊗N)n+1

α⊗ β 7→ dnM (α)⊗ β + (−1)degαα⊗ dnN (β),

且给出了上同调类的张量积

Hp(M•)×Hq(N•)→ Hp+q((M ⊗N)•).
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证明. 计算可得

⟨d(α⊗ β), a⊗ b⟩ = ⟨α⊗ β, ∂(a⊗ b)⟩

= ⟨α⊗ β, ∂(a)⊗ b+ (−1)deg aa⊗ ∂(b)⟩

= ⟨α, ∂(a)⟩⟨β, b⟩+ (−1)deg a⟨α, a⟩⟨β, ∂(b)⟩

= ⟨dα, a⟩⟨β, b⟩+ (−1)degα⟨α, a⟩⟨dβ, b⟩

= ⟨d(α)⊗ β + (−1)degαα⊗ d(β), a⊗ b⟩,

于是

此时，同调与上同调存在相互的作用：

命题 2.16. 双线性函数

−⌢ − : N q × (M ⊗N)p+q →Mp

(β, a⊗ b) 7→ β(b)a

对任意β ∈ N q, c ∈ (M ⊗N)p+q满足

∂(β ⌢ c) = (−1)pdβ ⌢ c+ β ⌢ (∂c),

于是诱导了上同调在同调上的乘积

Hq(N•)×Hp+q((M ⊗N)•)→ Hp(M•).

证明. 设c =
∑N

i=0 ai ⊗ bi，那么

β ⌢ (∂c) = β ⌢

(
N∑
i=0

∂ai ⊗ bi +
N∑
i=0

(−1)deg aiai ⊗ ∂bi

)

=
N∑
i=0

β(bi)∂ai +
N∑
i=0

(−1)deg c−deg biβ(∂bi)ai

= ∂
N∑
i=0

β(bi)ai +
N∑
i=0

(−1)deg c−deg β−1dβ(bi)ai

= ∂(β ⌢ c)− (−1)deg c−deg βdβ ⌢ c.

例 2.7. 给定拓扑空间X，

命题 2.17. 任意给定α ∈ Hp(M•), β ∈ Hq(N•), γ ∈ Hr(L•), a ∈ Hp+q(M ⊗N), b ∈ Hp+q+r(M ⊗N ⊗L)，
满足
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1. 结合性：(β ⊗ γ)⌢ c = β ⌢ (γ ⌢ c)，

2. 对偶性：⟨α⊗ β, b⟩ = ⟨α, β ⌢ b⟩，

3. 自然性：任意给定上链映射f :M• → U•和g : N• → V•，那么对任意的x ∈ Hp(M•), y ∈ Hq(N•)，

f∗((g
∗β)⌢ b) = β ⌢ (f ⊗ g)(b),

用交换图表示为

N q (M ⊗N)p+q Mp

V q (U ⊗ V )p+q Up

× ⌢

f⊗g f

×

g

⌢

2.5 一个例子：

我们感兴趣的是一类特殊图的极限，被称为Abel群组成的塔(tower of abelian groups)，其中指标集I =

N◦是偏序集

· · · → 2→ 1→ 0,

用Ab中的对象表示就是

· · · → A2 → A1 → A0,

或者更形式地，这样一个对象就是函子

A : N◦ → Ab.

它的极限lim←An

α :
∏
i∈N◦

Ai →
∏
i∈N◦

Ai

定义. 给定一个Abel群塔{An}n∈N，考虑映射

∆ :
∏
i∈N◦

Ai →
∏
i∈N◦

Ai,

其中∆ = id− α，定义

n

lim
←
Ai :=


lim←Ai n = 0

Coker ∆ n = 1

0 其他情况.
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定义. 设一个Abel群塔{An}n∈N若满足对任意m ≥ 0，都存在n ≥ m使得i ≥ n时，映射

Ai → Am

的像对所有的i都相同，则称{An}n∈N满足Mittag-Leffler条件.

定理 2.18. 若Abel群塔{An}n∈N满足Mittag-Leffler条件，那么

1

lim
←
An = 0.

证明.

命题 2.19. 设· · · → A2 → A1 → A0是一个正向系，满足任意Ai都是零调的Abel群上链复形，且所有

的Ai+1 → Ai都是满射，那么lim←An也是零调的.
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第三章 谱序列

同调代数关心了许多基本的问题，比如给定R模M的子模K同态f : K → N，

3.1 正合对和导出正合对

定义. 设A是Abel范畴，D,E是A中的对象，f, g, h是映射，若

D D

E

f

gh

是正合的，那么称(D,E, f, g, h)是正合对(exact couple).

定理 3.1. 若(D,E, f, g, h)是Abel范畴A上的一个正合对，那么d := g ◦ h : E → E给出A上的一个微分对
象(E, d)，且存在一个新的正合对(D2, E2, f2, g2, h2)

D2 D2

E2,

f2

g2h2

满足E2 = H(E, d)，称为导出对(derived couple).

证明. 首先我们验证微分.按照定义，d ◦ d = (g ◦ h) ◦ (g ◦ h) = g ◦ (h ◦ g) ◦ h = g ◦ 0 ◦ h = 0.

按照条件定义E2是子商对象H(E, d)，定义D的子对象

D2 := im f ⊆ D,

且f2 := f |D2
= f ◦ ι，其中ι : D2 ↪→ D是嵌入.接下来我们需要定义h2 : E2 → D2和g2 : D2 → E2，并且验证它

们是正合对.

1. 首先我们证明复合态射

im h = ker f ↪→ D
g−→ E ↠ E2 =

ker g ◦ h
im g ◦ h

= coker g ◦ h

41
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是0态射：注意到由余核的定义，复合

D
h̃−→ im h ↪→ D

g−→ E ↠ E2

为0，且由定理A.8，h̃是满态射，于是复合ker f ↪→ D
g−→ E ↠ E2为0.同时定理A.8说明im f = coker ker f，

于是根据余核的定义，存在唯一的态射im f 99K E2使得图

ker f D im f

E E2

g

交换，记这个态射为g2.

2. 根据正合性，运用与上一部分相同的论述可得

im d ↪→ E
h−→ D = 0,

并且注意到

ker d
h|ker d−−−−→ D

g−→ E = ker d
d|ker d−−−−→ E = 0,

正合性还说明im h|ker d ⊆ ker g = im f =: D2，于是余核的定义诱导了态射

E2 =
ker d

im d
→ D2,

记为h2.

3. 对于正合性的验证

从证明中可以看出，诱导对中的D2是子对象，诱导的态射f2是限制，而E2是E的子商对象.在A是R −
Mod时，g2, h2有简单的描述：

1. 任取y ∈ D2，因此存在x ∈ D使得y = f(x)，且g(x)是上闭链（直接验证d(g(x)) = g ◦ h(g(x) = g(h ◦
g(x))) = 0），于是g2可以定义为g(x)所代表的H(E, d)中的元素，即

g2 : D2 → E2

y = f(x) 7→ [g(x)].

2. 任取[z] ∈ E2，其中z ∈ E是上闭链满足0 = d(z) = g(h(z))，于是h(z) ∈ Ker g = Im f = D2，因

而h2([z])可以定义为h(z)，即

h2 : E2 → D2

[z] 7→ h(z).

二者由于恰是证明中所描述的态射，因而良定义与正合性是已经证明的.

例 3.1. 给定正合对

D D

E

f

gh

满足h是0态射，则d = g ◦ h = 0，于是根据正合性，f : D → D是单射，因此f : D → im f是同构，
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3.2 滤子和收敛性

3.2.1 滤子和谱序列

定义. 设A是Abel范畴，X是A中的对象，则X的一个递降滤子(descending filtration)是一族X的子对

象{FnX}n∈Z满足
X = F−∞X ⊇ · · · ⊇ FnX ⊇ Fn+1X ⊇ · · · 0 = F+∞X.

对偶地，若X的子对象{FnX}n∈Z满足

0 ⊆ · · · ⊆ FnX ⊆ Fn+1X ⊆ · · ·X,

则称这是递增滤子(ascending filtration).

如上定义中递增与递降事实上只是对偶的存在，递降滤子用于处理上同调的情形，递增滤子处理同调的

情形.略微不同于之前的讨论，谱序列中虽然同调与上同调依然是对偶的，但实际的处理会非常麻烦.因此我们

这章选择列出包含对偶的结果，但证明则是完全对称的.

在给出任何例子之前，我们需要给出定义的详细解释：

• 给定X的上链滤子{FnX}n∈Z，对任意的整数n，FnX都是X的子对象，即存在单态射in : FnX → X；

• 对任意整数n，存在单态射ιn+1 : Fn+1X → Fn，满足交换图

X

FnX Fn+1X

in

ιn+1

in+1

即有in+1 ◦ ιn = in；

• 图

· · · ιn←− FnX
ιn+1←−−− Fn+1X

ιn+2←−−− · · ·

在A中的极限和余极限都存在，记为F+∞X和F−∞X，且满足F−∞X = X和F+∞X = 0.

mono limit

例 3.2. 假定A是包含所有余积的Abel范畴（比如Ab），给定A上的复形(C•, d)，我们可以构造递降滤子如下：

取X :=
⊕

n∈ZC
n，且

FnX :=
∞⊕
q=n

Cq,

即递降滤子为

https://math.stackexchange.com/questions/1116101/colimit-preserves-monomorphisms-under-certain-conditions
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· · · C−1 C0 C1 C2 · · ·

|

|

F−1X

F0X

此时，微分态射d : X → X是一个阶数为1的态射，即d : X → X[1].

考虑A :=
⊕
n∈Z

FnX，那么另一种写法A =
⊕
n∈Z

Fn+1X给出了短正合列

0→ A
i−→ A→ B → 0, (3.1)

其中i : A→ A是Fn+1X ↪→ FnX给出的嵌入，那么此时

B =
⊕
n∈Z

FnX

Fn+1X
=
⊕
n∈Z

Cn.

同时，C•上的微分d诱导了滤子上的微分

· · · F−1X F0X F1X · · ·

· · · F−1X F0X F1X · · · ,

⊇
d

⊇
d

⊇
d

⊆

⊇ ⊇ ⊇ ⊇

这样也诱导了A,B上的微分，于是短正合列3.1给出了长正合序列

· · · → H∗(A)→ H∗(A[−1])→ H∗(B)→ H∗+1(A)→ · · · .

按定义，

Hq(i) : H∗(A)→ H∗(A[−1])

给出了自然的嵌入
∞⊕
q=n

Hq(C•) ↪→
∞⊕

q=n−1

Hq(C•),

同时

Hq(B) = Hq(C•),

这刚好是Hq(i)的余核，也就意味着对于上链复形(C•, d)，链复形自身给出的滤子结构并不给出更多的信息.

例 3.3. 取Abel范畴A和其上的复形(X•, d•)，按定义它的子对象是Com•(A)中的单态射，具体写出来

1. 对任意整数n，存在单态射in : Yn ↪→ Xn；

2. 对任意整数n，图

Yn Yn+1

Xn Xn+1

dnY

in in+1

dnX
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交换，即dnX ◦ in = in+1 ◦ dnY，我们也记为d(Yn) ⊆ Yn+1.

我们称(Y •, d•Y )是(X•, d•X)的子复形.

结合例3.3，我们有

定义. 给定Abel范畴A上的上链复形(X•, d•)，若对任意整数p，Xp上都存在递降滤子{FnXp}n∈Z，满足

dn(FpX
n) ⊆ FpXn+1,

则称(X•, d•)是可滤上链复形(filtered cochain complex).

定理 3.2. 每一个Abel范畴A中的上链X•的滤子FpX•都给出一个正合对

D D

E,

f (−1,1)

g (0,0)h (1,0)

其中映射的度在图中已经标出.

证明. 我们有复形的短正合列

0→ Fp+1X
• ip+1−−→ FpX

• πp−→ FpX
•/Fp+1X

• → 0,

这诱导了上同调群的长正合序列

· · · →Hn(Fp+1X
•)

Hn(ip+1)−−−−−−→ Hn(FpX
•)

Hn(πp)−−−−→ Hn(FpX
•/Fp+1X

•)→
δn−→Hn+1(Fp+1X

•)
Hn+1(ip+1)−−−−−−−→ Hn+1(FpX

•)
Hn+1(πp)−−−−−−→ Hn+1(FpX

•/Fp+1X
•)→ · · · .

我们取n = p+ q，f = H•(ip+1), g = H•(πp), h = δ•，并且

D = {Dp,q := Hp+q(FpX
•)}

E = {Ep,q := Hp+q(FpX
•/Fp+1X

•)}

代入到长正合序列中即为

· · · → Dp+1,q−1 fp+1,q−1

−−−−−→ Dp,q gp,q−−→ Ep,q hp,q

−−→ Dp+1,q → · · · .

定理3.2于是可以描述为，上链的（递降）滤子给出双分次正合对.

例 3.4. 我们换个角度来考虑定理3.2的结论.假定A是包含所有余积的Abel范畴（比如Ab），A中的上链X•有
滤子FpX

•，定义A :=
⊕
n∈Z

FnX，那么滤子的嵌入给出了短正合列

0→ A
i−→ A→ B → 0,
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推论 3.2.1. 每一个Abel范畴A中的上链X•的滤子FpX•都给出一族正合对

Dr Dr

Er,

fr (1,−1)

gr (1−r,r−1)hr (−1,2)

且满足

1. 双分次映射fr, gr, hr的度分别为(1,−1), (1− r, r − 1)和(−1, 2).

2. 微分dr的度为()，它由hf−r+1g诱导.

证明.

定义. 设A是Abel范畴，X是A中的双分次对象，d是双分次映射满足d ◦ d = 0，则称(X, d)是微分双分次

对象(differential bigraded object).

若(X, d)是微分双分次对象，d的阶数为(k, l)，那么定义(X, d)的上同调为

H(X, d)p,q :=
ker dp,q

im dp−k,q−l
.

定义. 设A是Abel范畴，A上的谱序列(spectral sequence)(Er, dr)r≥0是一族A中的对象和态射的全体E =

(Ep,q
r , dp,qr )，满足

1. 态射dp,qr : Ep,q
r → Ep+r,q−r+1

r 定义在第r页，且是微分映射，即dp+r,q−r+1
r ◦ dp,qr = 0.

2. 有同构

Hp,q(Er) :=
Ker dp,qr

Im dp+r,q−r+1
r

∼= Ep,q
r+1.

推论3.2.1并没有给出第0页的描述，但实际上它是存在的，我们将会在后面讨论.

通常谱序列用图来表示更加容易，这里我们画出了第一页第二页

p

q

E2

• • • • • • • •

• • • • • • • •
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和第三页

的情形.可以看到，微分映射的阶数是随着页数的变化而变化的.

如上定义是上同调谱序列的定义，对偶地还有同调谱序列

p

q

E2
• • • • • • • •

• • • • • • • •

习题 3.1. 给定谱序列(Er, dr)r≥0，p, q是给定的整数.求证若

3.2.2 收敛性

考虑A中上链X•的一个滤子FpX•，将上同调函子作用在滤子上给出了图

0 = F+∞X 0 = Hn(F+∞X) 0

...
...

...

FpX Hn(FpX) Im Hn(ip)

Fp−1X Hn(Fp−1X) Im Hn(ip−1)

...
...

...

X = F−∞X Hn(X) = Hn(F−∞X) Hn(X),

ιp+1 Hn(ιp+1)

ιp Hn(ιp)

Hn(ip)

ιp−1 Hn(ιp−1)

Hn(ip−1)

此时Hn(ip)不再是单射，但考虑Im Hn(ip)在H
n(X)中的像，我们有新的子对象关系（即上图的最右一列）

Hn(X) ⊇ · · · ⊇ Im Hn(ip) ⊇ Im Hn(ip+1) ⊇ · · · 0,

这意味着

ΦpH
n(X•) := Im Hn(ip)

是Hn(X•)的一个滤子，称为F pX•在H∗(X•)上的诱导滤子(derived filtration).

例 3.5. 给定正阶数的复形X•，假定滤子

X ⊇ · · · ⊇ FnX ⊇ Fn+1X ⊇ · · · 0.
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满足FpX = F0X = X对任意p < 0都成立，且FpX = 0对任意p > 3都成立，

0→ A∞
i∞−−→ A∞

q∞−−→ B∞ → 0,

若(Er, dr)r≥1是谱序列，那么E2 = H(E2, d2)是E1的子商：E2 := Z2/B2.同理我们知道E3是E2的子商，

且

B1 ⊆ B2 ⊆ · · ·Br ⊆ · · · ⊆ Zr ⊆ Z2 ⊆ Z1 ⊆ E1.

定义. 给定谱序列(Er, dr)r≥1，定义Z∞ :=
⋂
r≥1 Zr，B∞ :=

⋃
r≥1Br，则谱序列的极限项(limit term)为

Ep,q
∞ :=

Zp,q∞
Bp,q
∞
.

借用MacLane的描述，Zr是出现到第r页的对象，Br是被第r页限制的对象，而Z∞和B∞是一直出现和最

终被限制的对象.

引理 3.1. 设(Er, dr)r≥1是谱序列，那么

1. Er+1 = Er当且仅当Zr+1 = Zr, Br+1 = Br.

2. 若存在s使得对任意r ≥ s都有Er+1 = Er，则E∞ = Es.

例 3.6.

定义. 设X•是Abel范畴A上的上链， F pX•是上链的滤子.若∀n ∈ Z都能找到整数l(n)和u(n)使
得F u(n)Xn = 0且F l(n)Xn = Xn，则称滤子F pX•是有界的(bounded).

另一个相关的概念是一致有界

定义. 给定Abel范畴中的谱序列(Er, dr)r≥1，若存在(p, q)分次对象Hn和Hn的有界滤子ΦpHn满足

Ep,q
∞
∼=

ΦpHn

Φp+1Hn
,

则称谱序列(Er, dr)r≥1收敛到(converges to)Hn，记为

Ep,q
2 ⇒p H

n.
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换句话说，收敛性意味着所逼近的对象Hn上存在分次结构（有界递降滤子给出），使得谱序列的极限项

按反对角线恰好对应该分次结构，即

Gr Hn :=
⊕
p∈Z

ΦpHn

Φp+1Hn
∼=
⊕
p∈Z

Ep,n−p
∞ .

注意到此时并不是意味着谱序列极限项能完全确定Hn.

定理 3.3. Abel范畴A中的上链X•的有界滤子F pX•给出的谱序列(Er, dr)r≥1都满足

1. 对任意给定的p, q都存在r使得Ep,q
r = Ep,q

∞ .

2. Ep,q
2 ⇒p H

n(X•).

证明. 考虑短正合序列

0→
⊕

F p+1X• →
⊕

F pX• →
⊕

F p+1X•/F pX• → 0,

Bott-Tu 14.6

这会最终使得正合对中的k : E → D最终为0，

命题 3.4. 设X••是三象限双复形，且设IEp,q
r ,II Ep,q

r 是Tot(X••)的第一滤子和第二滤子所诱导的谱序列，

那么

1. 第一滤子和第二滤子都是有界的.

2. 对任意p, q都存在页数r = r(p, q)使得IEp,q
∞ =I Ep,q

r ,II Ep,q
r =II Ep,q

∞ .

3. IEp,q
2 ⇒p H

n(Tot(X••))且IIEp,q
2 ⇒p H

n(Tot(X••)).

虽然这个结果看上去很不错，但不论是符号上还是实际计算上这些都并不能够帮助我们.

3.3 全复形的上同调

定义. 设M是双分次R模，(M,dI , dII)是一个双复形，那么称

(IF pTot(M))n :=
⊕
i≥p

M i,n−i = · · · ⊕Mp+2,q−2 ⊕Mp+1,q−1 ⊕Mp,q

为Tot(M)的第一滤子(the first filtration)，称

(IIF pTot(M))n :=
⊕
j≥p

Mn−j,j = · · · ⊕Mp−2,q+2 ⊕Mp−1,q+1 ⊕Mp,q

为Tot(M)的第二滤子(the second filtration).
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p

q

p+ q = np

(a) 第一滤子

p

q

p+ q = n

p

(b) 第二滤子

定义. 给定Abel范畴A中的三象限双复形X••，称Hp
I (H

q
II(X

••))为X••的第一上同调(the first iterated co-

homology)，称Hp
II(H

q
I (X

••))为X••的第二上同调(the second iterated cohomology).

定理 3.5. 给定Abel范畴A中的三象限双复形X••，则

1. IEp,q
1 = Hq

II(X
p,•).

2. IEp,q
2 = Hp

I (H
q
II(X

••))⇒p H
n(Tot(X••)).

对偶地，我们同样有

定理 3.6. 给定Abel范畴A中的三象限双复形X••，则

1. IIEp,q
1 = Hq

I (X
•,p).

2. IIEp,q
2 = Hp

II(H
q
I (X

••))⇒p H
n(Tot(X••)).

例 3.7. 给定R模范畴中的交换图
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P Q

M N,

g

f

h k

做适当的变换我们得到一个三象限双复形X••，我们考虑N,P都是Q的子模的特殊情形，来计算该双复形的全

复形

0→M
()−→ P ⊕N g+k−−→ Q

的上同调.

定义. 设(Er, dr)r≥1是Abel范畴中的谱序列， 若Ep,q
2 = 0对所有非零的q都成立， 则称Er落在p轴

上(collapses on the p-axis).

以第一滤子为例，我们接下来会仔细分析双复形给出的谱序列的微分的含义.考虑定理3.3中给出的短正合

列（Bott-Tu14）

E1 = H↑(X
•,•)

命题 3.7. 设(Er, dr)r≥1三象限谱序列，且E
p,q
2 ⇒p H

n(X•)，若称Er落在任意轴上，则

1. Ep,q
2 = Ep,q

∞ 对任意p, q成立.

2. 若Er落在p轴上，则Hn(X•) = En,0
2 ；若Er落在q轴上，则H

n(X•) = E0,n
2 .

定理 3.8. 给定Abel范畴A中的三象限谱序列(Er, dr)r≥1，且E
p,q
2 ⇒p H

n(Tot(X••))，则

1. 对任意n都存在满同态En,0
2 → E0,n

∞ 和单同态E
0,n
2 → En,0

∞ .

2. 对任意n都存在满同态En,0
∞ → Hn(Tot(X••))和单同态E0,n

∞ → Hn(Tot(X••)).

3. 存在正合序列

0→ E1,0
2 → H1(Tot(X••))→ E0,1

2
d2−→ E2,0

2 → H2(Tot(X••))

例 3.8. 给定Abel群的上链复形C•，A•是C•的子复形，考虑如下谱序列，其中第0页为
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C0/A0

C1/A1 A0

C2/A2 A1

C3/A3 A2

...
...

3.4 Cartan-Eilenberg预解

定义. 设X•是Abel范畴A上的上链，那么称

0→ Zn → Xn dn−→ Bn+1 → 0

0→ Bn ↪→ Zn → Hn → 0

为X•的基本短正合列(fundamental exact sequence).若上链复形X•的基本短正合列都分裂，则称X•分

裂(split).

定义. 设X•是Abel范畴A上的上链，如果

0→ X• → I0,• → I1,• → · · ·

是整合列且对每个p以下每个整合列都是A中的内射预解

0→ Xp → I0,p → I1,p → · · ·

0→ Zp(X•)→ Z0,p → Z1,p → · · ·

0→ Bp(X•)→ B0,p → B1,p → · · ·

0→ Hp(X•)→ H0,p → H1,p → · · ·

则称这是X•的一个Cartan-Eilenberg内射预解(Cartan-Eilenberg injective resolution).

定理 3.9. 若Abel范畴A中包含有足够多的内射对象， 则Com•(A)中的每个上链复形都有Cartan-

Eilenberg内射预解.
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3.5 Kunneth谱序列

3.6 Grothendieck谱序列

定义. 设A是Abel范畴，且含有足够多的内射对象，X是A的对象，F : A⇒ Ab是加性函子.若RpF (X) =

0对于任意p ≥ 1都成立，则称X是右F零调的(right F -acyclic).

定理 3.10 (Grothendieck谱序列). 设F : A ⇒ B, G : A ⇒ C是Abel范畴间的协变加性函子，且B中包含足
够多的内射对象，F将A中的内射对象映为B中的右G零调对象.那么对任意A中的对象X，存在第一象限
的收敛谱序列

Ep,q
2 := (RpG ◦RqF )(X)⇒ Rp+q(G ◦ F )(X).

证明. 选取X在A中的一个内射预解
0→ X → J1 → J2 → · · · ,

于是我们得到B中的一个
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第四章 导出范畴

在之前非常多的情形中，当求得一个上链后，我们只关心它的上同调，对于上同调相同而各项和微分可

能不同的上链并不做区别.形式上说，上链之间的同构过分严格，拟同构才是合适的进行分类的等价关系.但是

在范畴

Com•(A)

中，若态射f•是拟同构，它很难是同构，这就导致了很多问题，比如函子HomZ(M,−)并不将拟同构映成拟同
构.本章我们要建立形式化的语言，用同构的方式处理拟同构，也给导出函子建立更一般的框架.

4.1 范畴的局部化

定理 4.1. 设C是一个范畴，U是其中的一族态射，则存在同构下唯一的范畴C[U−1]和函子Q : C →
C[U−1]，使得U中所有的态射都被Q映到C[U−1]中的同构，且满足如下泛性质：对任意范畴D和任意函
子F : C → D，若F将U中所有的态射映到D中的同构，则有唯一的分解

C C[U−1]

D.

Q

F F̃

我们称范畴C[U−1]为的C局部化(localization).

习题 4.1. 定义范畴D满足ob D = obAb，homD(A,B) := HomZ(A⊗Q, B ⊗Q).求证函子

ι : Ab→ D

M 7→M

(f :M → N) 7→ (f ⊗ idQ :M ⊗Q, N ⊗Q)

是局部化.

这里需要注意，因为范畴中的一族态射U可以取得非常不理想，因此局部化之后的范畴可能并非再是局

部小的.但这里我们忽略这样的问题，我们假定（虽然并不真实，但相较于主要问题，范畴本身的问题需要在

其他的地方讨论）我们还是得到想要的范畴.

55
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定义. 设U是范畴C中的一族态射，满足如下条件：

1. 对任意C中的对象A，idA ∈ U，且U关于态射的复合封闭，

2. (扩张条件)对任意C中的态射f : A→ B和U中的态射u : C → B，存在C中的态射g : D → C和U中的

态射v : D → A使得

D C

A B.

g

v u

f

对偶地，对任意C中的态射f : B → A和U中的态射u : B → C，存在C中的态射g : C → D和U中的

态射v : A→ D使得

D C

A B,

g

v

f

u

3. 对任意C中的态射f, g : A⇒ B，存在u ∈ U使得uf = ug当且仅当存在v ∈ U使得fv = gv，

则称这一族态射U是局部的(localizing).

习题 4.2. 设A是Abel范畴，B是A的满子范畴，且B对求子对象和商对象封闭.求证

U := {f : X → Y | ker f, coker f ∈ B}

是局部态射族.

我们大费周章地考虑对求逆态射的限制条件，重要的是当态射族U满足这些条件时，局部化范畴中的态

射时非常容易描述的：

引理 4.1. 设U是范畴C中的一族局部态射，那么C[U−1]可以被如下地描述：C[U−1]的对象同于C中的对象，
A→ B的态射可以被描述为如下的图的等价类：

D

A B,

u f

其中，u ∈ U，f : D → B是任意C中的态射，记为 f
u
或者fu−1.且 f

u
等价于 g

v
当且仅当存在 h

w
使得如下图交

换

F

D E

A B,

w h

u fv g
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其中图中u, v, uw ∈ U（但w可能不在U中），恒等态射是idA = idA

idA
.最后，根据定义中的扩张条件， f

u
:

A→ B与 g
v
: B → C的复合是

F

D E =⇒ F

A B C A C.

w h

u f v g uw gh

证明. 我们首先验证如上定义了一个等价关系.自反性是考虑下图

D

D D

A B,

idD idD

u fu f

对称性是已知

F

D E

A B,

w h

u fv g

其中按定义vh = uw ∈ U，于是

F

E D

A B,

h w

v gu f

给出了等价关系.接下来是传递性，给定X → Y的等价代表元

M

A1 A2

X Y

w h

u fv g

和Y → Z的等价代表元
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N

B1 B2

Y Z,

w h

u fv g

为方便读图，红色表示U中的态射，绿色表示复合特定U中的态射后是U中的态射（例如w本身不是U中的态

射但uw是U中的态射），于是根据扩张条件可以找到C1, C2使得交换图

C1 B1

A1 Y

w1 v1

f1

和

C2 B2

A2 Y

w2 v2

f2

成立，这是在不同代表元下的复合.我们希望找到对象P给出交换图

P

C1 C2

M N

A1 A2 B1 B2

X Y Z,

w1

w2

p h q k

u1 f1u2 f2 v1 g1v2 g2

进而说明复合[X ← C1 → Z]与[X ← C2 → Z]是等价的.再次根据扩张条件可以找到

Q1 C1

M X

u1w1

u1p

Q2 Q1

N Y

u1w1

u1p

P C2

Q2 A2

w2

u1p
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接下来我们要验证态射的复合不依赖于代表元的选取.

最后我们验证这样构造的范畴具有相应的泛性质，因而这个范畴是我们希望的局部化.首先，存在自然的

局部化函子

Q : C → C[U−1]

A 7→ A

(f : A→ B) 7→ f

idA
,

这样对于任意的F : C → D，若F将U中所有的态射映到D中的同构，可以定义

F̄ : C[U−1]→ D

A 7→ F (A)

f

u
7→ F (f)F (u)−1,

（这里的顺序是重要的：）

习题 4.3. 验证证明中给出的Q是函子.

定理 4.2. 设U是加性范畴C中的一族局部态射，那么C[U−1]也是加性范畴.

但是，我们希望研究的情形非常不幸地不满足这些局部的条件：对于Abel范畴A的上链复形范畴Com•(A)，
拟同构不是局部的（习题？？？）.下一节我们将用合适的方式处理这个问题，使得我们这节建立的理论起到作

用.结束之前，我们引入如下命题，在之后考虑有界复形时它会给我们理想的结果.

命题 4.3. 设U是范畴C中的一族局部态射，D是C的满子范畴，如果UD := U ∩mor D是D的局部态射，且
如下的条件满足一条

1. 对任意U中的态射u : C → D，若D ∈ ob D，则一定存在B ∈ ob D和态射f : B → C使得u ◦ f ∈ U，

2.

那么D[U−1D ] ↪→ C[U−1]是一个满忠实的嵌入.

本节的最后，我们讨论局部性与Serre子范畴之间的关系.练习

4.2 同伦范畴与导出范畴
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引理 4.2. 设A是Abel范畴，D(A) := Com•(A)[Qiso−1]，且设Q : Com•(A) → D(A)是局部化函子.求证

若f : X• → X•链同伦与idX，那么在D(A)中Q(f) = idX .

证明. 我们先假定如下事实：

定义. 给定Abel范畴A，定义A的同伦范畴(homotopy category)K(A)如下：

1. obK(A) = ob Com•(A)，

2. 对任意X•, Y • ∈ ob Com•(A)，homK(A)(X
•, Y •) := homCom•(A)(X

•, Y •)/ ≃.

定理 4.4. 对Abel范畴A，∗ = +,−, b, •，那么

1. f ∈ HomD∗(A)(X
•, Y •)是同构当且仅当它可以被图

Z•

X• Y •

表示，且图中的两个态射都是拟同构.

2. f ∈ HomK∗(A)(X
•, Y •)且Q(f) = 0，那么fn : Hn(X•)→ Hn(Y •) = 0对任意n ∈ Z成立.

3. 嵌入函子[0] : A → D∗(A)是满忠实的，即存在集合的同构

HomA(X,Y ) ∼= HomD∗(A)(X[0], Y [0]).

命题 4.5. 若X•是Abel范畴A上的零调复形，I•是内射复形，那么

HomK(A)(X
•, I•) = 0.

命题 4.6. 若X• → Y •是拟同构，I•是内射复形，那么

HomK(A)(Y
•, I•)→ HomK(A)(X

•, I•)

是同构.
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推论 4.6.1.

HomK(A)(X
•, I•)→ HomD(A)(X

•, I•)

是同构.

定义.

ExtiA(X,Y ) :=

定理 4.7.

4.3 三角范畴

定义. 给定加性范畴D，如果在D上存在如下信息

1. 加性自同构T : D → D，它被称为平移函子(translation functor)，通常对于对象X ∈ D，记X[1] :=

T (X)，

2. 一族被称为特异三角(distingushed triangle)的图

X
u−→ Y

v−→ Z
w−→ X[1]

和特异三角间的态射

X Y Z X[1]

A B C A[1],

f

u

g

v w

h f [1]

j k l

满足以下公理：

TR 1. (a) X
idX−−→ X

0−→ 0
0−→ X[1]是特异三角；

(b) 任意同构于特异三角的图都是特异三角（特异三角在同构下封闭）；

(c) 任意态射X
u−→ Y都可以扩张为一个特异三角X

u−→ Y
v−→ Z

w−→ X[1].

TR 2. 若X
u−→ Y

v−→ Z
w−→ X[1]是特异三角，那么Y

v−→ Z
w−→ X[1]

−u[1]−−−→ Y [1]也是特异三角.

TR 3. 给定两个特异三角X
u−→ Y

v−→ Z
w−→ X[1]和A

j−→ B
k−→ C

l−→ X[1]，若存在f : X → A和g : Y → B使

得g ◦ u = j ◦ f，那么存在（不要求唯一）的态射h : Z → C构成特异三角间的态射
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X Y Z X[1]

A B C A[1].

f

u

g

v w

h f [1]

j k l

TR 4.

Z

A Y

B X

C

则称D是一个三角范畴(triangulated category).若只有前三条公理成立， 则称D是预三角范畴(pre-

triangulated categories).

习题 4.4. 若X
u−→ Y

v−→ Z
w−→ X[1]是D中的特异三角，求证v ◦ u,w ◦ v, (−u[1]) ◦ w都是零态射.

习题 4.5. 若

X Y Z X[1]

A B C A[1],

f

u

g

v w

h f [1]

j k l

是特异三角间的态射，且f, g都是同构，求证h也是同构.

定义. 给定（预）三角范畴D, E，若函子F : D → E和自然态射η : F (−[1])⇒ F (−)[1]满足对任意D中的特
异三角

X
u−→ Y

v−→ Z
w−→ X[1],

都能得到E中的特异三角

F (X)
F (u)−−−→ F (Y )

F (v)−−−→ F (Z)
ηX◦F (w)−−−−−→ F (X)[1],

则称函子F是正合的(exact)或三角的(triangulated).

定义. 给定（预）三角范畴D和Abel范畴A，若加性协变函子H将特异三角

X
u−→ Y

v−→ Z
w−→ X[1]
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映为A中的正合序列
H(X)

H(u)−−−→ H(Y )
H(v)−−−→ H(Z)

H(w)−−−→ H(X[1]),

则称函子H是上同调的(cohomological).若加性反变函子H : D◦ → A对应的函子H◦ : D → A◦是上同调的，
则称H是反变同调的.

通常对于上同调函子，记Hn(X) := H(X[n])，于是H0(X) := H(X).于是，TR2说明给定一个特异三角

就可以得到一个A中的长正合序列.

定义. 给定三角范畴D和Abel范畴A，若函子G : A → D满足对任意A中的短正合序列

0→ X → Y → Z → 0

都存在自然的同构δX→Y→Z使得

X → Y → Z
δX→Y →Z−−−−−−→ X[1]

是D中的特异三角，则称G是δ函子(δ-functor).自然性意味着短正合序列的态射

0 X Y Z 0

0 A B C 0

给出特异三角的态射

X Y Z X[1]

A B C A[1].

δX→Y →Z

δA→B→C

4.3.1 同伦范畴

4.3.2 导出范畴

命题 4.8. 对Abel范畴A，Com∗(A)中的短正合列

0→ X• → Y • → Z• → 0

诱导了D∗(A)中的特异三角.

4.3.3 生成元
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定义. 给定三角范畴D和对象E，若D中包含E的最小的saturated满三角子范畴是D，或者换句话说⟨E⟩ =
D，则称E是典型生成元(classical generator).

定义. 给定三角范畴D和对象E，

1. 若存在正整数n使得⟨E⟩n = D，则称E是强生成元(strong generator).

2. 若Hom(E,X[n]) = 0对任意整数n都成立意味着X ∼= 0，则称E是弱生成元(weak generator).

4.4 导出函子

给定Abel范畴间的函子F : A → B，它自然诱导了函子Com•(F ) : Com•(A) → Com•(B)和K(F ) :

K(A) → K(B).由于F与平移函子交换，诱导的函子保持范畴上面的三角结构.自然地我们会希望F诱导了导

出范畴上的正合函子.在函子F : A → B本身是正合函子时，这是没问题的（命题4.9），但一般情形K(F )不将

拟同构映为拟同构.不过退一步，当F是左正合或右正合时，在适当的情形我们可以找到相应的构造使得有对

应诱导的函子.

在先前的章节中我们讨论过这个论题，这里我们用导出范畴的角度来定义导出函子，具体来说，给定一

个Abel范畴的左（对应的，右）正合函子F : A → B，在一定的情况下存在一个扩张函子RF : D+(A) →
D+(B)（对应的，LF : D−(A)→ D−(B)），称为F的右导出函子(right derived functor).

命题 4.9. 设Abel范畴间的函子F : A → B是正合的，那么

1. K∗(F )将拟同构映到拟同构，因此它诱导了函子D∗(F ) : D∗(A)→ D∗(B)，

2. D∗(F )是正合函子，即它将特异三角映到特异三角.

定义. 设A是Abel范畴，R ⊆ Ob A是一族对象，对给定的左（右）正合函子F : A → B满足

1. F将K+(R)（K−(R)）中的零调序列映到零调序列，

2. A中的任意对象都是R中对象的子对象（商对象），

则称R是适应于F的对象族(adapted to F ).

例 4.1. 给定R模M，对函子M ⊗R −，所有的平坦R模就是适应于该函子的一族对象.
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定理 4.10. 设R是Abel范畴A中适应于左正合函子F : A → B的对象，令UR为K+(R)中的拟同构，那
么UR在K+(R)中是局部的，且自然的函子

K+(R)[U−1R ]→ D+(A)

是范畴的等价.

给定一个左正合函子F : A → B，我们回顾一下经典意义下导出函子的构造，以HomZ(M,−)为例：这是
一个左正合函子，为了求得它的右导出函子ExtnZ(M,−)，首先取给定的Abel群N的内射消解I•

· · · 0 N 0 0 · · ·

· · · 0 I0 I1 I2 · · · ,

η

d0 d1 d2

再用I•代替HomZ(M,−)中原本的N，得到上链

· · · 0 HomZ(M, I0) HomZ(M, I1) HomZ(M, I2) · · · ,

它在D+(Ab)中的像即是导出函子的像.这相当于选取一个范畴的同构（后面会说明如同经典情况的构造，不

依赖于这个同构的选取）

P : D+(A)→ K+(R)[U−1R ],

然后

RHomZ(M,−) := HomZ(M,P (−))

就是要找的导出函子.

定义. 对于左正合函子F : A → B，存在如下的图

K+(A) K+(B) D+(B)

D+(A)

K+(F )

QA

QB

若有函子RF : D+(A)→ D+(A)和自然态射η : QB ◦K+(F )⇒ RF ◦QA

K+(A) K+(B) D+(B)

D+(A)

K+(F )

QA
η

QB

RF

使得任意函子G : D+(A)→ D+(A)和自然态射ξ : QB ◦K+(F )⇒ RF ◦QA

K+(A) K+(B) D+(B)

D+(A)

K+(F )

QA
ξ

QB

G
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都存在唯一的自然变换δ :

K+(A) K+(B) D+(B)

D+(A),

K+(F )

QA δ

QB

G

RF

则称RF是F的右导出函子(right derived functor).

以上定义的交换图说明，一个左正合函子的右导出函子是对应图的左Kan扩张.根据Kan扩张的唯一性，

导出函子若存在则一定唯一，这个事实对下面定理的证明非常关键.

定理 4.11. 假设左正合函子F : A → B有适应于F的对象族R，那么RF存在且同构下唯一.

4.5 例子

给定环R和M ∈Mod−R，函子

M ⊗R − : R−Mod→ Ab

是右正合的，
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5.1 层的基本理论

在几何中，我们经常遇到从局部性质到整体性质的过渡，例如我们在讲光滑函数时对光滑性的定义是局

部的，但光滑性可以是整体的性质；任意一个流形都是局部可定向的，但一个流形并不一定是整体可定向

的.在从局部到整体的过渡中，我们通常使用的方法是局部坐标，当局部坐标满足一定性质时我们可以找到更

大的坐标，这个更大的坐标限制到小的坐标上与原来小的坐标有相同的性质.如果将这样的过程抽象出来就是

层的构造.

5.1.1 预层与层的基本性质

定义. 设X是一个拓扑空间.对X的每个开集U，我们赋予其一个Abel群F (U)，并且对任意满足V ⊆ U的

开集U, V，存在映射ρUV : F (U)→F (V )，满足如下条件：

(i) F (∅) = 0；

(ii) ρUU = idF(U)；

(iii) 对所有满足W ⊆ V ⊆ U的开集U, V,W，ρVW ◦ ρUV = ρUW；

这样的在拓扑空间X上的结构F我们称为预层(presheaf)，F (U)中的元素称为开集U的截面(section)，映

射ρUV : F (U)→F (V )称为限制映射(restriction map).

例 5.1. 设X是一个复流形，M是如下定义的亚纯函数层(sheaf of meromorphic functions)

M (U) := {f : U → C | f是亚纯的} ,

且对于任意f ∈M (U)和开集V ⊆ U，定义ρUV (f)是f在V上的限制，则M是X上的预层.

在上面的例子中，预层M的限制同态确实是函数的限制——但通常而言，限制同态可以是任意的映射.对

于元素s ∈F (U)，我们也用通常的限制记号：s|V := ρUV (s)，然而这一般与真正函数的限制很不同.

注意到任意的拓扑空间X可以自然地成为一个范畴Open(X)，这样每个预层都是一个反变函子Open(X)→
Ab，可以想到的是，我们并不需要将函子的值域限定为Ab，其他任意合理的范畴都可以得到有用的预层.当

值域范畴为Ab、Ring、R−Mod时，我们分别称F为X上的Abel群预层、环预层和R模预层.

67
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这种对于预层的理解还有其他的好处——我们可以非常容易地定义预层之间的态射(morphism)——一个

预层的态射就是函子间的自然变换.如果我们显式地将预层态射φ : F → G的定义写出来，即是对任意X中的

开集V ⊆ U，我们有如下交换图

F (U) G (U)

F (V ) G (V ),

φU

ρUV θUV

φV

其中ρUV , θ
U
V分别是预层F和G的限制映射.这样对于拓扑空间X，我们得到了一个范畴PShAb(X)，其对象是X上

的Abel群预层，态射是预层的态射.

例 5.2. 设X是任意的拓扑空间，M是任意的Abel群，对开集U定义MX(U) =M对于满足V ⊆ U的开集，限制
映射都是恒等映射，则MX是一个预层，称为常预层(constant sheaf).如果N也是一个Abel群，φ : M → N是

群同态，则我们自然地有预层的映射

φX :MX → NX ,

定义为

(φX)U := φ :MX(U)→ NX(U).

例 5.3.

例 5.4.

预层的结构中蕴含了空间上“函数”的很多局部信息，对于一个预层我们有专门的结构刻画这样的信

息：

定义. 设F是拓扑空间X上的预层，那么称

Fx := lim−→
x∈U

F (U)

为F在点x处的茎(stalk)，其中U取遍所有包含点x的开集，正向系中的态射由限制态射给定.

根据正极限的定义，对于任意包含x的开集U，存在自然的态射ρUx : F (U) → Fx使得与正向系相容，即

对于满足V ⊆ U的开集，

F (U)

F (V ) Fx.

ρUV
ρUx

ρVx

为简化记号，通常对于截面s ∈ F (U)，我们记sx := ρUx (s).同样地，余极限的函子性告诉我们，对于任意X中

的点x，若φ : F → G是预层间的态射，那么有诱导的点x处茎的态射

φx : Fx → Gx

使得对任意开集U有如下交换图
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F (U) G (U)

Fx Gx,

φU

(ρF )Ux (ρG )Ux

φx

因此，我们有φx(sx) = φU (s)x.

习题 5.1. 证明我们有如下的显式构造：

Fx
∼=

(∏
x∈U

F (U)

)
/ ∼,

其中，若s ∈F (U), t ∈F (V )的等价关系s ∼ t定义为存在包含于U ∩ V的x的邻域W使得s|W = t|W .

习题 5.2. 设U是X中包含点x的开集，求证

Fx
∼= (F |U )x.

证明. 我们证明Fx满足(F |U )x的泛性质，那么根据唯一性二者必然同构.

一方面，U中任意包含x的开集W满足

F |U (W ) = F (W ),

这自然地继承了与限制态射相容的态射F |U (W ) → Fx.另一方面，对任意开集V ⊆ X，给定与Open(U)相

容的对象{A, {λW : F (W ) → A}{W⊆U}}，限制态射F (V ) → F (V ∩ U)使得它成为与Open(X)相容的对

象，因此根据泛性质存在唯一的态射Fx → A与Open(X)中的限制态射相容，因而与与Open(U)相容，这恰

是(F |U )x的泛性质.

例 5.5. 设M是给定的Abel群，x ∈ X是拓扑空间中的一个点，定义预层M(x)满足

M(x)(U) :=

{
M x ∈ U
0 x /∈ U,

限制态射要么是恒等映射要么是零映射.如果我们计算M(x)在点y的茎，

但是，预层并不是我们所希望的定义在拓扑空间上的代数结构.多数情况下我们希望的是从局部的信息中

可以得到足够的整体信息，并且整体能够得到的信息一定程度上完全由局部信息得到，于是我们有下面的定

义：

定义. 设F是拓扑空间X上的预层，如果F满足如下条件：

(i) （局部性(locality)）若{Ui}i∈I是开集U的一族开覆盖，s, t ∈ F (U)满足对于任意i ∈ I都有s|Ui
=

tUi
成立，则s = t ∈F (U)；

(ii) （粘合条件(gluing)）若{Ui}i∈I是开集U的一族开覆盖，一族元素si ∈ F (Ui)满足si|Ui∩Uj
=

sj |Ui∩Uj
，那么存在s ∈F (U)使得s|Ui

= si成立；

则称F为X上的层(sheaf).
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定义的合理性告诉我们并不是所有的预层都是层，对于某些拓扑空间X，常预层就不是层.但是，某些定

义的预层本身就是层，如下例.最重要的是层的行为形态非常类似于全体可定义的函数，因此函数的全体必然

是层.

例 5.6. 例5.1中的构造是一个层，更一般地，如果X是拓扑空间，F是定义在X上满足某些性质（诸如连续、

全纯、光滑等等）的函数预层，且限制映射就是函数的限制，那么这个预层是层.

例 5.7. 若F是拓扑空间X上的预层，U是开集，那么我们可以定义F在U上的限制，记为F |U，它是U上的
层，对任意U中的开集V，定义

F |U (V ) = F (U ∩ V ) = F (V ),

且对应W ⊆ V的限制同态F |U (V ) → F |U (W )定义为限制同态F (V ) → F (W ).明显的事实是，F |U (V ) →
F |U (W )是预层，并且如果F是层则F |U (V )→F |U (W )也是层.

更抽象一些地，我们可以用范畴的语言描述层公理：若{Ui}i∈I是开集U的一族开覆盖，那么层公理等价
于下图

F (U)
p−→
∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ∩ Uj),

是一个等值子（equalizer），其中第一个态射由ρUUi
= F (Ui ↪→ U)诱导，f, g :

∏
i∈I F (Ui) ⇒

∏
i,j∈I F (Ui ∩

Uj)分别由ρ
Ui

Ui∩Uj
◦ πi :

∏
i∈I F (Ui)→F (Ui ∩ Uj)和ρUj

Ui∩Uj
◦ πj :

∏
i∈I F (Uj)→F (Ui ∩ Uj)诱导.

习题 5.3. 证明上述等价性.

证明. 根据范畴中乘积对象的泛性质，p, f, g的映射完全由πi ◦ p, πi,j ◦ f, πi,j ◦ g决定.

假设F是层，且我们能找到集合间的映射q : A→
∏
i∈I F (Ui)使得f ◦ q = g ◦ q，于是对任意A中的元素a，

πi,j ◦ f ◦ q(a) = πi,j ◦ g ◦ q(a)，这意味着对于Ui，我们能找到F (Ui)中的元素πi ◦ q(a)使得

ρUi

Ui∩Uj
(πi ◦ q(a)) = πi,j ◦ f ◦ q(a) = πi,j ◦ g ◦ q(a) = ρ

Uj

Ui∩Uj
(πi ◦ q(a)),

故由层的定义，存在唯一的元素q̃(a) ∈F (U)使得

ρUUi
(q̃(a)) = πi ◦ q(a),

即存在唯一的集合间的映射q̃ : A→F (U)满足q = p ◦ q̃，故F (U)是等值子.

反过来，设F (U)是f, g的等值子，若在每个i ∈ I，F (Ui)中都有元素si满足si|Ui∩Uj
= sj |Ui∩Uj

，根据乘

积结构的泛性质，这意味着在
∏
i∈I F (Ui)中存在元素{si}i∈I满足

πi,j ◦ f({si}i∈I) = si|Ui∩Uj
= sj |Ui∩Uj

= πi,j ◦ g({si}i∈I),

故f({si}i∈I) = g({si}i∈I).根据集合范畴中等值子的构造，存在唯一的s ∈F (U)使得p(s) = {si}i∈I，因此

s|Ui
= πi ◦ p(s) = si,

F是层.

层之间的态射与预层之间态射的定义相同，即对于层F ,G，φ : F → G是层态射当且仅当φ是预层的态

射.这意味着我们可以定义范畴ShAb(X)，且它是PShAb(X)的满子范畴.在之后的内容我们会看到，当我们

选取的范畴A是Abel范畴时，PShA(X)也是一个Abel范畴.

局部性可以用茎的语言来描述：
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命题 5.1. 设φ : F → G是拓扑空间X上层的态射，那么φ是同构当且仅当对于任意x ∈ X，诱导的φx :

Fx → Gx都是同构.

对层这种构造的一种理解方式是说，它是弯曲空间上满足一定性质的“函数”的全体，不同性质的选取

决定了层结构的不同.

习题 5.4. 设F和G是X上的两个预层，验证U 7→ homPShAb(X)(F |U ,G |U )有自然的预层结构，且若F和G还

是X上的层，则预层U 7→ homPShAb(X)(F |U ,G |U )是层，记为H om(F ,G )，称作F到G的局部态射层(sheaf

of local morphisms of F into G ).

习题 5.5. 设F是拓扑空间X上的一个预层，则下面的构造给出一个拓扑空间，其中底集F̄ =
∐
x∈X Fx =

{(x, sx) | x ∈ X, sx ∈Fx}是所有茎的不交并，并对任意给定X中的开集U和s ∈F (U)给定如下一组拓扑基

(U, s) := {(x, sx) | x ∈ U}.

求证：

(i) 存在自然的连续映射π : F̄ → X，将点(x, sx)映到x.并且，对任意的开集U和s ∈ F (U)，存在π在U上的

截面(section)σ : U → F̄（截面是指连续函数σ使得π ◦ σ是U上的恒等函数）.记对应F的U上所有截面

为Γ(U,F ).

(ii) 反之，若F还是层，求证任意U上的截面σ都是如上述方式构造的.

(iii) 由上证明若F是层，则π : F̄ → X的连续函数截面层同构于F .

(iv) 若G也是拓扑空间X上的一个预层，φ : F → G是预层的态射，证明φ诱导了F̄ → Ḡ的连续映射.

空间F̄称为预层F的平展空间(étale space).这实际上是Serre最初给的层的定义，我们用的是更现代的观点来

看，但习题说明了两者是完全相同的.

Solution. (i) 根据定义，π显然是连续的.定义σ : x 7→ (x, sx)，注意到σ
−1(
⋃
i∈I Ai) =

⋃
i∈I σ

−1(Ai)，因而

为证明σ是连续的只需要证明对任意的X中的开集V，σ−1((V, t))也是开集即可.但是若t = s则σ−1((V, t)) =

σ−1((V, s)) = V ∩ U，若t ̸= s则σ−1((V, t)) = ∅.故得证.

(ii) 设σ : U → F̄是U上的截面，于是对于任意的x ∈ U，存在s ∈ F (U)使得σ(x) = (x, sx).若x, y是U中

的两个点，σ(x) = (x, sx)且σ(y) = (y, ty).根据芽的定义，我们可以找到x, y的邻域V,W使得s ∈ F (V ), t ∈
F (W ).考虑开集

(V, s) = {(z, sz) | z ∈ V }

和

(W, t) = {(z, tz) | t ∈W},

根据σ的连续性，Ṽ := σ−1((V, s))和W̃ := σ−1((W, t))都是U中的非空开集，分别包含x和y.对于任意z ∈ Ṽ ∩
W̃，由σ的映射性(z, sz) = σ(z) = (z, tz)，故存在z的一个邻域O ⊆ Ṽ ∩ W̃使得s|O = t|O.但是z是任取的，
故s|Ṽ ∩W̃ = t|Ṽ ∩W̃ .这样我们就得到了U的一个开覆盖，且在开集重合的部分截面是相容的.根据层公理，存在

唯一的r ∈F (U)使得σ(x) = (x, rx).
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(iii) 记F ′为π : F̄ → X的截面层.定义

θ : F →F ′

θU : F (U)→F ′(U)

s 7→ σ(x 7→ (x, sx)),

于是我们需要验证对任意的开集U，θU是群同构，且对任意满足V ⊆ U的开集U, V都有图

F (U) F ′(U)

F (V ) F ′(V ),

θU

ρUV |V

θV

交换，其中|V是U上函数在V的限制.

对于F ′(U)中的截面σ, τ，σ + τ的定义是σ + τ : x 7→ (x, sx + tx)，其中σ(x) = (x, sx)，τ(x) = (x, tx).于

是，同态性由正极限的性质保证，再根据前一部分θU是同构，其中，层公理的局部性对应θ的单射性，在局部

性的存在下粘合条件等价于满射（充分性由前一部分证明，必要性考虑到截面本质上是映射，是自动满足粘

合条件的）.任取x ∈ V和s ∈F (U)，正极限保证sx = (s|V )x，这即是图的交换性.

(iv) 定义

φ̄ : F̄ → Ḡ

(x, sx) 7→ (x, φx(sx)),

于是我们只要证明函数是连续的即可.对Ḡ的任意X中的开集U，若t是G (U)中的截面，则对于(U, t)中的任意

点(x, tx)，若它在φ̄的像中，则存在(x, sx) ∈Fx使得φx(sx) = tx.这意味着，存在x的邻域W使得φW (s)|W∩U =

t|W∩U .于是，开集基中的元素(W ∩ U, s|W∩U )包含于φ̄的原像中，故

φ−1((U, t)) =
∐

W是U中的开集，且s∈F(W )满足φW (s)=t|W

(W, s),

按照定义这是一个开集.

习题 5.6. 设φi : F → G是拓扑空间X上层的态射，i = 1, 2，且对于任意x ∈ X，都有(φ1)x = (φ2)x，证

明φ1 = φ2.

5.1.2 层化

对于一个预层F和X中的开集U，我们可以定义

F̃ (U) := {s : U →
∐
x∈U

Fx | s满足公理(i)和(ii)}

其中

(i) 对每个U中的点x，s(x) ∈Fx；

(ii) 对每个U中的点x，都存在开邻域V ⊆ U和截面t ∈F (V )使得对于所有的y ∈ V都有s(y) = ty.
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对于F中的任意截面s ∈ F (U)，我们都可以定义一个映射s̃ : U →
∐
x∈U Fx, y 7→ sy.显然s̃ ∈ F̃ (U)，因此我

们定义了一个预层的态射ζ : F → F̃ .

命题 5.2. 若预层F是层，则ζ : F → F̃是层的同构.

如果尽可能具体地解释层化，这个构造就是把原本没有的截面加到层的对象当中去，进而形成我们需要

的足够多的粘合信息，而我们是局部来完成这个扩充的.刚刚我们介绍的层化事实上就是用一个点的局部信息

（茎）去构造相应的函数，可以说层公理所描述的本质信息就是一定类型的函数.我们对于层化的定义满足如

下的泛性质和函子性：

命题 5.3 (函子性). 设φ : F → G是预层的态射，那么存在层态射φ̃ : F̃ → G̃使得下面的图交换：

F G

F̃ G̃ .

φ

ζF ζG

φ̃

证明. 对任意X中的开集U，考虑点x ∈ U和截面s ∈ F̃ (U)，我们定义

φ̃U (s)(x) := φx(s(x)).

我们需要验证定义是层的态射，并验证图的交换性.

推论 5.3.1 (泛性质). 设φ : F → G是预层的态射，若G是层，则存在Abel群的同构

homPShAb(X)(F ,G ) ∼= homShAb(X)(F̃ ,G ).

事实上，我们并不需要拓扑空间X中所有开集U所对应的对象F (U)，如果给定X的一组基B中所有所有

开集U对应的对象F (U)，并且这些对象满足层公理，那么我们存在唯一的X上的层：

定理 5.4 (B-层). 设B是拓扑空间X的一组开集基，对于每个U, V ∈ B，存在Abel群F (U)和限制同

态ρUV : F (U)→F (V )满足预层公理和层公理，那么称F是一个B-层层层(B-sheaf).于是

1. 任意B-层都可以唯一地扩张为一个X上的Abel群层.

2. 给定X上的两个B-层F和G，且对每个B中的开集U都有群态射

φU : F (U)→ G (U)

与B-层的限制态射相容，那么存在唯一的层态射φ : F → G是B-层的扩张.
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证明. 对任意X中的开集V，定义

F (V ) := lim←−
U∈B满足U⊆V

F (U),

其中逆向系中的态射由限制态射给定.我们需要证明：(i)该定义与原定义相容；(ii)若V ⊆ W，则存在ρWV :

F (W )→F (V )与原有的限制函数相容，且新构造的限制函数间也相容；(iii)如此定义的预层构成一个层.

(i)由极限的定义即可得到，因为若V ∈B，V就是被V包含的B中开集在嵌入映射下的终对象，因此F (V )是

始对象.(ii)可以由极限的函子性推得.这样我们只要验证这是一个层即可，等价地，我们证明对任意的开覆盖，

是一个等值子.

推论 5.4.1 (层的粘合原理). 设U = {Ui}i∈I是拓扑空间X的开覆盖.若对任意U中的开集U，FU都是U上

的层，并且

φU,V : FU |U∩V →FV |U∩V

都是同构，在U ∩ V ∩W上满足
φV,W ◦ φU,V = φU,W ,

则存在唯一的X上的层F使得有层的同构ψ : F |U →FU且满足如下相容性：对任意U, V ∈ U

φU,V ◦ ψU |U∩V = ψV |U∩V : F |U∩V →FV |U∩V .

证明. 我们将验证如下论断：(i) 被U中的开集包含的所有的开集构成X的一组拓扑基B；(ii) 所给出的粘合条

件自然地给出了一个B-层，于是根据定理5.4存在性和唯一性都得证.

(i)这是一个单纯的拓扑问题，我们略过证明.(ii)对任意B中的开集W，我们可以找到U ∈ U使得W ⊆ U，
于是定义

F (W ) := FU (W ),

且若W1 ⊆ W2 ⊆ U，那么限制态射ρW2

W1
: F (W2)→ F (W1)定义为层FU从W1到W2的限制.这样定义首先出现

的问题是，我们对于U ∈ U的选取可能不是唯一的，因而，首先验证定义是合理的.

假设对于W，存在不同的

由于原本的FU是U上的层，根据例5.7，我们这样的定义也是层，于是根据之前的定理，这个层存在且同

构下唯一.

事实上，粘合后的层F是容易描述的：对任意的开集W，F (W )是所有{sU}U∈U的全体，其中sU ∈FU (W∩
U)且满足φU,V (sU )在U ∩ V ∩W上等于φV,U (sV ).

引入层化后我们其实有了对于层更进一步的认识——层完全由每点上的茎完全决定，而决定的方式就是

寻找连续的截面（习题5.7）.在英语中，sheaf一词的含义是“a bundle of stalks”，即一捆稻谷，我们想象

习题 5.7. 设F是拓扑空间X上的预层.证明平展空间F̄的截面层F ′同构于F的层化.
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证明. 在习题5.5中我们定义了预层的态射

θ : F →F ′

θU : F (U)→F ′(U)

s 7→ σ(x 7→ (x, sx)),

于是只要证明F ′的泛性质就能够说明同构.设φ : F → G是预层到层的态射，于是根据习题5.5我们有连续映

射φ̄ : F̄ → Ḡ，进而对于任意的截面s : U → F̄，φ̄ ◦ s也是U上的截面，这样我们定义了

φ′ : F ′ → G ′ ∼= G

φ′U : F ′(U)→ G ′(U)

s 7→ φ̄ ◦ s.

φ′U是群同态由由φ的预层的态射性保证，而它显然与两个层的限制态射相容，于是我们得到了层的态射.

再证明唯一性.假设φ : F → G是预层到层的态射，层态射φ̃ : F ′ → G满足

F ′ G

F .

φ̃

φθ

任取σ ∈ F ′(U)，即截面σ : U → F̄，对任意x ∈ U，若σ(x) = (x, sx)，那么任取σx的代表元τ，于是存

在W ⊆ U使得σ|W = τ |W，因此τ(x) = (x, sx)，于是可以定义ηx : (F ′)x → Fx，σx 7→ sx.根据截面加法

的定义，这显然是一个群态射.一方面，我们显然有ηx ◦ θx = idFx
.另一方面，仍然假定σ(x) = (x, sx)，那

么由连续性V = σ−1((U, s))是U中的非空开集，这意味着对任意y ∈ V，σ(y) = (y, sy)，于是σ|V = θ(s)|V，
θx(sx) = σx.因此，θx ◦ ηx = id(F ′)x .再根据习题5.6，φ̃是唯一确定的.

5.1.3 底空间变换

这一节我们考虑这样的问题，

定义. 设f : X → Y是拓扑空间的连续映射，如果F是X上的预层，则如下定义的

f∗F : Open(Y )→ Ab

U 7→ f∗F (U) := F (f−1(U))

是一个预层，称为预层F的推出(pushfroward).

对于Y中的开集V ⊆ U，我们定义限制同态f∗F (U) → f∗F (V )是F (f−1(U))到F (f−1(V ))的限制同态，

即若s ∈ f∗F (U)，则

s|V = (s ∈F (f−1(U)))|f−1(V ).
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引理 5.1. 设f : X → Y是拓扑空间的连续映射，如果F是X上的层，则推出f∗F是Y上的层.

证明. 任取Y中的开集V，设V = {Vi}i∈I是V的开覆盖，那么U = {Ui := f−1(Vi)}i∈I是U := f−1(V )的开覆

盖.于是，若给定si ∈ f∗F (Vi) = F (Ui)，满足si|Vi∩Vj
= sj |Vi∩Vj

，于是si|Ui∩Uj
= sj |Ui∩Uj

.由F是层得知存在

唯一的s ∈F (U)使得s|Ui
= si.按照层推出的定义，这个s就是f∗F (V )中要找的唯一的元素，故f∗F是层.

如果我们还有一个X上的预层态射φ : F → G，则对于任意的Y中的开集U，同态映射φφ−1(U) : F (φ−1(U))→
G (φ−1(U))和限制映射ρ

φ−1(U)

φ−1(V )相容，于是φφ−1(U) : F (φ−1(U))→ G (φ−1(U))自然地可以看作φφ−1(U) : f∗F (U)→
f∗G (U)，这样我们说明了f∗φ是预层态势f∗F → f∗G .如果还有ψ : G → H ，那么很明显地有f∗(ψ ◦ φ) =

f∗ψ ◦ f∗φ.于是f∗是一个函子PShAb(X)→ PShAb(Y ).

习题 5.8. 设f : X → Y和g : Y → Z是两个连续映射，那么

(g ◦ f)∗ = g∗ ◦ f∗.

定义. 设f : X → Y是拓扑空间的连续映射，如果G是Y上的预层，则如下定义的

fPG : Open(X)→ Ab

V 7→ fPG (U) := lim−→
V ∈Open(Y )
f(U)⊆V

G (V )

是一个预层，称为预层G的拉回(pullback).

引理 5.2. 设X和Y是拓扑空间，f : X → Y是连续映射，那么下面的同构关于G和F是自然的：

homPShAb(X)(fPG ,F ) ∼= homPShAb(Y )(G , f∗F ).

证明. 我们首先证明同构.设φ ∈ homPShAb(X)(fPG ,F )，于是任意给定X中的开集，按照极限的定义，φU :

fPG (U)→F (U)完全由一族相容的态射

φV :

其中V取遍所有包含f(U)的开集.

与推出不同的是，即使G是Y上的层，fPG也可能并不是一个层，但作为预层，层的拉回也有很好的函子

性质.我们称f−1P G的层化为G的逆象层(inverse sheaf)，记为f−1G .

定义. 设X是拓扑空间，F是X上的层
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5.1.4 层范畴及其中的正合性

设φ : F → G是空间X上预层的态射，

引理 5.3. 层态射的单态射是范畴意义下的单态射，且层态射的满态射是范畴意义下的满态射.

证明.

给定拓扑空间X和上面的层F，若对于任意的V ⊆ U，限制映射F (U) → F (V )都是满射，则

称F是flasque.

习题 5.9. 求证层态射单射（满射）的局部性：给定拓扑空间X和开覆盖U = {Ui}i∈I使得层态射φ : F → G的

限制

φUi
: FUi

→ GUi

对所有的i ∈ I都是单射（满射），那么φ本身也是单射（满射）.

证明.

习题 5.10 (层的零扩张). 设X是拓扑空间，Z是X的闭集，i : Z → X是嵌入映射.令U := X − Z是Z在X中的
补集，j : U → X是嵌入映射.

1. 设F是Z上的层，证明

(i∗F )x =

{
Fx x ∈ Z
0 x /∈ Z.

于是我们称i∗F是F在X上的零扩张.证明若X上的层F对所有x /∈ Z满足Fx = 0，那么层的同态

ρXZ : (i∗F )|Z →F

是同构，并且由此推导出对任意Z上的层G，存在唯一的X上的层F满足对所有x ∈ Z满足Fx = Gx，对

所有x /∈ Z满足Fx = 0.

2. 设G是U上的层，定义X上的层G满足对任意X中的开集V，

j!G (V ) :=

{
G (V ) V ⊆ U
0 其他情况.

证明

(j!G )x =

{
Gx x ∈ U
0 其他情况,

并且证明j!G是满足以上条件且限制在U上是G的唯一一个层.

3. 现在假设F是X上的层，证明我们有如下层的正合列：

0→ j!(F |U )→F → i∗(F |Z)→ 0.
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证明. 1.直接由定义，若x ∈ U，那么存在x在X中的邻域V使得V ∩ Z = ∅，此时i∗F (V ) = F (i−1(V )) =

F (∅) = 0，因此对任意包含x的开集W，i∗F (W ∩ V ) = 0，即(i∗F )x = 0.另一方面，若x ∈ Z，那么

(i∗F )x = colimW是包含x的开集(i∗F )(W ) = colimW是包含x的开集F (W ∩ Z) = Fx.

定义. 给定拓扑空间X和Abel群层F，若对任意开集U，F (U)是环，并且所有的限制映射都是环同态，

则称F是X上的环层(sheaf of rings).

5.2 Cech上同调

之前的理论中我们建立了层的上同调理论，但我们面临一个相当严重的问题——对于一个给定的层，它

的上同调几乎是不可计算的.虽然任意层的内射都是存在的，但构造过于庞大 Čech上同调的主要思想是我们

考虑拓扑空间中开覆盖所包含的组合信息，

设X是拓扑空间，F是X上的层.给定全序集Λ和的X开覆盖U = {Uλ}λ∈Λ，那么存在拓扑空间的图

X
∐
λ∈Λ Uλ

∐
λ0<λ1

Uλ0λ1

∐
λ0<λ1<λ2

Uλ0λ1λ2
· · · ,∂0 ∂1

1

∂0
1

∂1
2

∂0
2

∂1
2

其中

Uλ0···λn
:=

n⋂
i=0

Uλi
,

映射∂i是自然的嵌入

Uλ0···λn
↪→ Uλ0···λ̂i···λn

扩展到不交并的映射.

将层F视为反变函子，去掉−1项M，我们可以得到一个上链，具体操作如下：对任意q ≥ 0，我们定义F

（对于U）的q上链群(group of q-cochain of F (relative to U))为

Cq(U ,F ) =
∏

λ0<···<λq

F (Uλ0
∩ · · · ∩ Uλq

),

它恰好是F
(∐

λ0<···<λq
Uλ0···λq

)
；进而可以定义上边缘映射

dq−1i := F (∂iq) :
∏

λ0<···<λ̂i<···<λq

F (Uλ0···λ̂i···λq
)→

∏
λ0<···<λq

F (Uλ0···λq
),

具体而言，给定f ∈
∏
λ0<···<λ̂i<···<λq

F (Uλ0···λ̂i···λq
)，确定dqi (f)只需要确定每一个序号为(λ0, · · · , λq)的项，

而∂iq只将Uλ0···λ̂i···λq
映入Uλ0···λq

，于是(λ0, · · · , λq)项为dq−1i (f)λ0,··· ,λq
= fλ0,··· ,λ̂i,··· ,λq

:= (fλ0,··· ,λ̂i,··· ,λq
)|Uλ0···λq

.进
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而dq−1i 的交错和

δq−1 :=

q−1∑
i=0

(−1)idq−1i : Cq−1(U ,F )→ Cq(U ,F )

f 7→

{
q∑
i=0

(−1)ifλ0,··· ,λ̂i,··· ,λq

}
λ0,··· ,λq

.

这给出了一个上链

0→ C0(U ,F )
δ0−→ C1(U ,F )

δ1−→ C2(U ,F )
δ2−→ · · · ,

被称为X关于开覆盖U = {Uλ}λ∈Λ的F系数Čech上链(Čech cochain of X with respect to U of coefficient F ).我

们这里并不直接验证良定义，而是借用习题1.1（的对偶），于是我们只需要验证上单纯条件：

事实上，这里的上单纯条件来源于开覆盖U = {Uλ}λ∈Λ给出的单纯集

引理 5.4. 对任意拓扑空间X和X上的层F，U = {Uλ}λ∈Λ是X的一族开覆盖，都有

Ȟ0(F ,U) ∼= Γ(X,F ).

证明. 按定义，

Ȟ0(F ,U) = {f ∈ C0(U ,F )}

引理说明Čech上链存在一个自然的增广Γ(X,F ).

定义. 给定拓扑空间X和开覆盖U = {Uλ}λ∈Λ和V = {Vθ}θ∈Θ，若存在映射φ : Θ→ Λ使得

Vθ ⊆ Uφ(θ)

对任意θ ∈ Θ成立，则称V是U的加细(refinement).

引理 5.5. 当给定U的加细V后，加细映射φ : Θ→ Λ给出了Cech上链的映射

φ∗ : Cq(U ,F )→ Cq(V,F )

满足

φ∗(f)θ0,··· ,θq := fλ0,··· ,λq

对任意f ∈ Cq(U ,F )成立，其中λi = φ(θi).
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证明. 直接验证

φ∗(δf)θ0,··· ,θq := (δf)φ(θ0),··· ,φ(θq)

=
n∑
k=0

(−1)kf
φ(θ0),··· ,φ̂(θk),··· ,φ(θq)

=
n∑
k=0

(−1)kφ∗(f)θ0,··· ,θ̂k,··· ,θq

= δ(φ∗(f)).

命题 5.5. 若V是拓扑空间X开覆盖U的加细，且φ,ψ : V → U是不同的加细映射，则φ,ψ诱导Cech上同调

上相同的映射.

证明. 定义上链同伦

H : Cq+1(U ,F )→ Cq(V,F )

满足

(Hf)θ0,··· ,θq :=
n∑
k=0

(−1)kfφ(θ0),··· ,φ(θk),ψ(θk),··· ,ψ(θq),

于是

Hδ(f)− δH(f) =

=

即

φ∗ − ψ∗ = Hδ − δH,

这就完成了证明.
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6.1 群的同调和上同调

设G是一个群.

定义. 给定Abel群A，若G在A上右一个（左）作用，则称A是一个G模(G-module).

注意到给定G模A等价于给定Abel群A和群同态G→ Aut(A).由于Abel群等同于Z模，因而G模等同于Z[G]模.

定义. 给定G模A，记

AG := {a ∈ A | g · a = a对所有g ∈ G成立}

是A中被G作用不变的元素的全体.

引理 6.1. 给定G模A和具有平凡作用的G模Z，则

AG ∼= HomZ[G](Z, A).

证明. 任意给定α ∈ HomZ[G](Z, A)，由于G在Z上的作用是平凡的，α(1) = α(g · 1) = gα(1)，于是映射

HomZ[G](Z, A)→ AG

α 7→ α(1)

是良定义的，这显然是一个Abel群同态.注意到α ∈ HomZ[G](Z, A)完全由α(1)决定，因此这是一个单射；同时
该映射是满射，得证.

引理6.1说明给定G模的短正合列

0→ A→ B → C → 0,

存在诱导的Abel群（也是平凡G模）正合列

0→ AG → BG → CG,

81
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即−G是一个左正合的函子.因此，只要能够找到一个平凡G模Z的投射消解，那么套用之前的理论可以得到ExtiZ[G](Z, A)，
我们称其为群G以A为系数的上同调群

例 6.1. 考虑G = Z/nZ = ⟨σ⟩是有限循环群，取

N := 1 + σ + · · ·+ σn−1 ∈ Z[G],

那么

(1− σ)N = N(1− σ) = 0 ∈ Z[G],

于是可以验证
1−σ−−→ Z[G] N−→ Z[G] 1−σ−−→ Z[G] N−→ Z[G] σ 7→1−−−→ Z→ 0

是Z的消解，于是对于任意G模A，由HomZ[G](Z[G], A) = A我们得到了复形

0→ A

定义. 给定群G，取

Fn := Z[G]⊗Z Z[G]⊗Z · · · ⊗Z Z[G]

（共有n+ 1个张量积项），G在Fn上的作用由

g · (g0 ⊗ g1 ⊗ · · · ⊗ gn) := (g · g0)⊗ g1 ⊗ · · · ⊗ gn

诱导，且有

d
[n]
i : Fn → Fn−1, 0 ≤ i ≤ n

满足

d
[n]
i (1⊗ g1 ⊗ · · · ⊗ gn) :=


g1 · (1⊗ g2 ⊗ · · · ⊗ gn) i = 0,

(1⊗ g1 ⊗ · · · ⊗ gi−1 ⊗ gigi+1 ⊗ · · · ⊗ gn) 0 < i < n,

1⊗ g1 ⊗ · · · ⊗ gn−1 i = n.

引理 6.2. 如上定义中，

1. Fn是自由Z[G]模，且它的一组基可选为{1⊗ g1 ⊗ · · · ⊗ gn}gi∈G，

2. {d[n]i }0≤i≤n扩张为一组Z[G]模同态，满足

d
[n]
i d

[n]
j = d

[n]
j−1d

[n]
i ,

因此根据习题1.1，

∂n :=
n∑
i=0

(−1)id[n]i

给出了链复形

0← F0
∂1←− F1

∂2←− · · · ∂n←− Fn
∂n+1←−−− · · · .
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3. ϵ : F0 = Z[G]→ Z,
∑N

i=1 nigi 7→
∑N

i=1 ni给出了增广链复形

0← Z ϵ←− F0
∂1←− F1

∂2←− · · · ∂n←− Fn
∂n+1←−−− · · · .

4.

引理6.2说明构造的{Fn}给出了平凡Z[G]模Z的一个消解，我们称之为标准消解(standard resolution)或bar消

解(bar resolution).

习题 6.1. 除了bar消解外，
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第七章 其他类型的同调

7.1 超上同调

我们考虑这样的问题：设F是拓扑空间X上的层

F : Open(X)◦ → B,

其中B是Abel范畴，此时F是以B中对象为对象的层.那么可以求X关于层F的上同调

H i(F , X),

它是B中的对象.特别地，当B是某个给定Abel范畴A的上链复形范畴时，每个上同调都是一个A的上链复形，
此时还可以求上链复形H i(F , X)的上同调

命题 7.1. 设F •是拓扑空间X上的层上链复形，f• : F • → G •是injective的拟同构.则对于任意的内射复

形I •和复形的态射g• : F • → I •，存在态射g̃• : G • → I •使得

g• = g̃• ◦ f•.

命题 7.2. 设f : C• → D•是链映射，C• → I•,•和D• → J•,•是两个Cardan-Eilenburg消解，那么存在链映

射f̃•,• : I•,• → J•,•是f•上的映射.

给定一个n维复流形X，那么可以定义其上的C向量空间层的复形

0→ OX → Ω1
X

∂−→ Ω2
X

∂−→ · · · ∂−→ ΩnX → 0,

其中ΩqX是X上的全纯q形式，那么如上复形是常层C的消解.

7.2 Lie

85
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定义. 给定k上的Lie代数g，M是g模，定义如下的

CCE
n (g,M) :=M ⊗k

n∧
i=1

g,

其中
∧n
i=1 g = g ∧k · · · ∧k g，并且有边缘映射

∂n :M ⊗k
n∧
i=1

g→M ⊗k
n−1∧
i=1

g

m⊗ a1 ∧ · · · ∧ an 7→
n∑
i=1

(−1)i[m, ai]⊗ a1 ∧ · · · ∧ âi ∧ · · · ∧ an

+
∑

1≤i<j≤n

(−1)i+j−1m⊗ [ai, aj ] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ an,

称复形(CCE
• (g,M), ∂•)为Lie代数g以M为系数的Chevalley-Eilenberg复形(Chevalley-Eilenberg).对偶地，

定义如下的

CnCE(g,M) := Homk

(
n∧
i=1

g,M

)
和微分映射

dn : Homk

(
n∧
i=1

g,M

)
→ Homk

(
n+1∧
i=1

g,M

)
满足

dω(x1 ∧ · · · ∧ xn+1) =
n+1∑
i=1

(−1)i+1xi · ω(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn)

+
∑

1≤i<j≤n+1

(−1)i+jω([xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ · · · ∧ x̂j ∧ · · ·xn),

则称(C•CE, d
•)是

7.3 Hochschild

本节中我们都假定k是交换环，理想的情况下它会是域.

定义. 给定交换基代数k和k代数A，若（对称）k模M同时具有左右A模结构，且满足对任意a, b ∈ A,m ∈
M都有

(am)b = a(mb),

且k在M上的左右作用与A在M上的左右作用相容，则称M是一个A双模(A-bimodule).若A还有单位元，

则一般要求

1m = m = m1.
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记Ae = A⊗k A，那么一个A双模M同时是一个左Ae模，作用由

(a⊗ b)m = amb

给出.或者，一个A双模M同时是一个右Ae模，作用由

m(a⊗ b) = b−1ma

给出.

定义. 给定交换基代数k和k代数A，M是A双模，给定A模

Cn(A,M) :=M ⊗k A⊗n,

其中A⊗n := A⊗k · · · ⊗k A，并且有如下Hochschild边缘映射

∂n : Cn(A,M)→ Cn−1(A,M)

m⊗ a1 ⊗ · · · ⊗ an 7→ ma1 ⊗ · · · ⊗ an +
n−1∑
i=1

(−1)im⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nanm⊗ a1 ⊗ · · · ⊗ an−1,

那么(CHoch
• (A,M), ∂•)称为Hochschild复形(Hochschild complex)， 对应的同调群称为A以M为系数

的Hochschild同调群(Hochschild homology group of A with coefficients in M)，记为HH•(A,M).特别地

若M = A，我们记HH•(A).

引理 7.1. (C•(A,M), ∂•)是链复形.

证明. 定义

d
[n]
i : Cn(A,M)→ Cn−1(A,M)

d0(m⊗ a1 ⊗ · · · ⊗ an) := ma1 ⊗ · · · ⊗ an
di(m⊗ a1 ⊗ · · · ⊗ an) := m⊗ a1 ⊗ · · · aiai+1 ⊗ · · · ⊗ an
dn(m⊗ a1 ⊗ · · · ⊗ an) := anm⊗ a1 ⊗ · · · ⊗ an−1,

于是

d
[n]
i d

[n]
j = d

[n]
j−1d

[n]
i

对0 ≤ i < j ≤ n成立，这样C•(A,M)是预单纯的，因此根据习题1.1，(C•(A,M), ∂•)是链复形.

事实上，如上定义的同调群HH•(A,M)关于M有函子性：给定一个A双模同态ψ : M → N，那么它诱导
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的

ψ• : C•(A,M)→ C•(A,N)

ψn : m⊗ a1 ⊗ · · · ⊗ an 7→ ψ(m)⊗ a1 ⊗ · · · ⊗ an

是一个链映射，因此诱导了Hochschild同调群的同态；同时群HH•(A,M)关于A也有函子性：给定一个k代数

同态φ : A→ B，它诱导的

φ• : C•(A,M)→ C•(B,M)

φn : m⊗ a1 ⊗ · · · ⊗ an 7→ m⊗ φ(a1)⊗ · · · ⊗ φ(an)

是一个链映射，因此诱导了Hochschild同调群的同态.

例 7.1. 首先考虑HH0(A,M).按定义，HH0(A,M) = C0(A,M)/Im ∂1，注意到∂1 : a⊗m 7→ ma− am的定义
使得Im ∂1中的元素都是形如ma− am这样的元素生成的，因此

HH0(A,M) =M/⟨ma− am⟩ =:M/[M,A].

特别地，HH0(A) = A/[A,A].

例 7.2. 当A = k时，Cn(A) = k对于任意n都成立，并且d
[n]
i = id对任意1 ≤ i ≤ n.于是，Hochschild复形是

· · · → k
1−→ k

0−→ · · · 1−→ k
0−→ k,

因此HH∗(k) = k[0].

习题 7.1. 给定k代数A，记Z(A) := {z ∈ A | az = za ∀a ∈ A}为A的中心，求证Z(A)在C•(A,M)上的作用

z · (m⊗ a1 ⊗ · · · ⊗ an) := zm⊗ a1 ⊗ · · · ⊗ an

和

(m⊗ a1 ⊗ · · · ⊗ an) · z := mz ⊗ a1 ⊗ · · · ⊗ an

是同伦的.事实上，这还是个单纯同伦.

命题 7.3. 若A是含幺的交换k代数，那么存在自然的同构

HH1(A) ∼= Ω1
A/k.

若M还是对称的A双模（即am = ma对任意a ∈ A,m ∈M）都成立，那么存在自然同构

HH1(A,M) ∼=M ⊗A Ω1
A/k.

证明. 由于A是交换代数，因此∂1 : A⊗k A→ A（例7.1）是0映射，因此

HH1(A) ∼= A⊗k A/⟨ab⊗ c− a⊗ bc+ ca⊗ b⟩.
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这样对于映射

HH1(A)→ Ω1
A/k

a⊗ b 7→ adb

是良定义的，且是A模同态.容易验证这是一个同构.

接下来我们希望用导出函子的语言来描述Hochschild同调.

定义. 给定k代数A，记A◦为A的对偶代数（即与A具有相同的元素，但乘法定义为a◦ · b◦ := (ba)◦），

令Ae := A⊗k A◦，那么对于任意的A双模M都有Ae的左作用

(a⊗ b)m := amb.

那么如下链复形称为bar复形(Bar complex)：

Cbar
• (A) : · · ·

∂bar
n+1−−−→ A⊗n+1 ∂bar

n−−→ A⊗n
∂bar
n−1−−−→ · · · ∂

bar
1−−→ A⊗2 → 0,

其中A⊗2处于0阶位置，且∂bar
n :=

∑n
i=0(−1)idi（注意到求和不取到n+ 1）.由乘法定义的映射

µ : A⊗k A→ A

是复形Cbar
• 的扩张.

很明显

HH∗(A) ∼= H∗(M ⊗Ae Cbar
• (A)),

即Hochschild同调是Ae模链复形Cbar
• (A)以M为系数的同调.

命题 7.4. 设k代数A是含幺的，那么复形Cbar
• (A)（附有扩张µ : Cbar

• (A) → A）是Ae模A的自由Ae模消

解，它称为bar消解(Bar resolution).

证明. 对于这里的证明我们通过构造新的称为退化映射(degeneracy may)的结构，来获得新的信息完成证明.定

义

s : A⊗n → A⊗n+1

a1 ⊗ · · · ⊗ an 7→ 1⊗ a1 ⊗ · · · ⊗ an,

那么可以验证dis = sdi−1对任意i = 1, · · · , n− 1成立，且d0s = id，于是

∂̄s+ s∂̄ = id,

因此这证明了C̄•是消解.
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在如上的证明中我们事实用到了A有左单位的事实，当A有右单位时，取

s : A⊗n → A⊗n+1

a1 ⊗ · · · ⊗ an 7→ a1 ⊗ · · · ⊗ an ⊗ 1

即可.此外，复形C̄•的边缘算子∂̄完全由如下性质决定：

1. ∂̄是左A模同态，

2. ∂̄0 = µ，

3. ∂̄s+ s∂̄ = id，

并且这给出了链同构C•(A,A
e) ∼= Cbar

• (A).

事实上，我们可以扩充如上的构造使得C•(A,M)成为一个单纯对象，因而可以通过商去退化对象得到正

规化的Hochschild复形，鉴于这些讨论需要其他工具的建立，在此略去.

定理 7.5. 给定k代数A，若A是投射k模，那么对任意A双模M，存在自然的同构

HHn(A,M) ∼= TorA
e

n (M,A).

证明. 根据假设，A⊗n对于任意自然数n也是投射k模，因此A⊗n+2 = A⊗kA⊗n⊗kA是投射Ae模（其中模结构
由(a⊗ b)(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) := aa0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1b给出）.这是因为，？？？

于是，注意到M ⊗Ae A⊗n+2 ∼=M ⊗k A⊗n，定理成立.

引理2.1说明？答案当然是否定的！这是因为命题7.4中的同伦是k模范畴中的同伦，而函子是Ae上的张量

积.

例 7.3.

类似于拓扑中的同调理论，对于任意A的双边理想I，短正合列0→ I → A→ A/I → 0诱导了同调群的长

正合列

· · · → HHn(A, I)→ HHn(A)→ HHn(A/I)→ HHn−1(A, I)→ · · · ,

因此可以称HHn(A, I)是相对Hochschild同调群.更一般地，对于任意的k代数同态A→ B，它诱导的链映射C•(A)→
C•(B)的映射锥给出了诱导的长正合列.

习题 7.2. 给定两个含幺k代数，那么存在自然同构

HH∗(A⊕B) ∼= HH∗(A)⊕HH∗(B).

习题 7.3. 记Z(A)是A的中心，U ⊆ Z(A)是乘性子集且1 ∈ U，对任意左A模M定义M [U−1] := Z(A)[U−1]⊗A
M，那么当A是k平坦时，存在自然的同构

HHn(A,M)[U−1] ∼= HHn(A,M [U−1]) ∼= HHn(A[U
−1],M [U−1]).



7.3 HOCHSCHILD 91

习题 7.4. 给定一族k代数同态{fi : Ai → Ai+1}i∈N，求证

colimiHHn(Ai) ∼= HHn(colimiAi).

习题 7.5 (MacLane). 给定（离散）群G并记k[G]为G的群代数，并且给定k[G]双模M .设G在M上的（右）作

用是

mg := g−1mg,

求证存在自然同构

HH∗(k[G],M) ∼= H∗(G,M),

其中H∗(G,M)是M系数的群同调.

证明.

φ : CHoch
• (k[G],M)→ CEM

• (G,M)

φn : CHoch
n (k[G],M)→ CEM

n (G,M)

m⊗ g1 ⊗ · · · ⊗ gn 7→ mg1·····gn ⊗ g1 ⊗ · · · ⊗ gn.

习题 7.6. 给定平坦A双模的短正合列0→M → N → P → 0，求证存在长正合列

· · · → HHn(A,M)→ HHn(A,N)→ HHn(A,P )→ HHn−1(A,M)→ · · · .

事实上，只要0→M → N → P → 0是k分裂的即可.

习题 7.7. 给定k代数A的双边理想I, J，尝试定义双相对Hochschild同调HH∗(A; I, J)使得存在如下长整合列

· · · → HHn(A, I)→ HHn(A; I, J)→ HHn(A, J)→ HHn−1(A, I)→ · · · ,

并且证明当I ∩ J = 0时，HH0(A; I, J) = 0且HH1(A; I, J) = I ⊗Ae J .

7.3.1 Cohomology

给定R代数A和A双模M，

HH∗(A) := H∗(HomAe(Cbar
• (A),M)),

具体地，按定义任意给定f̄ ∈ HomAe(Cbar
n (A),M)，

df̄(a0 ⊗ · · · ⊗ an+2) := f̄(∂bar
n+1(a0 ⊗ · · · ⊗ an+2))

= f̄

(
a0a1 ⊗ · · · ⊗ an+2 +

n+1∑
i=1

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+2

)
= a0f̄(a1 ⊗ · · · ⊗ 1)an+2

+
n∑
i=1

(−1)ia0f̄(1⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ 1)an+2

+ (−1)n+1a0f̄(1⊗ · · · ⊗ an+1)an+2.
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注意到

HomAe(Cbar
n (A),M) ⇆ HomR(A

⊗n,M)

f̄ 7→ f : (a1 ⊗ · · · ⊗ an) 7→ [f̄(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)]

[f̄ : (a0 ⊗ · · · ⊗ an+1) 7→ a0f(a1 ⊗ · · · ⊗ an)an+1]←[ f

给出了R模的同构，因此Hochschild上同调HH∗(A;M)也可由复形(C•(A;M), d•)来定义，其中

Cn(A;M) := HomR(A
⊗n,M),

微分映射dn : Cn(A;M)→ Cn+1(A;M)定义为

df(a1 ⊗ · · · ⊗ an) :=a1f(a2 ⊗ · · · ⊗ an)

+
n−1∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+ (−1)nf(a1 ⊗ · · · ⊗ an−1)an.

例 7.4.

HH0(A,M) =MA := {m ∈M | ma = am ∀a ∈ A}

HH1(A,M) = Der(A,M)/{内微分}

定理 7.6. 给定带单位元的k代数A和A双模M，那么存在自然的双射

HH2(A,M) ∼= Ext(A,M),

其中Ext(A,M)是A关于M的平方零扩张的等价类的全体.

例 7.5. 考虑A := k[x1, · · · , xn]和任意A双模M（因此M可以看作Ae模），我们希望计算

HHi(A,M) = TorA
e

i (A,M).

7.3.2 Hochschild-Kostant-Rosenberg

定理 7.7.

7.4 循环上同调*

给定R代数A，上一节中我们定义了A的Hochschild复形C•(A|R)，这一节我们考虑Z/(n+1)Z在复形上的
作用，它诱导了一个新的同调，称为循环同调设tn是Z/(n+ 1)Z的一个生成元，定义Z/(n+ 1)Z在A⊗n+1上的

作用为

tn · (a0 ⊗ a1 ⊗ · · · ⊗ an) := (−1)n(an ⊗ a0 ⊗ · · · ⊗ an−1),
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对其进行先行扩张，并称它为循环算子(cyclic operator).定义

N := 1 + t+ · · ·+ tn

为t对应的范数算子(norm operator).

引理 7.2. 如上提到的算子满足

(1− t)∂̄ = ∂(1− t),

∂̄N = N∂,

其中∂是Hochschild复形的边缘映射∂n : Cn(A,M) → Cn−1(A,M)，∂̄n是bar复形的边缘映射∂n : C̄n(A) →
C̄n−1(A).

证明. 按定义，

如上引理说明

A⊗3 A⊗3 A⊗3 A⊗3

A⊗2 A⊗2 A⊗2 A⊗2

A A A A

∂ −∂̄ ∂ −∂̄

∂ −∂̄

1−t

∂

N

−∂̄

1−t N

∂ −∂̄

1−t

∂

N

−∂̄

1−t N

1−t N 1−t N

是一个双复形，称为循环双复形(cyclic bicomplex)，记为CC•,•(A).

定义. 给定？？A，称

HCn(A) := Hn(Tot(CC•,•(A)))

为A的循环同调(cyclic homology).在需要时，用HCn(A|R)来强调基环R.

事实上，循环同调HC∗(A|R)关于A和R都有函子性.

注意到Coker(A⊗n+1 1−t−−→ A⊗n+1)是循环群Z/(n+1)Z下不变的，记Cλn(A) := Coker(A⊗n+1 1−t−−→ A⊗n+1)，

引理7.2说明存在如下复形

Cλ• (A) := · · · → Cλn(A)
∂−→ Cλn−1(A)

∂−→ · · · ∂−→ Cλ0 (A)

是良定义的，称为Connes复形(Connes’ complex)，记它的同调为Hλ
∗ (A).此时，存在自然的映射p• : Tot(CC•,•(A))→

Cλ• (A)，它在第一列上是取商，在其余列上是0.

命题 7.8. 若基环R包含Q作为子环，那么诱导的映射p∗ : HC∗(A)→ Hλ
∗ (A)是同构.

证明.
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7.4.1 Brylinski混合复形

假定A是可滤的代数，即A子空间的存在递增滤子

0 = A−1 ⊆ A0 ⊆ A1 ⊆ · · ·

使得
⋃
q≥0Aq = A且滤子与乘法想容，即Ap ·Aq ⊆ Ap+q.此时，我们可以定义A的分次代数

Gr A :=
⊕
n∈N

An
An−1

.

若Gr A恰好是交换的，那我们可以在上面定义一个Poisson括号{−,−} : Gr A×Gr A→ Gr A，满足

• {f, g} = −{g, f}，

• {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0，和

• {f, gh} = {f, g}h+ g{f, h}.

构造如下：取a ∈ Ap, b ∈ Aq使得f, g是a, b在自然投射A→ GrA下的像，由于GrA是交换的，[a, b] = ab−ba ∈
Ap+q实际上在更小的空间Ap+q−1中，因此{f, g}就定义为[a, b]在(Gr A)p+q−1中的像.

Brylinski 88’证明了当Gr A是交换，特征0且光滑的时候，存在双复形(ΩGr A, δ, d)，其中δ是在Gr A中微

分形式上的阶数为−1的边缘映射，满足

δ(f0df1 · · · fq) =
q+1∑
i=1

(−1)i+1{f0, fi}df1 · · · f̂i · · · dfq +
∑

1≤i<j≤q

(−1)i+jf0d{fi, fj}df1 · · · f̂i · · · f̂j · · · dfq

定理 7.9 (Kassel 88). 假设k是特征为0的域，A是可滤的代数且Gr A是交换且光滑的代数，满足

Gr A ∼= k[x1, · · · , xn],

则HHq(A) ∼= Hq(ΩGr A, δ)，HCq(A) ∼= Hq(ΩGr A, δ, d).

7.5 应用：形变与上同调

几何上，

7.5.1 一阶形变

给定k代数A，我们考虑如下问题：A上的乘法实际上是一个k映射A ⊗k A → A，在所有的这样映射的全

体Homk(A⊗k A,A)中，并不是所有的元素都可以成为乘法——我们依旧要求乘法满足结合律，但这导致对这
样元素的讨论变得困难了许多，因此相应的比较系统的方式考虑“切空间”问题，更准确地说，一阶形变的

问题.

于是，考虑从旧的乘法中定义一个新的“乘法”

a ∗ b := ab+ ϵf(a, b),

其中f ∈ Homk(A⊗k A,A)，那么结合律

(a ∗ b) ∗ c = a ∗ (b ∗ c)



7.5 应用：形变与上同调 95

就具体地写为

(ab+ ϵf(a, b))c+ ϵf(ab+ ϵf(a, b), c) = a(bc+ ϵf(b, c)) + ϵf(a, bc+ ϵf(b, c)),

根据f的双线性性，上式被化简为

abc+ ϵf(a, b)c+ ϵf(ab, c) + ϵ2f(f(a, b), c) = abc+ ϵaf(b, c) + ϵf(a, bc) + ϵ2f(a, f(b, c)).

注意到这里考虑的是一阶问题（即在环k[ϵ]/(ϵ2)上考虑问题），视ϵ2 = 0，因此我们得到关于f的条件

f(a, b)c+ f(ab, c) = af(b, c) + f(a, bc), (7.1)

它对应于乘法的结合性条件.

另一方面，注意到GLk(A)在A上的作用本质上不改变乘法，因此在考虑乘法的时候我们希望去除掉GLk(A)的

影响.假定T ∈ GLk(A)满足

T (a) := a+ ϵg(a),

其中g ∈ Homk(A⊗k A,A).这样，T对乘法− ∗ −的拉回为

a ∗T b := T (T−1(a) ∗ T−1(b)).

由于我们是在环k[ϵ]/(ϵ2)上考虑问题，T−1 = id− ϵg（习题7.8）.直接计算得到

ab+ ϵfT (a, b) = a ∗T b := T (T−1(a) ∗ T−1(b))

= T (T−1(a)T−1(b) + ϵf(T−1(a), T−1(b)))

= T−1(a)T−1(b) + ϵf(T−1(a), T−1(b)) + ϵg(T−1(a)T−1(b) + ϵf(T−1(a), T−1(b)))

= (a− ϵg(a))(b− ϵg(b)) + ϵf(a− ϵg(a), b− ϵg(b))

+ ϵg((a− ϵg(a))(b− ϵg(b)) + ϵf(a− ϵg(a), b− ϵg(b)))

= ab− ϵ(g(a)b+ ag(b)) + ϵ2g(a)g(b) + ϵf(a− ϵg(a), b− ϵg(b))

+ ϵg(ab− ϵ(g(a)b+ ag(b)) + ϵ2g(a)g(b) + ϵf(a− ϵg(a), b− ϵg(b)))

= ab− ϵ(g(a)b+ ag(b)) + ϵf(a, b) + ϵg(ab),

这给出了关系

fT (a, b) = f(a, b)− g(a)b− ag(b) + g(ab). (7.2)

综上，我们关心的对象是Homk(A⊗k A,A)中满足7.1式的乘法f在7.2式下的等价类.

观察如上的关系，这恰好给出了对应

{环A的一阶形变等价类} ↔ HH2(A).

习题 7.8. 依照上面讨论的记号，求证

T−1(a) = a− ϵg(a).
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例 7.6. 考虑k代数A := k[Z/2Z]，作为k向量空间它有一组基{1, σ}，满足σ2 = 1.上闭链条件7.1给出关系

f(1, 1)1 + f(1, 1) = 1f(1, 1) + f(1, 1)

f(1, 1)σ + f(1, σ) = 1f(1, σ) + f(1, σ)

f(1, σ)1 + f(σ, 1) = 1f(σ, 1) + f(1, σ)

f(1, σ)σ + f(σ, σ) = 1f(σ, σ) + f(1, σ2)

f(σ, 1)1 + f(σ, 1) = σf(1, 1) + f(σ, 1)

f(σ, 1)σ + f(σ, σ) = σf(1, σ) + f(σ, σ)

f(σ, σ)1 + f(σ2, 1) = σf(σ, 1) + f(σ, σ)

f(σ, σ)σ + f(σ2, σ) = σf(σ, σ) + f(σ, σ2),

去掉平凡等式与重复的等式，（考虑到交换性）有关系

f(1, σ) = f(σ, 1)

f(1, σ) = σf(1, 1).

于是，f可由如下定义给出：

f(1, 1) := c1 + c2σ

f(1, σ) := c2 + c1σ

f(σ, 1) := c2 + c1σ

f(σ, σ) := c3 + c4σ,

其中c1, · · · , c4 ∈ k是常数.另一方面，记

g(1) := a1 + a2σ

g(σ) := a3 + a4σ,

那么上边缘给出

dg(1, 1) = a1 + a2σ

dg(1, σ) = a2 + a1σ

dg(σ, 1) = a2 + a1σ

dg(σ, σ) = (2a4 − a1) + (2a3 − a2)σ,

上面的计算恰好说明每一个上闭链都是上边缘，即HH2(A) = 0.

例 7.7. 考虑k代数A := k[ϵ]/(ϵ2)，依照例7.6中的计算方法（不同的是这里ϵ2 = 0），可以得到

f(1, 1) := c1 + c2ϵ

f(1, ϵ) := c1ϵ

f(ϵ, 1) := c1ϵ

f(ϵ, ϵ) := c3 + c4ϵ,
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上边缘给出关系

dg(1, 1) = a1 + a2ϵ

dg(1, ϵ) = a1ϵ

dg(ϵ, 1) = a1ϵ

dg(ϵ, ϵ) = a3ϵ,

这意味着非边缘的上闭链都形如

f(ϵ, ϵ) = c3,

因此HH2(A) = k.

7.5.2 高阶形变和

上一节当中我们讨论了一阶形变，对应的同样还有高阶形变，我们首先来讨论所谓的二阶形变.类似之前

的定义，记新的乘法为

a ∗ b := ab+ ϵf1(a, b) + ϵ2f2(a, b),

其中f1, f2 ∈ Homk(A⊗k A,A)，如同上一节对结合律的计算，我们不仅得到相同的关系式7.1

f1(a, b)c+ f1(ab, c) = af1(b, c) + f1(a, bc),

还得到新的关系式

f1(f1(a, b), c)− f1(a, f1(b, c)) = f2(a, b)c+ f2(ab, c)− af2(b, c)− f2(a, bc), (7.3)

容易观察得到等式的右边恰好是f2在微分映射下的像df2 ∈ Hom(A⊗k A⊗k A,A).

定义. 给定域k和k向量空间的上链复形(L•, d•)Z，记L :=
⊕

i∈Z L
i，若还存在双线性映射

[−,−] : L× L→ L

满足

1. 映射[−,−]是齐次(homogeneous)且反对称的(skew symmetric)，即[Li, Lj ] ⊆ Li+j对任意i, j ∈ Z成
立，且对任意齐次元素x ∈ Li, y ∈ Lj，

[x, y] = (−1)deg x deg y+1[y, x],

2. 映射[−,−]满足分次Jacobi等式，即x ∈ Li, y ∈ Lj , z ∈ Lp，

(−1)deg x deg z[x, [y, z]] + (−1)deg y deg x[y, [z, x]] + (−1)deg z deg y[z, [x, y]] = 0,

3. 微分映射d满足分次Leibnitz恒等式，即x ∈ Li, y ∈ Lj，

d[x, y] = [dx, y] + (−1)deg x[x, dy],

则称(L•, [−,−], d•)是一个微分分次Lie代数(differential graded Lie algebra).
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这里奇妙的事情是存在合适的定义方式使得计算Hochschild上同调的复形是一个微分分次Lie代数.

定义. 给定f ∈ Homk(A
⊗m+1), g ∈ Homk(A

⊗n+1)，对任意i = 1, · · · ,m+1，定义f ◦ig ∈ Homk(A
⊗n+m+1)

f ◦i g(a1 ⊗ · · · ⊗ am+n+1) := f(a1 ⊗ · · · ⊗ ai−1 ⊗ g(ai ⊗ · · · ⊗ ai+n)⊗ · · · ⊗ am+n+1).

进而可以定义circle product

f ◦ g :=
m+1∑
i=1

(−1)(i+1)nf ◦i g.

引理 7.3. 给定f ∈ Homk(A
⊗m+1), g ∈ Homk(A

⊗n+1)，若定义cup product

(f ⌣ g)(a1 ⊗ · · · ⊗ am+n+2) := f(a1 ⊗ · · · ⊗ am+1)g(am+2 ⊗ · · · ⊗ am+n+2),

则

d(f ◦ g) = f ◦ dg + (−1)ndf ◦ g + (−1)(m+1)(n+1)+nf ⌣ g + (−1)n+1g ⌣ f.

命题 7.10. Gerstenhaber括号

[f, g] := f ◦ g − (−1)deg f deg gg ◦ f

和−d使得(Homk(A
⊗•+1), [−,−],−d)成为一个微分分次Lie代数.

证明.

推论 7.10.1. 若f ∈ Homk(A
⊗n+1, A)是上闭链，那么[f, f ] ∈ Homk(A

⊗2n+1, A)也是上闭链.

回到原来的问题，注意到

f1 ◦ f1(a⊗ b⊗ c) = 2f1(f1(a⊗ b)⊗ c)− 2f1(a⊗ f1(b⊗ c))

恰好是等式7.3的左边的两倍，因此7.3式可重新写为

1

2
[f1, f1] = df2.

又由于f2是上闭链，这说明存在二阶形变

a ∗ b := ab+ ϵf1(a, b) + ϵ2f2(a, b),

是以f1为截断的一阶形变的扩张当且仅当

0 = [f1, f1] ∈ HH3(A),
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因此称[f1, f1]（的等价类）为一阶形变ab+ ϵf1扩张到二阶形变ab+ ϵf1 + ϵ2f2的阻碍(obstruction).

借助如上的工具，记A中的乘法为

m : A×A→ A

(a, b) 7→ ab,

那么结合律

m(m(a, b), c) = m(a,m(b, c))

可以等价地写为

[m,m] = 0,

Leibnitz法则

d(m(a, b)) = m(d(a), b) +m(a, d(b))

可写为

[d,m] = 0,

而Hochschild微分

d(f) = [m, f ]

对任意f ∈ Homk(A
⊗n+1, A)都成立.

例 7.8.

对于更一般n阶扩张的情形，我们实际上是在考虑系数环k[ϵ]/(ϵn+1)上的情形，如同之前的计算对比每

个ϵk的系数有方程
k∑

i+j=0

fj(a, fi(b, c)) =
k∑

i+j=0

fj(fi(a, b), c),

当k = 0时这恰好是A中的乘法

7.6 函子上同调*

给定交换环R和小范畴C，记C −Mod（对应的，Mod − C）为所有C到R −Mod的协变函子（对应的，

反变函子）组成的范畴.根据例A.4，这也是一个Abel范畴.

例 7.9. 给定含幺R代数A，考虑A，定义为只含一个对象∗的范畴，且homA(∗, ∗) = A，态射的复合是A中的

乘法.

设M是右A模，即反变函子M : A → R −Mod.此时，函子给定了一个R −Mod中的对象M := M(∗)，
对任意态射a, b ∈ A = homA(∗, ∗)，记

M(a) :M →M

m 7→ m · a,

于是反变原则说明

m · (ab) =M(ab)(m) =M(b)M(a)(m) =M(b)(m · a) = (m · a) · b,

这恰好是一个右A模.反过来，按如上的对应方式一个右A模也同时给出了一个右A模.
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例 7.10. 我们接着例7.9继续讨论，给出一个张量积范畴化的定义.首先回顾如下定义：设C是一个小范畴，D是
一个上完备的局部小范畴，考虑2函子

S : C◦ × C → D,

那么我们称f∗与f
∗的上等值子 ∏

f :A0→A1

S(A0, A1) ⇒
∏

A∈ob C

S(A,A)

为S的上终止(co-end)，其中f∗是复合S(A0, A1)
S(f,id)−−−−→ S(A1, A1) ↪→

∏
A∈ob C S(A,A)，f

∗是复合S(A0, A1)
S(id,f)−−−−→

S(A0, A0) ↪→
∏
A∈ob C S(A,A)，记为

∫
A∈ob C S(A,A).

给定右R模M和左R模N，那么我们有自然的2函子

S : A◦ ×A→ Ab

(∗, ∗) 7→M ⊗Z N

(f, g) 7→ f ⊗ g,

我们来验证，上终止
∫
A
S =M ⊗R N .

但为了

定义. 给定幺半小范畴C，若C中的对象与N对应（于是对象被记为{[n]}n∈N），且幺半结构同于自然数的加
法结构，即

[n]⊗ [m] = [n+m],

则称范畴C为一个PROP.

例 7.11. 记FinSet∗是具有基点的所有有限集合组成的范畴，即

1. FinSet∗的对象包括{[n] := {0, 1, · · · , n}}n∈N，其中0 ∈ [n]是集合的基点，

2. FinSet∗的态射包括所有保基点的集合映射的全体，

3. FinSet∗的幺半结构由楔积给出，即

[n] ∧ [m] = [n+m],

明显地这是一个PROP.

引理 7.4. 函子R[homC([n],−)]和R[homC(−, [n])]都是投射的.

证明. 给定左C模F,G和满射τ : F ⇒ G，我们需要证明对任意的态射α : R[homC([n],−)]，都有提升

R[homC([n],−)]

F G 0.

α̃ α

τ
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注意到对任意的左模H,K : C ⇒ R−Mod，Nat(H,K)也有自然的k模结构，满足

(α+ β)A := αA + βA,

(rα)A := rαA.

记hn := R[homC([n],−)]是由集合homC([n],−)生成的自由R模，因此Yoneda引理中的自然同构

Φ : Nat(hn, G) ⇆ G([n]) : Ψ

α 7→ α[n](id[n])

ηm ←[ m

是R模的同构，其中ηm是自然变换

ηm : homC(A,−)⇒ F

ηmB : homC(A,B)→ F (B)

h 7→ F (h)(m).

这意味着在此Yoneda对应下，α对应到G([n])中的某个元素m，例A.4说明

τ[n] : F ([n])→ G([n])

是满射，因此存在m̃ ∈ F ([n])使得τ[n](m̃) = m，记α̃是m̃在Yoneda映射下对应的自然变换，Yoneda的自然性

说明了最初图的交换性，得证.

对函子R[homC(−, [n])]的证明是相同的.

由此，我们对于C中的对象，记hA := R[homC(−, A)]和hA := R[homC(A,−)].

命题 7.11. 若范畴C是PROP，那么C −Mod有足够多的投射和内射对象.

证明. 考虑 ⊕
A∈ob C
a∈F (A)

hA ⇒ F,

其中自然变换hA ⇒ F由Yoneda引理对应到元素a ∈ F (A)给出

自然地可以构造（双）函子

−⊗C − : Mod− C × C −Mod→ R−Mod,

使得

G⊗C F =

( ⊕
A∈ob C

G(A)⊗k F (A)

)/
⟨(G(f)(x))⊗ y − x⊗ (F (f)(y))⟩x∈G(B),y∈F (A),

A,B∈ob C,
f∈homC(A,B)

,

或者可以表示为
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F ⊗C G ∼= coeq(
⊕

f∈homC(A,B)G(B)⊗R F (A)
⊕

A∈ob C G(A)⊗R F (A)),
f∗

f∗

其中对任意的x ∈ G(B), y ∈ F (A)，f∗(x⊗ y) := x⊗ F (f)(y), f∗(x⊗ y) := G(f)(x))⊗ y.

例 7.12. 设R是环，F,G是函子F : C◦ →Mod−R和G : C → R−Mod.定义函子S := F ⊞RG : C◦×C → Ab，

将对象(A,B)映为F (A) ⊗R G(B)，将态射(f : C → A, g : B → D)映到F (f) ⊠R G(g) : F (A) ⊗R G(B) →
F (C)⊗R G(D), x⊗ y 7→ F (f)(x)⊗G(g)(y).在此基础上定义对象

F ⊗A,R G :=

∫ A∈ob C
F (f)⊠R G(g).

若函子R◦[homC(−, A)] : C◦ →Mod−R，将对象C映到homC(C,A)生成的自由R模，证明

R◦[homC(−, A)]⊗A,R G ∼= G(A).

证明对R作为自己的右模的常值函子ConstR : C◦ →Mod−R满足

ConstR ⊗A,R G ∼= colimCG.

例 7.13. 记R是映到R作为R模本身的常值函子（将C中的所有态射映到恒同态射），那么

F ⊗C R ∼= colimC F.

这里直接应用了余极限的计算方法.对于任意函子F : J → D，

colimJF ∼= coeq

[ ∐
f∈mor J

F (dom f)
f∗

⇒
f∗

∐
j∈J

F (j)

]
,

其中f∗是由id : F (dom f) → F (dom f)诱导的态射，f∗是由F (f) : F (dom f)
f−→ F (codom f)诱导的态射.按定

义

F ⊗C R ∼= coeq

 ⊕
f∈homC(A,B)

F (B)⊗R R
f∗

⇒
f∗

⊕
A∈ob C

F (A)⊗R R

 ,
此时按定义中的元素写出来，f∗恰好是由id : F (dom f)→ F (dom f)诱导的态射，f∗恰好是由F (f) : F (dom f)

f−→
F (codom f)诱导的态射，注意到R−Mod中的余积是直和，这就完成了证明.

习题 7.9. 求证

F ⊗C hn ∼= F ([n]).

证明. 按定义，

特别地，对任意M ∈ C −Mod和N ∈Mod− C，TorCi (M,N)是有意义的.

例 7.14. 考虑C = FinSet∗的情形（见例7.11），给定交换k代数A和对称A−A双模M，定义函子

L(A,M) : FinSet∗ → k −Vec

[n] 7→M ⊗k A⊗n,

并且对于任意f : [n]→ [m]，L(A,M)(f)定义为

M ⊗k A⊗n →M ⊗k A⊗m

a0 ⊗ · · · ⊗ an 7→ b0 ⊗ · · · ⊗ bm,
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其中

bj :=
∏
f(i)=j

ai, j = 0, · · · ,m.

这里有几个技术性的条件：我们要求有限集是带基点的原因在于L(A,M)([n]) =M ⊗k A⊗n中的元素地位并不
一样——第0项只能是M中的元素，不能与其他元素交换位置，但取M = A时则不需要有这个要求；在bj的定

义中并没有规定乘法中每个ai的位置，这样在A是交换代数时如上的定义才没有歧义，T.Pirashvili在[?]中讨

论了A非交换的情形.

考虑一组有限集及之间的态射

(S1)n := {(0, · · · , 0, 1, · · · , 1)}/ ∼, n ∈ N

d
[n]
i : (S1)n → (S1)n−1

(a0, · · · , an) 7→ (a0, · · · , âi, · · · , an)

其中(S1)n中的数组共n+1项（这里我们将i与有i个0的数组等同起来），等价关系定义为(0, · · · , 0) ∼ (1, · · · , 1).按
照之前的定义，

L(A,M)((S1)n) =M ⊗k A⊗n,

而L(A,M)(d
[n]
i )是

M ⊗k A⊗n →M ⊗k A⊗n−1

a0 ⊗ · · · ⊗ an 7→


a0a1 ⊗ a2 ⊗ · · · ⊗ an i = 0

a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an i = 1, · · · , n− 1

ana0 ⊗ a1 ⊗ · · · ⊗ an−1 i = n,

这恰好是Hochschild复形.

在例7.14中我们给Hochschild一个新的解释，

例 7.15.

TorBGi (k, F ) ∼= Hi(G; k)

例 7.16. 设G是Gp中所有有限生成自由群组成的满子范畴，于是给定域k，

link : G ↪→ Gp
ab−→ Ab

−⊗Zk−−−→ k −Vec

那么

TorG
◦

i (k[G], link) ∼= Hi+1(G; k)

其中Hi+1(G; k)是群G以k为系数的群同调.

h1(⟨n⟩) = k[homG (⟨1⟩, ⟨n⟩)] = k[⟨n⟩]
h1 ⇒ link,

习题 7.10.

ExtiG (k[G], link)
∼=?H i+1(G; k)
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附录 A Abel范畴

一定程度上说，我们构造范畴的目的是抽象出原本一些对象之间的行为，用更一般的方式去理解之前的

对象和之间的行为.在代数中，模是一类非常友好的对象，我们希望找到足够抽象的一类对象，他们之间的行

为类似于模（或者Abel群），这样的范畴就是Abel范畴.

同调代数中绝大多数的研究对象是Abel范畴中的对象，它们具有许多良好的性质，在这一章中我们将列

举绝大部分.但是，同调代数的学习并不需要知道每一个这样性质的来源和证明，甚至在很多情形下一个Abel范

畴完全可以看成一个R模范畴，虽然这并不准确，但足够对同调代数有正确的理解.这里的建议是大致浏览这

一章，知道Abel范畴的定义和一些基本性质，然后进入正式的同调代数的学习，在适当并且需要的时候再去

了解和分析Abel范畴中一些性质的证明.

A.1 Abel范畴

这一节我们不区分范畴内对象的同构和相等，即对象的相等意味着存在同构.

定义. 给定范畴C中的两个单态射f1 : A1 → B, f2 : A2 → B，若存在h : A1 ⇆ A2 : k使得图

A1

B,

A2

f1

h

f2

k

是交换的，则称单态射f1 : A1 → B, f2 : A2 → B是等价的(equivalent).对偶地，给定范畴C中的两个满态
射g1 : B → C1, g2 : B → C2，若存在h : C1 ⇆ C2 : k使得图

C1

B

C2 ,

h

g2

g1

k

是交换的，则称满态射f1 : A1 → B, f2 : A2 → B是等价的(equivalent).称B的单态射的等价类为B的子对

象(subobject)，B的满态射的等价类为B的商对象(quotient object).

105
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于是，对任意单态射A ↪→ B，它的等价类是B的一个子对象，记为A ⊆ B，同样地，对任意一个满态

射B ↠ C，它的等价类是B的一个商对象，记为C = B/ ∼.

习题 A.1. 求证若f1 : A1 → B, f2 : A2 → B都是单态射，那么满足交换图

A1

B,

A2

f1

h

f2

的h : A1 → A2是单射.

若A1 → B,A2 → B分别是某个子对象的代表元，且存在A1 → A2使图交换，则称子对象A1被子对

象A2包含.注意到子对象不具有传递性.

定义. 给定范畴C中的两个态射f, g : X → Y，若存在对象K和态射i : K → X满足

1. f ◦ i = g ◦ i；

2. 若对任意满足f ◦ h = g ◦ h态射h : Z → X都存在唯一的分解

K X Y,

Z

i
f

g
h

则称K是f, g的等值子(equalizer).

对偶地，若存在对象C和态射c : Y → C满足

1. c ◦ f = c ◦ g；

2. 若对任意满足h ◦ f = h ◦ g态射h : Y → Z都存在唯一的分解

X Y C,

Z,

f

g

c

h

则称C是f, g的余等值子(coequalizer).

习题 A.2. 给定范畴C中的态射f, g : X ⇒ Y，若它们的余等值子c : Y → C存在，则c是满态射.

证明. 任取h, k : C ⇒W满足h ◦ c = k ◦ c，那么由余等值子的定义h ◦ c ◦ f = h ◦ c ◦ g = k ◦ c ◦ g.于是余等
值子的泛性质存在唯一的C 99KW满足交换图
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X Y C,

Z.

f

g

c

h◦c=k◦c

但h, k : C → Z都满足交换图，因此由唯一性h = k.

A.1.1 加性范畴

定义. 给定范畴C，若其中的始对象和终对象都存在，并且二者相同（即存在对象既是始对象也是终对
象），则称该对象为零对象(zero object).

由于对任意其他对象，起始与终止于零对象的态射都只有一个，因而态射X → 0也可以被记为0.类似地，

态射X → Y若有分解X → 0→ Y，则也记为0.

任意给定态射f : X → Y，那么称f与0的等值子为f的核(kernel)，记为ker f；那么称f与0的余等值子

为f的余核(cokernel)，记为coker f .

习题 A.3. 给定小范畴C和范畴A，满足A中存在零对象，求证范畴Funct(C,A)也存在零对象.

证明. 我们需要验证Funct(C,A)中的零对象是常值零函子，即函子

Const0 : C → A

A 7→ 0.

任意给定函子F : C → D和自然变换α : F ⇒ Const0，具体写出来对任意C中的对象A，

αA : F (A)→ 0

是A中的态射.但是0是A中的零对象，因此αA = 0，这意味着Const0是终对象.同理它是始对象.

引理 A.1. 给定含有零对象的范畴A，则ker和coker都是函子A → A.

证明.

习题 A.4. 给定含零对象范畴中的图

W → X → Y → Z,

且任意相邻的态射的复合为0，求证X → Y诱导了相容的

C = coker(W → X) 99K K = ker(Y → Z),

并且这样的态射是唯一的.

证明. 考虑
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K

W X Y Z

C

由于W → X → Y = 0，按定义存在C 99K Y与图交换，于是X → C 99K Y → Z = 0，根据X → C是满

态射（习题A.2），C 99K Y → Z = 0，再由K的泛性质存在C 99K K与整幅图交换.

唯一性来源于核以及余核的泛性质.

给定范畴A，假定其中的有限和和有限积都存在.注意到始对象是空指标集给出的余积，终对象是空指标

集给出的积，因此A中的始对象和终对象都存在.

定义. 给定包含零对象的范畴A，若对任意对象X,Y，态射集homA(X,Y )具有Abel群结构，且满足相容

性质

f ◦ (g + h) = f ◦ g + f ◦ h

和

(g + h) ◦ k = g ◦ k + h ◦ k,

其中f : X → Y, g, h : Y ⇒ Z, k : Z →W是A中的态射，则称A是预加性范畴(pre-additive category)，

例 A.1. 给定环R，

习题 A.5. 给定预加性范畴A和其中的态射f : X → Y，求证对任意的对象W,Z，

f∗ : homA(W,X)→ homA(W,Y )

和

f∗ : homA(Y,Z)→ homA(X,Z)

都是Abel群同态.

习题 A.6. 证明

定义. 给定包含零对象的范畴A，若对任意有限多个对象X1, · · · , Xn，都存在对象X1 ⊕ · · · ⊕Xn以及态射

ιi : Xi → X1 ⊕ · · · ⊕Xn

和

πi : X1 ⊕ · · · ⊕Xn → Xi,

1 ≤ i ≤ n，满足

1. πi ◦ ιi = idAi
对于1 ≤ i ≤ n成立，
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2. πi ◦ ιj = 0对于1 ≤ i, j ≤ n且i ̸= j成立，

3. (X1 ⊕ · · · ⊕Xn, {πi})是X1, · · · , Xn的积，(X1 ⊕ · · · ⊕Xn, {ιi})是X1, · · · , Xn的余积，

则称A是加性范畴(additive category)，(X1 ⊕ · · · ⊕Xn, {πi}, {ιi})是X1, · · · , Xn的双积(biproduct).

给定加性范畴A中的对象X,Y，记它们的和为X + Y或X ⊕ Y（X
∐
Y），泛性质诱导的映射分别记为

X

1
0


−−−→ X + Y

和

Y

0
1


−−−→ X + Y.

对应地，记它们的积为X × Y或者X
∏
Y，泛性质诱导的态射为

X × Y

(
1 0

)
−−−−−→ X

和

X × Y

(
0 1

)
−−−−−→ Y.

进一步地，若给定了f : W → X, g : W → Y，根据泛性质存在W → X × Y，这个映射记为(f, g) : W →
X×Y；若给定了h : X → Z, k : Y → Z，根据泛性质存在X+Y → Z，这个映射记为

(
h k

)
: X+Y → Z.我

们举例说明这样的记号使得态射的符合满足矩阵乘法.考虑给定了f :W → X, g :W → Y，那么复合

W

f
g


−−−→ X ⊕ Y

(
1 0

)
−−−−−→ X

用矩阵乘法写出来恰好是
(
1 0

)(f
g

)
= f :W → X（按照习惯，映射是从右到左记录的），满足泛性质.

命题 A.1. 1. 若范畴A是加性范畴，则它是预加性范畴.

2. 若范畴A是预加性范畴，且满足加性范畴中的前两条性质，则第三条性质当且仅当

ι1 ◦ π1 + · · ·+ ιn ◦ πn = idX1⊕···⊕Xn
.

证明. 1. 我们需要给加性范畴A中的态射集homA(X,Y )自然的Abel群结构.
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任意给定f, g : X ⇒ Y，定义

f + g : X → Y := X

1
1


−−−→ X ⊕X

(
f g

)
−−−−−−→ Y.

事实上还有另一种定义方式

f + g : X → Y := X

f
g


−−−→ Y ⊕ Y

(
1 1

)
−−−−−→ Y,

但可以验证二者是相同的.

A.1.2 Abel范畴及其中态射的分解

定义. 若范畴A满足

1. A中零对象存在；

2. 对A中任意两个对象X,Y，它们的双积存在；

3. 若f : X → Y是A中的态射，则ker f与coker f存在；

4. 任意单态射（满足左消去律）都是某个态射的核，任意满态射（满足右消去律）都是某个态射的余

核；

则称A是Abel范畴(Abelian category).

习题 A.7. 在Abel范畴A中，证明

1. 单态射f : X → Y的核是0，满态射g : Y → Z的余核是0.

2. 0→ X的余核是X
idX−−→ X，Y → 0的核是Y

idY−−→ Y .

证明. 由于两个部分都有两个互相对偶的命题，因此都只证一部分.

1. f : X → Y是单态射，若t : T → X使得f ◦ t = 0，那么那么有T → X → Y = 0→ X → Y，根据

消去律t = 0，这意味着T → X有分解T → 0→ X.

2. 这是因为对任意k : X → Z，0→ X → Z = 0.

按定义，ker f给出了X的一个子对象，coker f给出了Y的一个商对象.记SX是范畴C中对象X的所有子对
象全体，QX是X的所有商对象全体，那么ker和coker给出了一对映射

ker : QX ⇆ SX : coker,

其中ker将一个满态射给出它的核，coker将单态射给出它的余核.
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习题 A.8. 验证如上所述的映射是良定义的.更一般地，证明一个态射的ker是单态射，coker是满态射.

证明. 我们需要验证两方面：单态射的coker是满态射（对偶地满态射的ker是单态射），且ker把等价的满

态射映到等价的单态射（对偶地coker把等价的单态射映到等价的满态射）.

给定态射f : X → Y，我们要验证Y → coker(X → Y )有右消去律，即对任意的k, l : coker(X →
Y ) ⇒ Z，若k ◦ coker(X → Y ) = l ◦ coker(X → Y )，那么k = l.考虑k − l : coker(X → Y ) → Z，由

于k ◦ coker(X → Y ) = l ◦ coker(X → Y )，(k − l) ◦ coker(X → Y ) = 0 : Y → coker(X → Y ) → Z，

这意味着复合映射X → Y → Z = 0，按照coker的定义，存在唯一的态射coker(X → Y ) → Z使得Y →
coker(X → Y )→ Z是0的分解；但如同之前所述，k − l满足分解，0 : coker(X → Y )→ Z同样满足分解，

因此k − l = 0，即k = l.

或者习题A.2直接说明了这件事.

假设X1 → Y和X2 → Y是等价的单态射，那么存在态射i : X1 ⇆ X2 : j使得

X1

Y,

Y2

f1

i

f2

j

是交换的，根据coker的函子性存在交换图

coker(X1 → Y )

Y

coker(X2 → Y ) ,

coker i

g2

g1

coker j

因此将等价类映到等价类.

命题 A.2. ker和coker是Abel范畴A下的互逆映射.

证明. 给定单态射f : X → Y，于是它是某个态射Y → Z的核.取C = coker f，于是存在唯一的态射C → Z使

下图交换：

ker(Y → Z) = X C = coker f

Y

ker(Y → C) = K Z.

f

k

注意到复合X → Y → C = 0，于是根据核的泛性质存在X 99K K使得上图是交换的；同理，K → Y → Z =

K → Y → C → Z = 0→ Z = 0，存在K 99K X使得图是交换的，于是据定义X
f−→ Y与K

k−→ Y是等价的子对

象.
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注意到，coker将态射f : X → Y映到Y → C = coker f，ker再将Y → C = coker f映到k : ker(Y → C) =

K → Y，于是f : X → Y等价于coker(ker(f))，因此coker ◦ ker = idSX .同理，对偶地可以证明ker ◦ coker =
idQX .

推论 A.2.1. 若X1 → Y和X2 → Y是等价的单态射，那X1 → Y和X2 → Y是同构的.

证明. 设C = coker(X1 → Y )，K = ker(Y → C)，于是根据命题X1（因此X2）与K是等价的. 考虑交换图

K

X1 Y C

K ,

g k

f

i

k

于是

K → X1 → K → Y → C = K → X1 → Y → C

= K → Y → C = 0,

但根据核的泛性质，存在唯一的id : K → K使得上图交换，因此f ◦ g = idK，即X1 → Y ∼= K → Y，这就证

明了结论.

推论 A.2.2. 在Abel范畴A中，C = coker f是单态射f : X → Y的余核，那么f : X → Y是Y → C的核.对偶

地，K = ker g是满态射g : Y → Z的余核，那么k : K → Y是Y → Z的核.

证明. 根据定义，coker(X → Y ) = Y → C，于是根据之前的命题

X → Y ∼= ker(coker(X → Y )) = ker(Y → C).

对偶性说明后半部分也是正确的.

定义. 设A是Abel范畴， X是A的对象， Y是X的子对象， Z是Y的子对象， 则Y/Z称为X的一个子

商(subquotient).

习题 A.9. 证明ker和coker是反序的映射.

证明.

定理 A.3. 设f : X → Y是Abel范畴中的态射，且f同时是单态射和满态射，则f是同构.

证明. 由于f : X → Y是满射，0是coker f .Y
idY−−→ Y是Y → 0的核，且根据前面的命题，f : X → Y也

是Y → 0的核，因此根据核的泛性质，Y
idY−−→ Y与f : X → Y是同构的，这说明了f本身也是同构.
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设W,X是Abel范畴A中对象Y的两个子对象，那么称同时为W和X的子对象的Y的子对象的极大子对象
为W与X的交(intersection)，记为W ∩X.

命题 A.4. Abel范畴A中元素Y的任意两个子对象W,X都有交.

证明. 令Z = coker(W → Y )，K = ker(X → Y → Z)，于是

K X

W Y Z

中K → X → Y → Z = 0，由推论A.2.2，W是的Y → Z的核，因此存在唯一的K 99KW使得图是交换的.

接下来只要证明对任意Y的子对象S，若它同时还是X和W的子对象，则它是K的子对象.给定交换图

S X

W Y,

i

j

使得i : S → X和j : S → W都是单态射，那么S → X → Y → Z = S → W → Y → Z = (S → W ) ◦ 0 = 0，

于是存在唯一的态射S → K使得S → K → X = i.同时，再根据W是的Y → Z的核，存在唯一的j : S →W使

得图交换，但S → K 99KW也满足该交换图，因此S → K 99KW = j.这意味着K是W,X的交.

推论 A.4.1. 设f : Y → X和g : Z → X是Abel范畴A中的单单单态射，则存在纤维积Y ×X Z.

证明. 由于f, g都是单态射，存在它们的交，记为i : K → X, j : K → Y .任取W
h−→ Y,W

k−→ Z满足交换图

W Y

Z X,

h

k

令C = coker(Z → X)，于是W → Y → X → C = W → Z → X → C = W → 0 = 0，根据前面的证明，

K是Y → X → C的核因此存在唯一的W 99K K使得图（不包括蓝色部分）

W

K Y

Z X C

k

h

i

j

是交换的，并且

(W
h−→ Y → X)→ C = (W 99K K → Z → X)→ C = 0,

注意到Z是X → C的核因此有唯一的分解W
k−→ Z → X → C；但是k : W → Z和W 99K K → Z都满足分解，

因此如上的图是交换的.

我们再来证明这样的W 99K K是唯一的.对于任意满足交换图的态射g : W → K，它必然是W → Y →
X → C = 0的分解，因此根据K = ker(Y → X → C)分解是唯一的.
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命题 A.5. 对任意Abel范畴A中的态射f : X → Y和g : X → Y，它们的等值子存在.

证明. 考虑X

1

f


−−−→ X×Y和X

1
g


−−−→ X×Y，它们都有左逆因此都是单态射，由前面的命题存在交，记为K，

满足交换图

K X

X X × Y,

i

j

1

f


1

g


其中K是拉回.再次根据左逆的存在性，i = j，于是按定义拉回的泛性质说明K是f, g的等值子.

定理 A.6. 设f : Y → X和g : Z → X是Abel范畴A中的态射，则存在纤维积Y ×X Z.

证明. 考虑

Y × Z Y

Z X,

它们的等值子满足相应的泛性质，因此定理成立.

习题 A.10. 给定环R，求证范畴R−Mod中的纤维积存在.

证明. 给定R−Mod中的同态f :M → P, g : N → P，定义

M ×P N := {(m,n) ∈M ×N | f(m) = g(n)}

和同态p1 : M ×P N → M, (m,n) 7→ m与p2 : M ×P N → N, (m,n) 7→ n，这样只需要验证(M ×P
N, p1, p2)满足相应的泛性质即可.

任取

定义. 给定Abel范畴A中的态射f : X → Y，称

ker coker f

为f的像(image)，记为im f .
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命题 A.7. Abel范畴A中的态射f : X → Y的像是使得复合

X → im f → Y

是f : X → Y的最小的Y的子对象.

证明. 首先我们证明，Y的子对象S ↪→ Y使得分解X → S → Y = X → Y存在当且仅当X → Y → coker(S ↪→
Y ) = 0.一方面，若Y的子对象S ↪→ Y使得分解X → S → Y = X → Y存在，那么X → Y → coker(S → Y ) =

X → S → Y → coker(S → Y ) = X → 0 = 0；另一方面，若Y的子对象S ↪→ Y使得X → Y → coker(S ↪→
Y ) = 0，根据推论A.2.2，S → Y是Y → coker(S ↪→ Y )的核，因此存在X 99K S使得X 99K S → Y = X → Y .

根据命题A.2，coker(im f) = coker(ker(coker(X → Y ))) = coker(X → Y )，因此X → Y → coker(im f) =

0，于是根据coker的泛性质存在分解

X → im f → Y = X → Y.

若还有另一个分解X → J → Y = X → Y，由前一段的讨论，X → Y → coker(J → X) = 0，因此存

在（满）态射coker(X → Y ) = coker(im f) → coker(J → X)，根据ker的函子性这对应了唯一的（单）态

射im f = ker(coker(X → Y ))
φ

99K J = ker(coker(J → X))，因此是最小的.此外如图

im f

X Y C,

J

i

φ

p

q

g

j

右侧是交换的，因此

j ◦ φ ◦ p = i ◦ p

= j ◦ q,

由于j是单态射，这意味着φ ◦ p = q，即整幅图是交换的.

对偶地，可以的定义态射f : X → Y的余像(coimage)是coker ker f，那么如上命题对偶地说明余像是使

得复合X → coim f → Y是f : X → Y的最大的X的商对象.

推论 A.7.1. 设f : X → Y是Abel范畴A中的态射，则

1. f是满态射当且仅当im f = Y，当且仅当coker f = 0；

2. f是单态射当且仅当ker f = 0，当且仅当coim f = X.

证明. 依据对偶性，只证明第一部分.习题A.7说明必要性是正确的.

对于充分性，若coker f = 0，那么习题A.7说明im f = Y .给定g, h : Y → Z满足X
f−→ Y

g−→ Z = X
f−→

Y
h−→ Z，于是存在分解

X
f−→ Y = X → ker(g − h)→ Y,

且由命题A.7，ker(g − h)包含了im f .这样ker(g − h) = Y，进而g − h = 0.
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推论 A.7.2. 给定Abel范畴A中的态射f : X → Y，X → im f是满态射.对偶地，coim f → Y是单态射.

证明. 假设X → im f不是满态射，那么coker(X → im f) ̸= 0，取J = ker coker(X → im f)，它是严格小

于im f的子对象（否则二者相等，coker ker coker(X → im f) = coker(X → im f) = 0），且命题A.7存在分

解X → J → im f，这与im f是最小分解矛盾.

推论A.7.1说明Abel范畴中态射单与满的行为与环模范畴是相同的.

定理 A.8. 设f : X → Y是Abel范畴A中的态射，则存在唯一的分解

X
p−→ I

i−→ Y,

使得p : X → I是满态射，i : i→ Y是单态射.

此外，如果k : K → X是f : X → Y的核，c : Y → C是f : X → Y的余核，则k : K → X也是p :

X → I的核，c : Y → C也是i : I → Y的余核，且i : I → Y是c : Y → C的核，p : X → I是k : K → X的

余核.

证明. 首先我们来证明分解的唯一性.假设我们有两个不同的对象I, Ī满足上述分解，于是我们有如下交换图

I

X Y Z,

Ī

ip

p̄

g

ī

φ

其中i : I → Y是g : Y → Z的核. 由核的定义，我们有g ◦ i = 0，进而g ◦ ī ◦ p̄ = g ◦ f = g ◦ i ◦ p = 0.但p̄是满

态射说明p̄存在右消去，故g ◦ ī = 0.再根据核的分解，存在唯一的φ : Ī → I使得右边三角形交换，即i ◦ φ =

ī.故i ◦φ ◦ p̄ = ī ◦ p̄ = f = i ◦ p.但i是单态射因此存在左消去，于是φ ◦ p̄ = p.这样就证明了φ使整个图交换.同样

地，我们可以构造ψ : I → Ī使整幅图交换，根据抽象无意义φ ◦ ψ = idI且ψ ◦ φ = idĪ，故I ∼= Ī，唯一性得证.

命题A.7、推论A.7.1和A.7.2说明了I = im f是满足条件的的一个分解，因此分解是存在的.同时命题的对

偶说明J = coim f也是一个分解，因此根据刚刚证明的分解的唯一性，im f ∼= coim f .这意味着剩余的论断是

成立的.

结合习题A.4的结论，

习题 A.11. 设X
f−→ Y

g−→ Z是Abel范畴A中的态射，求证g ◦ f = 0当且仅当im f是ker g的子对象，当且仅

当coim g是coker f的商对象.

证明. 命题A.7说明有分解

X
f−→ Y

g−→ Z = X → im f ↪→ Y
g−→ Z.

若g ◦ f = 0，则存在分解
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ker g

X Y Z,

im f

g

根据im f的最小性，存在im f ↪→ ker g使整幅图交换，即im f是ker g的子对象.反过来，若im f是ker g的

子对象，则im f ↪→ Y
g−→ Z = 0，进而g ◦ f = 0.

对于另一部分，

A.1.3 例子

例 A.2. 若A是Abel范畴，则A◦也是Abel范畴.

例 A.3. 考虑范畴R−Mod

例 A.4. 假定C是小范畴，A是给定的Abel范畴，考虑范畴Funct(C,A)，我们希望证明此范畴是Abel范畴.

这里需要构造和验证的条目我们依次列出来并进行证明：

1. 根据习题A.3，Funct(C,A)中的零对象是常值零函子，即函子

Const0 : C → A

A 7→ 0.

我们也记该函子为0.

2. 范畴理论说明给定函子F,G : C → D，在范畴Funct(C,D)中，F × G和F
∐
G都存在，并且都是逐点定

义的.给定F,G : C → A，由于在A中范畴的有限乘积和余乘积同构，因此F ×G ∼= F
∐
G.

3. 任意给定α : F ⇒ G，定义

ker(α)(A) := ker(αA)

和

coker(α)(A) := coker(αA),

根据ker与coker的函子性，ker(A)与coker(A)也都是函子，并且逐点地可以验证它们分别满足相应的泛

性质.

4. 最后要证明单态射是核，满态射是余核.首先，范畴Funct(C,A)中的单态射和满态射都是逐点的单态射
和满态射.由于前一条的核和余核的定义都是逐点的，因此这一条是正确的.

A.1.4 正合性

定理 A.9. 设X
f−→ Y

g−→ Z是Abel范畴A中的态射，则如下描述等价：
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1. im(X → Y ) = ker(Y → Z)；

2. coker(X → Y ) = coim(Y → Z)；

3. X → Y → Z = 0且ker(Y → Z)→ Y → coker(X → Y ) = 0.

证明. 我们来证明1与3是等价的，这样对偶地可以证明2与3是等价的.

若1是成立的，记I := im(X → Y ) = ker(Y → Z)，于是根据分解X → Y → Z = X → I → Y → Z =

X → 0 = 0.另一方面，ker(Y → Z) = im(X → Y ) = ker(coker(X → Y ))，因此直接由定义

ker(Y → Z)→ Y → coker(X → Y ) = ker(coker(X → Y ))→ Y → coker(X → Y ) = 0.

若3是成立的，记I := im(X → Y ) = ker(coker(X → Y ))，ker(Y → Z) → Y → coker(X → Y ) = 0意

味着存在唯一的ker(Y → Z) 99K I与已知的态射相容，并且它是单态射，于是ker(Y → Z) ≤ I.同时，X →
Y → Z = 0蕴含着分解X → ker(Y → Z) → Y → Z = 0，同时命题A.7说明X → I → Y是最小的分解，因此

存在单态射I → ker(Y → Z)，这样ker(Y → Z) = I.

对于满足条件1的态射序列X → Y → Z，称该序列在Y处正合(exact)；对偶地满足条件2的态射序列X →
Y → Z，称该序列在Y处余正合(coexact).特别地，若序列

0→ X → Y → Z → 0

在每处都正合，则称这是个短正合序列(short exact sequence).定理实际上说明了Abel范畴的正合性和余正合

性是等价的.

正合性和余正合性的等价性是Abel范畴特有的性质之一，它保证了我们只需要正合性就可以定义合适的

等价关系，这体现在之后对稳定性的证明.

推论 A.9.1. 给定Abel范畴A中的态射X f−→ Y
g−→ Z，

1. 序列0→ X
f−→ Y在X处是正合的当且仅当f是单态射，

2. 序列Y
g−→ Z → 0在Z处是正合的当且仅当g是满态射，

3. 序列0 → X → Y → Z → 0是短正合列当且仅当X
f−→ Y是单射且Y ∼= coker f，当且仅当Y

g−→ Z是满射

且X ∼= ker g，

4. 若序列0→ X → Y → Z正合则X = ker(Y → Z)，序列X → Y → Z → 0正合则Z = coker(X → Y ).

证明. 1. 根据推论A.7.1，f是单态射当且仅当ker f = 0，而0恰是0 → X的像，因此f是单态射当且仅

当0→ X
f−→ Y在X处是正合.

2. 对偶于第一部分，同样由推论A.7.1得.

3.
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推论 A.9.2. 序列

0→ X

1
0


−−−→ X ⊕ Y

(
0 1

)
−−−−−→ Y → 0

是短正合列.

定理 A.10 (Abel范畴的稳定性). 给定Abel范畴A，则

Z X

Y U

l

h f

g

是范畴A中的拉回交换图当且仅当

0→ Z

 l
h


−−−→ X × Y

(
f −g

)
−−−−−−−→ U

是正合的.对偶地，

Z X

Y U

l

h f

g

是范畴A中的推出交换图当且仅当

Z

 l
h


−−−→ X × Y

(
f −g

)
−−−−−−−→ U → 0

是正合的.

证明. 根据对偶性我们只证明前半部分，此时需要验证如下的论断：

1. Z

 l
h


−−−→ X × Y是单态射.任取p, q :W ⇒ Z满足

(
l

h

)
p =

(
l

h

)
q，则有交换图

W

Z X

Y U,

hp=hq

lp=lq

l

h f

g

p :W → Z和q :W → Z都满足虚线箭头所需要的性质，根据泛性质p = q，即证明了单态射.
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2. im

(
l

h

)
= ker

(
f −g

)
，为此，我们验证二者有相同的泛性质.

注意到V → X × Y复合
(
f −g

)
后为0当且仅当V ↪→ X × Y诱导的i : V → X和j : V → Y满足交换图

V X

Y U,

i

j f

g

这是因为复合V

i
j


−−−→ X×Y

(
f −g

)
−−−−−−−→ U恰好是if−jg，其等于0等价于图交换.于是K = ker

(
f −g

)
满

足交换图，且任意满足交换图的i : V → X, j : V → Y都由复合为0给出了唯一的V 99K K，这恰好也是

拉回的泛性质.

一般情况下，正合性的判断是困难的，并且往往是很多问题的核心.经典环模范畴中的技巧被称为“追

图”(diagram chasing).由于一般Abel范畴中无法讨论对象的元素，因而追图暂时并不现实.但下一小节我们将

引入合适的工具，使得一般Abel范畴中的追图技术上的难度基本等同于环模范畴.

命题 A.11. 给定Abel范畴A中的序列X f−→ Y
g−→ Z，满足g ◦ f = 0，记k : K → Y = ker g, c : Y → C =

coker f，于是根据泛性质存在交换图

K

X Y Z

C.

k

f

a

g

c
b

此时存在自然的同构

coker a = ker b.

证明. 首先考虑特殊的情形：假定f是单态射，g是满态射.我们希望证明，此时a : X → K是c ◦ k : K → C的

核，b : C → Z是c ◦ k : K → C的余核.

记h = c ◦ k : K → C.首先，根据核和余核的定义，h ◦ a = 0, b ◦ h = 0.任取w :W → K满足h ◦w = 0，即

有交换图

W K C,

Y

0

w h

k c
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推论A.2.2说明f : X → Y是c : Y → C的核，因此存在唯一的分解

W K C,

X Y

0

w h

k

f

a c

这意味着a : X → K是c ◦ k : K → C的核，对偶地b : C → Z是c ◦ k : K → C的余核.此时，定理A.8意味

着coker a = im c ◦ k = ker b.

对于一般的情况，序列X
f−→ Y

g−→ Z有分解

X im f Y im g Z,

且根据定理A.8，im f → Y是单同态，Y → im g是满同态，依据核和余核的泛性质，存在交换图

K

X im f Y im g Z

C,

k
a

ã

c
b

b̃

定理A.8也说明了coker a = coker ã和ker b = ker b̃，而之前的讨论说明了coker ã = ker b̃，这就证明了命题.

定义. 给定Abel范畴A中的子对象i : X ↪→ Y，称coker i为Y关于X的商，记为Y/X.

根据练习A.8，商在同构的意义下是良定义的.

推论 A.11.1. 按命题A.11中的记号，

coker a = ker b =
ker g

im f
.

证明. 习题A.11说明im f是ker g的子对象.

例 A.5. 我们记FilAb是所有可滤Abel群组成的范畴，其中的态射φ : F •A → F •B满足φ(F iA) ⊆ F iB对任

意i都成立.

这个范畴中可以定义ker和coker，其中ker的滤子结构来自于F •A，coker的滤子结构来自于F •B/F •B ∩
φ(A).

考虑假设同一个Abel群A上有两个滤子结构F •A和G•A，满足F iA ⊆ GiA对任意i都成立.此时，恒同映

射id : A→ A诱导了滤子之间的态射F •A→ G•A.这是一个单射也是一个满射；但若存在i0使得F
i0A ̸= Gi0A，

则这不是一个同构.
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A.1.5 Abel范畴中对象的元素和态射

事实上，我们并不需要完全范畴化地处理Abel范畴，公理所保证的性质使我们可以用类似处理元素的方

式处理Abel范畴中的对象.我们将详细地构建这样的技术，于是Abel范畴事实上与Ab并没有特别多的区别.

给定Abel范畴A中的对象Y，Y中的对象y是如下等价类(X,h)，其中X ∈ ob A，h : X → Y，(X1, h1)等

价于(X2, h2)当且仅当

• 存在Z ∈ ob A和满态射u1 : Z → X1, u2 : Z → X2满足h1u1 = h2u2，即有交换图

X1

Z Y

X2.

h1u1

u2 h2

引理 A.2. 设如下Abel范畴A中的拉回交换图

Z X

Y U,

l

h f

g

那么h诱导了同构ker l ∼= ker g，更准确地讲，若k : K → Z是l : Z → X的核，则hk : K → Z → Y是g :

Y → U的核.（对偶地推出图诱导了余核的同构，）由此如果f是满态射那么h是满态射.

证明. 任取w :W → Y使得W → Y → U = 0，因此

W

Z X

Y U

w

0

l

h f

g

构成了交换图.由于Z是拉回，因此存在W 99K Z与整幅图交换，这意味着W 99K Z → X = 0，由于K是Z →
X的核，存在唯一的W → K使得W → K → Z = W 99K Z.这样验证了hk : K → Z → Y是g : Y → U的核的

泛性质，因此h诱导了同构.

现在假设f是满态射，那么由于Z是拉回，

0→ Z

 l
h


−−−→ X × Y

(
f −g

)
−−−−−−−→ U

是正合的，同时f是满态射意味着对任意u, v : U ⇒ V，若u
(
f −g

)
= v

(
f −g

)
则uf = vf，因此u = v，
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即
(
f −g

)
是满态射，所以

0→ Z

 l
h


−−−→ X × Y

(
f −g

)
−−−−−−−→ U → 0

是短正合序列.这样，交换图

Z X

Y U,

l

h f

g

同时是推出，因此上段讨论的对偶说明coker h = coker f = 0，即h是满态射.

习题 A.12. 给定Abel范畴A中的态射f : X → Y和X中的元素u : U → V，求证若f(u) = 0则f ◦ u = 0.

证明. f(u) = 0意味着[f ◦ u] = [0]，即存在满态射w :W → U使得f ◦ u ◦w = 0.满态射说明f ◦ u = 0.

由引理A.2如上所述的关系是等价关系.一般并没有通常的方法使得集合之间的映射{Y1中的元素} → {Y2中的元素}对
应到A中的态射Y1 → Y2，但反过来当给定了态射之后可以构造自然的集合间的映射，并且元素的存在可以帮

我们简单地验证正合性：

定理 A.12. 设f : Y1 → Y2是Abel范畴中的态射，y是Y1的元素，有代表元(X,h)，求证f给出了集合间的

映射

f : {Y1中的元素} → {Y2中的元素}

[(X,h)] 7→ [(X, f ◦ h)],

与复合交换，并且

1. f : Y1 → Y2是单态射当且仅当f(y) = 0意味着y = 0，

2. f : Y1 → Y2是单态射当且仅当f(y1) = f(y2)意味着y1 = y2，

3. f : Y1 → Y2是0态射当且仅当对任意Y1的元素y，f(y) = 0，

4. f : Y1 → Y2是满态射当且仅当对任意Y2的元素z，存在Y1的元素y使得f(y) = z，

5. 序列X
f−→ Y

g−→ Z在Y处正合当且仅当g ◦ f = 0并且对任意的v ∈ Y，若g(v) = 0则存在u ∈ X使

得f(u) = v，

6.

证明. 我们首先证明如上给出了集合间的良定义的映射，即若[(X1, h1)] = [(X2, h2)]，则[(X1, f◦h1)] = [(X2, f◦
h2)].由定义[(X1, h1)] = [(X2, h2)]意味着存在存在Z ∈ ob A和满态射u1 : Z → X1, u2 : Z → X2满足h1u1 =

h2u2，那么fh1u1 = fh2u2，即[(X1, f ◦ h1)] = [(X2, f ◦ h2)].
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取代表元与复合交换意味着复合映射

{Y1中的元素}
f−→ {Y2中的元素}

g−→ {Y3中的元素}

[(X,h)] 7→ [(X, f ◦ h)] 7→ [(X, g ◦ (f ◦ h))]

和复合映射

{Y1中的元素} → {Y3中的元素}

[(X,h)] 7→ [(X, g ◦ f ◦ h)]

是相同的映射，而这根据良定义性质是显然的.

1. 若f : Y1 → Y2是单态射，任取Y1中的元素y : X → Y1，满足f(y) = 0，则

X
y−→ Y1

f−→ Y2 = X
0−→ Y2 = X

0−→ Y1
f−→ Y2,

由f是单同态可知，y = 0.反过来，f : Y1 → Y2的核ker f ↪→ Y1是Y1的元素且f(ker f) = 0，因此ker f =

0，推论A.7.1说明f是单态射.

2.

3. 若f : Y1 → Y2是0态射，显然对对任意Y1的元素y，f(y) = 0.反过来，取y = idY1
: Y1 → Y1，则[f(idY1

)] =

[f ◦ idY1
] = [f ] = [0]，于是习题A.12说明f = 0.（注意到这一部分开始严格用到等价类定义中的满态射

性质.）

4. 若f : Y1 → Y2是满态射，任取Y2中的元素z : Z → Y2，于是z̃ : Y1 ×Y2
Z → Y1是Y2中的元素，我们需要

证明f(z̃) = z.考虑交换图

Y1 ×Y2
Z Y1 ×Y2

Z Y1

Z Y2,

z̃

f

引理A.2说明Y1 ×Y2
Z → Z也是满态射，而恒同态射必然是满态射，因而[f(z̃)] = [z].反过来，只需要证

明若g : Y2 →W满足Y1
f−→ Y2

g−→W = 0，则g = 0.为此，对任意z : ker g → Y2，按假设存在y : Y → Y1使

得[f(y)] = [z]，即存在交换图

X Z

Y Y1 Y2 W,

u

v

z

y f

g

满足u, v都是满态射.按第3部分，只要证明g(z) = 0即可；但是

g ◦ z ◦ v = g ◦ f ◦ y ◦ u = 0 ◦ y ◦ u = 0 = 0 ◦ v,

且v是满态射，因此g ◦ z = 0.
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5. 定理A.9说明，对于必要性只要证明ker(Y → Z) → Y → coker(X → Y ) = 0.注意到k : ker(Y → Z) →
Y给出了Y的元素，于是存在X中的元素u : U → X满足f(u) = k.按余核的定义[c ◦ k] = [c ◦ f ◦ u] = 0，

习题A.12说明c ◦ k = 0.

反过来，对于充分性，任取Y中的元素v : V → Y使得g(v) = 0，按核的定义存在唯一的分解V 99K

ker g → Y = v，于是有如图交换图（定理A.9）

V

X im f ker g Y Z.

v

p i g

取U := X ×im f V，那么由引理A.2，结构态射q : U → V是满态射，记结构态射X ×im f V → X为u，

则f ◦ u ◦ idU = v ◦ q，于是[f ◦ u] = [v]，即f(u) = v.

6.

引理 A.3 (5引理).

定理 A.13 (蛇形引理). 给定交换图

X1 Y1 Z1 0

0 X2 Y2 Z2,

α1

f

α2

g h

β1 β2

那么存在长正合序列

ker f
a1−→ ker g

a2−→ ker h
δ−→ coker f

b1−→ coker g
b2−→ coker h,

其中a1, a2和b1, b2分别由α1, α2和β1, β2诱导，连接态射δ : ker h→ coker f是唯一存在的使得对于下图

X1 K = ker h×Z1
Y1 ker h 0

X1 Y1 Z1 0

0 X2 Y2 Z2

0 coker f C = coker f
∐X2 Y2 Z2

s1 s2

k i

α1

f

β1

g h

α2

p

β2

c

t1 t2

满足t1 ◦ δ ◦ s2 = c ◦ g ◦ k的态射.
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证明. 1. ker f
a1−→ ker g

a2−→ ker h在ker g处正合.

2. coker f
b1−→ coker g

b2−→ coker h在coker g处正合.

3. ker h是s1 : X1 → ker h×Z1
Y1的余核；对偶地，coker f是t2 : C → Z2的余核.

由于i : ker h → Z1是单态射且单态射的拉回是单态射，因此k : K → Y1是单态射；由于β1 : Y1 → Z1是

满态射，引理A.2说明s2是满态射，且明显s2 ◦ s1 = 0，这样由推论A.9.1第4部分和定理A.12第5部分，只

要证明对任意K中的元素w :W → K，若s2(w) = 0则存在v : V → X1使得s1(v) = w.

考虑Y1中的元素k ◦ w : W → Y1，结合Y1处的正合性，定理A.12第5部分说明存在X1中的元素v : V →
X1使得α1(v) = k(w).图的交换性可得

[k ◦ w] = [α1 ◦ v] = [k ◦ s1 ◦ v],

上一段中我们证明了k是单态射，这意味着[w] = [s1 ◦ v]，即s1(v) = w.

4. δ : ker h→ coker f是存在的.注意到c ◦ g ◦ k ◦ s1 = c ◦ g ◦α1 = t1 ◦ p ◦ f = 0且t2 ◦ c ◦ g ◦ k = h ◦ i ◦ s2 = 0，

根据练习A.4，存在唯一的δ : ker h→ coker f使得t1 ◦ δ ◦ s2 = c ◦ g ◦ k.

5.

特别地，当A是范畴R−Mod时，连接态射δ是容易写出来的：习题A.10给出了拉回的构造（对偶地推出

的构造也可以写出来），于是

K = ker h×Z1
Y1 = {(z, y) ∈ ker h× Y1 | α2(y) = i(z) = z} ∼= α−12 (ker h),

并且在此同构下s2 = α2|α−1
2 (ker h)；对偶地

C = coker f

X2∐
Y2 =

coker f × Y2

{(p(x), β1(x)) | x ∈ X2}
,

于是

K
k−→ Y1

g−→ Y2
c−→ C

是映射

(z, y) 7→ y 7→ g(y) 7→ [(0, g(y))].

定义

δ : ker h→ coker f

z 7→ p(β−11 (g(y))),

其中

(i) y ∈ Y1是满足α2(y) = z的元素，它的存在性由α2的满射保证，并且因此(z, y) ∈ K；

(ii) x = β−11 (g(y))是X2中满足β1(x) = g(y)的元素，
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我们只需要验证所定义的δ是（唯一）满足t1 ◦ δ ◦ s2 = c ◦ g ◦ k的环模同态即可.注意到t1 ◦ δ ◦ s2给出映射

(z, y) 7→ z 7→ p(β−11 (g(y))) 7→ [p(β−11 (g(y))), 0] = [(0, g(y))].

这恰是所需要的.

习题 A.13. 假定对Abel范畴A蛇形引理成立，求证5引理成立.

证明.

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

α1

f1

α2

f2

α3

f3

α4

f4 f5

β1 β2 β3 β4

考虑

A2/ker α2 A3 ker α4 0

0 B2/ker β2 B3 ker β4

α2

f2

α3

f3 f4

β2 β3

A.1.6 Abel范畴中的特殊对象

定义. 设P是Abel范畴A中的对象，若满足对任意的满态射f : X → Y和任意态射g : P → Y，都可以找

到h : P → X使得g = f ◦ h，

P

X Y 0,

h g

f

则称P是投射对象(projective object).

对偶地，若对象I满足对任意的

引理 A.4. 给定Abel范畴A及其中的一族投射对象{Pi}i∈I，其中I是指标集.若
⊕

i∈I Pi存在，则其也是投

射的.

证明.

定义. 给定Abel范畴A，若对任意对象X都存在A中的投射对象P和满态射

P ↠ X → 0,

则称范畴A中有足够多的投射对象(sufficiently many projective objects, enough projectives).
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习题 A.14. 设s : P → P是Abel范畴A中的态射，(P, s)是A/P的投射对象，证明P是A中的投射对象.

证明. 任取A中的满态射g : X → Y，

A.2 Abel范畴间函子

定义. 若C,D加性范畴，协变函子F : C → D满足对任意C中的对象X,Y，由F诱导的映射homC(X,Y ) →
homD(F (X), F (Y ))是群同态，则称F是加性函子(additive functor).

定理 A.14. 设A,B是Abel范畴，F : A → B是加性函子当且仅当F保直和.

证明.

定义. (left exact)

命题 A.15. Abel范畴间的左正合函子是加性的.

定义. 若范畴间协变函子F : C → D满足对任意C中的对象A,B，由F诱导的映射homC(A,B) →
homD(F (A), F (B))是单射，则称F是嵌入(embedding).

定理 A.16. 设A,B是Abel范畴，F : A → B是加性函子，则下列陈述等价

1. F是嵌入.

2. F将非交换图映为非交换图.

3. F将非正合序列映为非正合序列.
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A.2.1 Serre subcategory

定义. 给定Abel范畴A，B是A的满子范畴，满足

1. B的对象关于取子对象和商对象封闭，即对任意B中的对象Y，若0 → X → Y → Z → 0是A中的短
正合列，那么X,Z是B中的对象，

2. B中的对象关于扩张封闭，即对任意B中的对象X,Z，若0 → X → Y → Z → 0是A中的短正合列，
那么Y是B中的对象，

则称B是A的Serre子范畴(Serre subcategory).

例 A.6. FinAb是Ab中的Serre子范畴

习题 A.15. 求证：Abel范畴A的子范畴B是Serre子范畴当且仅当B中的对象关于扩张封闭，

证明. 我们只要证明关于扩张封闭意味着关于取子对象和商对象封闭即可.

定理 A.17. 任意给定Abel范畴A和它的Serre子范畴B，存在Abel范畴A/B和正合函子P : A → A/B使
得A中的对象X在B中当且仅当P (A) = 0，且对任意满足A中的对象X在B中当且仅当F (A) = 0的正合函

子F : A → C，存在唯一的正合函子H : A/B → C使得图

A C

A/B

F

P H

交换.

证明. 我们要构造这样一个范畴A/B并证明该泛性质.

记A/B是范畴，满足

命题 A.18. 给定Abel范畴之间的伴随

F : A⇆ B : G,

1. 若F是左伴随的，那么G将内射对象映为内射对象，

2. 若G是左伴随的，那么F将投射对象映为投射对象.
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A.3 嵌入定理

习题 A.16. 设k是域，k − grMod是所有Z分次k模组成的范畴，满足

Hom(
⊕
n∈Z

Vn,
⊕
n∈Z

Wn) :=
⊕
n∈Z

Hom(Vn,Wn),

A是所有微分态射为0的k微分模组成的范畴，求证

F : k − grMod→ A⊕
n∈Z

Vn 7→ (
⊕
n∈Z

Vn[n], d = 0)

是范畴的等价.

定义. 给定Abel范畴A中的对象X，若对任意的正向系I和分解

X =
∑
i∈I

Xi = colimi∈IXi,

其中Xi是X的子对象，都存在i0 ∈ I使得Xi0 = X，则称X是有限生成的.
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这节中我们始终假定k是域.

定义. k上的A∞包含

1. Z分次的k向量空间
A :=

⊕
p∈Z

Ap,

2. 齐次k线性映射

mn : A⊗n → A,

满足

(i) mn的阶数为2− n，并且m1满足m1 ◦m1 = 0（即A•,m1是上链复形），

(ii) 对任意n ≥ 1，有关系式 ∑
n=r+s+t

(−1)r+stmr+1+t(id
⊗r
A ⊗ms ⊗ id⊗tA ) = 0.

131



132 附录 B A∞



索引

AG, 81
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Tot(M), 28

coker f , 107

im f , 114

ker f , 107

τ≤n(X•, d•), 8

s |V , 67

Abel范畴, 110

bar消解, 83

Hochschild同调, 87

Künneth定理, 35

Serre子范畴, 129

上链, 7

态射, 7

余核, 107

像, 114

全复形, 28

加性函子, 128

加性范畴, 109

双积, 109

加细, 79

商对象, 105

C = B/ ∼, 106
复形

正阶数, 7

子商, 112

子对象, 105

A ⊆ B, 106

层, 69

微分分次Lie代数, 97

投射对象, 127

拟同构, 9

核, 107

正合, 118

余正合, 118

正合对, 41

导出对, 41

消解, 8

滤子, 43

有界滤子, 48

诱导滤子, 47

谱序列, 46

链接态射, 19

零对象, 107

预层, 67

态射, 68

截面, 67

茎, 68

限制映射, 67
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