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第零章 前言

给定一个范畴C，并且假定C中有一族特殊的被称为弱等价(weak equivalence)的态射WE，这族态射包含

了一定程度上逆特别不好的“同构”，甚至没有逆的却和同构行为非常相似的态射.这样的一个范畴被称为同

伦化范畴(homotopical category)，其中一个弱等价通常表示为X
∼−→ Y .通常情况下，范畴C中的弱等价被定义

为“可以被某个函子取逆”的态射，比如

1. 所有拓扑空间范畴Top中诱导所有同伦群同构的连续映射，即弱同伦等价，此时函子为π∗ : Top →
GradedSet（第0个同伦群不是群，只是一个集合）.

2. Abel范畴A上所有上链复形范畴Com•(A)中的拟同构，此时函子为H∗ : Com•(A)→ GradedAb.

拓扑上，通常把弱同伦等价的空间的全体称为一个同伦型(homotopy type)，在范畴Top中可以看作由某

个代数不变量π∗(X)给出的某种等价关系.通常人们处理同伦型的范畴是拓扑空间的同伦范畴(homotopy cate-

gory of topological spaces)，它定义为

但在这个范畴中，弱同伦等价是形式上可逆的——这启发了处理这一类问题的第一步，范畴的局部化.

给定拓扑空间X，它的基本群胚Π1(X)是如下定义的范畴：Π1(X)的对象是X中的点，Π1(X)中两点x, y之

间的态射是路径的同伦等价类，即

homΠ1(X)(x, y) =
f : I → X, f(0) = x, f(1) = y

≃
.

注意到在这个群胚Π1(X)当中，每一个态射都是可逆的，即所有的路径都是同伦意义下可逆的.但是，基本群

胚Π1(X)忽略了太多的高阶同伦信息，我们更希望讨论它的进阶版本——基本无穷群胚——简单地讲它是这

样一个结构，对象是空间X的点，1态射是路径，2态射是路径之间的同伦，3态射是同伦之间的同伦，依次类

推，并且态射都是弱意义下可逆的，即相差一个高阶同伦所有态射都是可逆的.这样的基本无穷群胚包含了我

们想要的所有的高阶同伦信息，因此我们有如下无穷范畴的基本准则：

空间和无穷群胚应当是相同的.

它被称为Grothendieck同伦假设.之后我们将会把它用准确的数学语言描述出来并完成证明.
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第一章 单纯对象

1.1 单纯集和单纯复形

设n是任意一个自然数.定义[n]是有n+1个对象的小范畴，且其中的箭头是序列{0→ 1→ · · · → n}.设∆是

所有[n]组成的范畴，态射是[n]到[m]的函子.这个范畴有非常具体的描述：定义[n]′是n + 1元的全序集，其元

素记为{0 ≤ 1 ≤ · · · ≤ n}.设∆′是所有[n]′组成的范畴，态射是[n]′到[m]′的保序映射，即f : [n]′ → [m]′满

足i ≤ j必有f(i) ≤ f(j).∆′是一个范畴，且存在一个范畴的同构∆′ → ∆.于是我们无意区分两个范畴，都称

为单形范畴(simplex category)或者全序范畴(ordering category)，也无意区分两个范畴不同的对象.注意到

din+1 : [n]→ [n+ 1]

k 7→

{
k, k < i

k + 1, k ≥ i.

0 1 · · · i− 1 i · · · n

0 1 · · · i− 1 i i+ 1 · · · n+ 1

和

sin : [n+ 1]→ [n]

k 7→

{
k, k ≤ i

k − 1, k > i.

0 1 · · · i− 1 i i+ 1 · · · n+ 1

0 1 · · · i− 1 i · · · n

都是范畴∆中的态射，且满足

dj[n+1]d
i
[n] = di[n+1]d

j−1
[n] , ∀ i < j

sj[n]s
i
[n+1] = si[n]s

j+1
[n+1], ∀ i ≤ j

sj[n]d
i
[n+1] = di[n]s

j−1
[n−1], ∀ i < j

sj[n]d
i
[n+1] = id[n], i = j 或 i = j + 1

sj[n]d
i
[n+1] = di−1

[n] s
j
[n−1], ∀ i > j + 1.
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其中，di称为第i个对偶面映射(coface map)，si称为第i个对偶退化映射(codegeneracy map).∆中所有的态射

都可以由di和sj生成.更准确地说，任意f ∈ hom∆([n], [m])有唯一的分解

f = di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs , (1.1)

其中m = n+ r − s，m ≥ i1 > · · · > ir ≥ 0且0 ≤ j1 < · · · < js < n.

定义. 一个单纯集(simplicial set)是一个反变函子X : ∆◦ → Set.更一般地，范畴C中的一个单纯对
象(simplicial object)是反变函子X : ∆◦ → C.对偶地，可以定义上单纯对象(cosimplicial object)是协变

函子Y : ∆→ C.

对单纯集X，一般我们用Xn来表示集合X([n])，且其中的元素称为n单形(n-simplicies).若n单形x ∈ Xn满

足存在y ∈ Xn−1使得X(sj)(y) = x，则称x是退化的(degenerate).我们用sSet表示所有单纯集组成的范畴，其

中对象间的态射是X ⇒ Y的自然态射，具体来说，是对每个n都有一个集合间的态射fn : Xn → Yn，在∆的

作用下保持不动.

对于一个单纯集X，一般我们采用记号di := X(di) : Xn+1 → Xn和sj := X(sj) : Xn → Xn+1，称为面映

射和退化映射.

X0 X1 X2 · · ·s0

d1

d0 s0

s1

d2

d1

d0

具体地写出来，单纯关系是

d
[n]
i d

[n+1]
j = d

[n]
j−1d

[n+1]
i , ∀ i < j

s
[n+1]
i s

[n]
j = s

[n+1]
j+1 s

[n]
i , ∀ i ≤ j

d
[n+1]
i s

[n]
j = s

[n−1]
j−1 d

[n]
i , ∀ i < j

d
[n+1]
i s

[n]
j = id[n], i = j 或 i = j + 1

d
[n+1]
i s

[n]
j = s

[n−1]
j d

[n]
i−1, ∀ i > j + 1.

(1.2)

设X是单纯集，记

Xdeg
n :=

n−1⋃
j=0

sj(Xn−1) (1.3)

为n单形中的所有退化元素.

练习 1.1. 求证

Xdeg
n =

⋃
f :[n]↠[k]
f ̸=id

X(f)(Xk),

其中[n] ↠ [k]表示从[n]到[k]的满射.

证明. 注意到sj ̸= id且sj(Xn−1)实际定义为X(sj)(Xn−1)，s
j都是满射，因此由定义Xdeg

n ⊆
⋃

f :[n]→[k]
f ̸=id

X(f)(Xk).
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反过来，任意给定满射f : [n] ↠ [k]，根据分解f = di1 ◦ · · · ◦ dir ◦ sj1 ◦ · · · ◦ sjs的唯一性，若r ̸= 0则

与f是满射矛盾，即f = sj1 ◦ · · · ◦ sjs .于是，

X(f)(Xk) = X(sj1 ◦ · · · ◦ sjs)(Xk) = sjs(X(sj1 ◦ · · · ◦ sjs−1)(Xk)) ⊆ sj(Xn−1).

例 1.1. 设C是一个小范畴，那么我们可以自然地定义一个单纯集NC，称为范畴C的神经(nerve)，其中NC0是
集合ob C，NC1是集合mor C，对任意n > 1定义

NCn := {(fn, · · · , f1) | fi ∈ mor C且fi与fi+1可复合为fi+1fi，∀1 ≤ i ≤ n}.

通常，我们用相连的箭头

A0
f1−→ A1

f2−→ · · · fn−→ An

来表示NCn中的元素.这样当1 < i < n我们有自然的面映射

di : NCn → NCn−1

(fn, · · · , fi, fi−1, · · · , f1) 7→ (fn, · · · , fifi−1, · · · , f1),

当i = 0, n时，我们分别舍弃A0和An.退化映射si : NCn → NCn+1是简单的，只要在第i项和第i+ 1项之间加一

个Ai，取为Ai
id−→ Ai

fi+1−−→ Ai+1.之后我们会对范畴的神经进行更详细的讨论.

例 1.2. 拓扑上，我们有一个上单纯集∆ : ∆ → Top，事实上这个函子是我们定义单纯范畴的最初启发.考虑

函子∆将[n]映到标准n单形

∆n = {(x0, · · · , xn) ∈ Rn+1 | x0 + · · ·+ xn = 1, xi ≥ 0},

对偶面映射di : ∆n−1 → ∆n定义为将∆n−1映为第i个坐标为0的面，即(x0, · · · , xi−1, xi, · · · , xn−1) 7→ (x0, · · · , xi−1, 0, xi, · · · , xn−1)，

对偶退化映射si : ∆n+1 → ∆n将坐标xi与xi+1相加，即(x0, · · · , xi, , xi+1 · · · , xn+1) 7→ (x0, · · · , xi+xi+1, · · · , xn+1).

设X是拓扑空间，这样就可以定义的单纯集SX，其中(SX)n是所有连续映射∆n → X，面映射

di : (SX)n+1 → (SX)n

将f : ∆n+1 → X映到f ◦ di : ∆n → X，退化映射

sj : (SX)n−1 → (SX)n

将f : ∆n−1 → X映到f ◦ sj : ∆n → X.SX被称为空间X的奇异复形(total singular complex)，通常它给出了拓

扑空间的奇异同调.

给定[n]的一个非空子集σ，定义∆σ为∆n中{ei}i∈σ的凸包(convex hull)，即

∆σ :=

{∑
i∈σ

aiei

∣∣∣∣∣ ∑
i∈σ

ai = 1, ai ≥ 0,∀i ∈ σ

}
⊆ ∆n,

我们称∆σ为∆的σ面(σ-face).Rn中同胚于∆n中有限多个σ面的并的子空间称为多面体(polyhedron).对于一个

多面体P，我们可以把它表达为不同的σ面的并，每一个这样的同胚被称为P的一个三角剖分(triangulation).
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在拓扑中，对于一个空间我们会考虑它对应的单纯剖分，这样的一个单纯剖分通常被称为单纯复形.非拓

扑的情形下同样可以定义单纯复形，这样定义的单纯复形对应于一个拓扑空间的单纯剖分：

定义. 设V是一个集合，则V上的单纯复形(simplicial complex)X是V的一个非空有限子集族，满足X在取

子集作用下闭，即

∀σ ∈ X, ∅ ≠ τ ⊆ σ ⇒ τ ∈ X.

引理 1.1. 对于集合V上的单纯复形X，如下构造的|X|是一个拓扑空间，且具有被X描述的单纯剖分：
取定R线性空间V := spanRV，对任意σ ∈ X，令∆σ是由σ ⊆ V生成的凸包.那么

|X| :=
⋃
σ∈X

∆σ ⊆ V

与K := {iσ : ∆σ → |X|}构成一个拓扑单纯剖分，其中iσ : ∆σ → |X|是自然的嵌入.

反过来，任意给定拓扑空间X的单纯剖分K

单纯复形并不具有非常好的性质，比如单纯复形的商并不一定是单纯复形.但是每一个单纯复形都对应一

个单纯集，且我们能利用这个单纯集重新构造之前的单纯复形.这意味着，单纯集可以看作单纯复形的自然推

广.

定义. 给定全序集合V上的单纯复形X，我们可以定义它对应的单纯集SS∗(X)，其中

SSn(X) := {(v0, · · · , vn) | {v0, · · · , vn} ∈ X},

对任意∆中的态射f : [m]→ [n]，定义

SS(f) : SSn(X)→ SSm(X)

(v0, · · · , vn) 7→ (vf(0), · · · , vf(n)).

若单纯集X是某个单纯复形K对应的单纯集，则称它是多面体的(polyhedral).

练习 1.2. 这里我们要验证单纯复形可以完全地由它对应的单纯集给出，因而单纯集是更广泛的概念.考虑习

题1.1中的定义，验证

SS∗(X)nondeg ∼= X.

练习 1.3. 在引理1.1中我们证明了抽象单纯复形和拓扑单纯复形的一一对应.在拓扑中有一个比单纯复形广泛

一点的概念拟单纯复形(semi-simplicial complex)，定义为

在本小节最后我们引入循环范畴(cyclic category)∆C，其中∆C的对象同于∆，而∆C的态射由d
i
[n] : [n]→

[n+ 1], sj[n+1] : [n+ 1]→ [n]和τn : [n]→ [n]生成，满足三类关系：
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1.

di[n], s
j
[n+1]之间的关系同于∆； τn+1 ◦di[n] = di−1

[n] ◦ τn和τn+1 ◦d0[n] = dn[n]，τn ◦s
j
[n+1] = si−1

[n] ◦ τn+1和τn ◦s0[n+1] =

sn[n] ◦ τ2n+1； τn+1
n = id[n].

下面的定理叙述了两个范畴之间的关系.

定理 1.1. ∆C是∆的（非满）子范畴，且满足

1. Aut∆C
([n]) ∼= (Z/(n+ 1)Z)◦.

2. 任意∆C中的态射f ∈ hom∆C
([n], [m])都可以写成如下分解f = φ ◦ γ，其中φ ∈ hom∆([n], [m])且γ ∈

Aut∆C
([n]).

证明.

例 1.3 (循环圆(cyclic circle)). 定义函子C∗ : ∆◦
C → Set，将对象[n]映到Aut∆◦

C
([n]) = Z/(n + 1)Z，任取a ∈

hom∆◦
C
([m], [n]) = hom∆C

([n], [m])和g ∈ Aut∆◦
C
([m])，由刚刚的唯一分解，f = a ◦ g ∈ hom∆◦

C
([m], [n]) =

hom∆C
([n], [m])存在唯一的分解f = φ ◦ γ满足φ ∈ hom∆([n], [m])且γ ∈ Aut∆C

([n])，记g∗(a) = φ, a∗(g) =

γ.于是对于任意给定的g ∈ Aut∆◦
C
([m])，我们有

g∗ : hom∆◦
C
([m], [n])→ hom∆◦

C
([m], [n])

a 7→ g∗(a)

和任意给定的a ∈ hom∆◦
C
([m], [n])，

a∗ : Aut∆◦
C
([m])→ Aut∆◦

C
([n])

g 7→ a∗(g).

Loday的定义中有关系τnd
0 = dn和τns

0 = snτ2n+1，这是可以从前面的关系中导出的：

例 1.4 (Dywer-Hopkins-Kan表现). 我们定义所谓的duplicial categoryK如下：K◦是∆◦和∆的合并（amalgamation），

使得∆◦中的态射si与∆中除了di之外的态射等同，且∆中的态射sj与∆◦中除了dj之外的态射等同.

具体而言，范畴K◦的对象等同于∆◦的对象，态射由di : [n] → [n − 1], n ≥ 1和sj : [n] → [n + 1], n ≥ 0生

成，满足关系式

d
[n]
i d

[n+1]
j = d

[n]
j−1d

[n+1]
i , ∀ 1 < j

s
[n+1]
i s

[n]
j = s

[n+1]
j s

[n]
i−1, ∀ i ≤ j

d
[n+1]
i s

[n]
j =


s
[n]
j−1d

[n−1]
i , ∀ 0 < j − 1 ≤ n

id[n], −1 ≤ j − i ≤ 0

s
[n]
j d

[n−1]
i−1 , ∀ j − i < −1.

注意到d0sn+1 ̸= snd0.

• 注意到存在自然的函子j : ∆◦ ↪→ K◦和范畴同构m : K◦ → K, (di : [n] → [n − 1]) 7→ (sn−i : [n] →
[n− 1]), (si : [n− 1]→ [n]) 7→ (dn−i : [n− 1]→ [n]).（Drinfeld, 04, Connes Duality）
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• 存在函子K◦ →∆◦
C，定义为d0sn+1 7→ tn+1, di 7→ di, sj 7→ sj .

• 存在函子idK◦的自同态v[n] := (d0sn+1)
n+1 : [n]→ [n].

• 问题：是否左右的∆◦
C模都可以提升为K◦模？

练习 1.4. 求证∆C
∼= ∆◦

C .

证明.

练习 1.5. 求证习题1.3给出的函子C∗ : ∆◦
C → Set限制在∆上是单纯圆.

证明.

练习 1.6. 求证任意单纯集X∗, Y∗的积存在.

证明. 定义单纯集(X × Y )∗满足

(X × Y )n := Xn × Yn,

且有面映射

d
(X×Y )[n]
i = d

X[n]
i × dY [n]

i

和退化映射

s
(X×Y )[n]
j = s

X[n]
j × sY [n]

j ,

这样只要验证(X × Y )∗是单纯集且满足相应的泛性质即可.

首先验证如此定义的面映射和退化映射满足单纯恒等式. 然后验证如此定义的(X × Y )∗满足相应的

练习 1.7. 定义范畴∆+是求证函子res : Funct(∆◦
+,Set)→ Funct(∆◦,Set)存在左伴随π0和右伴随triv

称Funct(∆◦
+,Set)中的对象是增广单纯集(augmented simplicial set).

练习 1.8. 求证对任意拓扑空间X，存在自然的积分映射

练习 1.9. 给定小范畴C，求证存在范畴的同构

Funct(C◦, sSet) ∼= Funct(∆◦,Funct(C◦,Set)),

记这两个同构的范畴为sPre(C)，称其中的对象为单纯预层(simplicial presheaf).

证明. 构造函子

1.2 泛单纯集

在涉及具体的构造前，我们先讨论一部分形式化的定义以及结果.

1.2.1 Yoneda引理

范畴理论中最重要的工具之一就是Yoneda引理.我们记Ĉ为范畴Funct(C◦,Set)，hB := homC(−, B)，那

么Yoneda引理表述如下：
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定理 1.2 (Yoneda). 对任意局部小范畴C和函子F : C◦ → Set，存在关于F和C都自然的同构

φ : homĈ(hB, F )
∼= F (B).

作为推论，当F = hD时，自然同构为

homC(B,D) = homĈ(hB, hD),

其中映射将态射f : B1 → B2映到h(f) = homC(f,D).考虑函子

h : C → Ĉ

B 7→ homC(−, B)

(f : B1 → B2) 7→ h(f),

Yoneda引理说明这是一个满忠实的函子，我们称其为Yoneda函子.

注意到任意一个单纯集是一个到集合范畴的函子，故我们可以对其应用Yoneda引理.由定义显然有∆̂ =

sSet.考虑h[n] := hom∆(−, [n])，这些函子都是单纯集，具体说来，我们需要确定面映射和退化映射：面映
射di : h[n]([k])→ h[n]([k − 1])是Set中di的前置复合，即

di : h[n]([k])→ h[n]([k − 1]) = {[k] f−→ [n]} 7→ {[k − 1]
di−→ [k]

f−→ [n]},

类似地退化映射si是Set中si的前置复合.同时，Yoneda函子的满忠实性说明

hom∆([k], [n]) ∼= homsSet(h[k], h[n]),

即h[k]到h[n]的所有自然变换由∆中的态射[k]→ [n]所决定，因此所有的h[n]在一起组成一个上单纯集.

定义. 单纯集

h[n] := hom∆(−, [n])

被称为标准n单形(standard n-simplex)，我们也记为∆[n]（上标的原因如前所述，所有的h[n]在一起组成

一个上单纯集）.

例 1.5. 我们具体地写出来单纯集h[n].按定义h[n]([k]) := hom∆([k], [n])，是所有[k]到[n]的保序映射的全体，任

意一个映射a : [k]→ [n]给出了有序组(a0 = a(0), · · · , ak = a(k))，满足0 ≤ a0 ≤ a1 ≤ · · · ≤ ak ≤ n，因此

h[n]([k]) = {(a0, · · · , ak) | 0 ≤ a0 ≤ a1 ≤ · · · ≤ ak ≤ n}.

给定态射f : [k]→ [l]，它给出了

h[n](f) : h[n]([l])→ h[n]([k])

(a0, · · · , al) 7→ (af(0), · · · , af(k)),



16 第一章 单纯对象

特别地这给出了h[n]中的面映射

d
[k]
i : h[n]([k])→ h[n]([k − 1])

(a0, · · · , ak) 7→ (a0, · · · , âi, · · · , ak)

和退化映射

s
[k]
j : h[n]([k])→ h[n]([k + 1])

(a0, · · · , ak) 7→ (a0, · · · , aj , aj , aj+1, · · · , ak).

特别地，考虑∆[0]，按之前的讨论

∆[0]([k]) = {(a0, · · · , ak) | 0 ≤ a0 ≤ a1 ≤ · · · ≤ ak ≤ 0} = {(0, · · · , 0)},

即对任意k，∆[0]([k])只有一个元素，因此除了∆[0]([0])中的元素其余都是退化的.

例 1.6. 再来考虑标准单形之间的面映射和退化映射.

例 1.7. 给定单纯集X和单纯态射∆[0] → X，这称为一个有基点的单纯集(pointed simplicial set)，根据例1.5的

讨论，这实际上是给出了每个Xn中的一个元素xn，使得di(xn) = xn−1, sj(xn) = xn+1.带有基点的单纯集态射

是交换图

∆[0]

X Y,
f

即是将基点映为基点的单纯集态射，所有带有基点的单纯集组成的范畴记为sSet∗.

引理 1.2. 设X是单纯集，函子

sSet→ Set

X 7→ X([n])

是可表的，其代表是标准n单形∆[n].

如果我们考虑更一般情形的Yoneda引理，我们有自然同构

homsSet(∆
[n], X) ∼= X([n]).

于是任意给定一个n单形x ∈ X([n])，我们有一个自然变换

∆[n] ⇒ X

与之对应，而它在面映射下的象di(x) ∈ X([n− 1])则对应于自然态射

∆[n−1] di−→∆[n] ⇒ X.
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命题 1.3 (稠密性定理). 令
∫
X是单纯集X的元素范畴，则以

∫
X为图的余极限满足

colimx∈Xn
∆[n] ∼= X.

1.2.2 伴随函子

作为泛单纯集的应用，本小节我们将会给出一种通用的构造特定左右伴随的方式，它将会给出后面用到

的很多例子伴随性的证明，并将它们用同一个框架描述.

设D是任意上完备（即任意图为小范畴的余极限都存在）的局部小范畴，L是协变函子D → sSet，我们

希望构造一对左右伴随函子L : sSet ⇆ D : R并考虑它们的性质.由定义，我们有关于X ∈ ob sSet和B ∈
ob D都自然的同构

homD(L(X), B) ∼= homsSet(X,R(B)).

任意给定协变函子F : ∆→ D，由函子F我们可以如下构造右伴随函子R，任意给定D中的对象B，R(B)是

单纯集，所有的n单形构成集合

R(B)n := homD(F ([n]), B),

且面映射和边缘映射分别定义为

d
[n]
i := homD(F (d

i
[n]), B)

和

s
[n]
j := homD(F (s

j
[n]), B),

根据F和hom的函子性，di与sj满足相应的关系，因此R(B)是单纯集，即

R(B) = homD(F (−), B).

于是给定D中的态射f : B → D，那么单纯集之间的态射R(f) : R(B)→ R(D)定义为homD(F (−), f).
这样构造的函子R存在一个左伴随L : sSet→ D，定义为F : ∆→ D沿Yoneda嵌入∆ ↪→ sSet的左Kan扩

张：

∆ D

sSet .

F

y L

我们尝试具体地把函子L写出来：

首先介绍一个概念余终止(coend)，它是一个特殊的余极限（更一般地可以对一个二函子取余极限，这里

是一个特殊的情形）.任意给定集合S和D中的对象B，定义它们的余指数(copower)（或称为张量积(tensor)）

为

S ⊗B :=
∐
s∈S

B,
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于是特别地，对单纯集X和自然数m,n，可以构造

Xm ⊗ F ([n]).

给定∆中的态射f : [n]→ [m]，自然地由F诱导了态射

f∗ : Xm ⊗ F ([n])→ Xm ⊗ F ([m]),

同时由X诱导了态射

f∗ : Xm ⊗ F ([n])→ Xn ⊗ F ([n]).

这给出了下图

Xm ⊗ F ([n]) Xm ⊗ F ([m])

Xn ⊗ F ([n]) ·,

f∗

f∗

当f取遍mor∆时，以上给出了

∐
f :[n]→[m]

Xm ⊗ F ([n])
f∗

⇒
f∗

∐
[n]

Xn ⊗ F ([n]),

此时，该图的余等值子coeq被称为余终止(coend)，记为∫ [n]

X ⊗ F.

于是，定义函子L : sSet→ D为

L(X) :=

∫ [n]

X ⊗ F,

且对于单纯集之间的态射f : X → Y，态射

Lf : X → Y

由余极限的函子性给出.

定理 1.4. 如上构造的函子对L : sSet ⇄ D : R是伴随函子对.

证明. 考虑

L(∆[k]) =

∫ [n]

∆[k] ⊗ F,

按定义它是余等值子 ∐
f :[n]→[m]

∆[k]([m])⊗ F ([n])
f∗

⇒
f∗

∐
[n]

∆[k]([n])⊗ F ([n]).

同时存在下图



1.2 泛单纯集 19

∆[k]([m])⊗ F ([n]) ∆[k]([m])⊗ F ([m])

∆[k]([n])⊗ F ([n]) F ([k]),

f∗

f∗

其中映射∆[k]([n])⊗ F ([n])→ F ([k])是
∐
g∈∆[k]([n])

任取X ∈ ob sSet和B ∈ ob D，根据第一小节的讨论

homsSet(∆
[n], R(B)) ∼= R(B)n := homD(F ([n]), B),

这样直接根据刚刚的证明

homD(L(∆
[n]), B) ∼= homsSet(∆

[n], R(B))

成立且是自然的，再根据稠密性定理1.3，任意的单纯集X都是余极限

colimx∈Xn
∆[n] ∼= X,

函子L的构造（也是一个余极限）说明它与余极限交换，因此

homD(L(X), B) ∼= homD(L(colimx∈Xn
∆[n]), B)

∼= colimx∈Xn
homD(L(∆

[n]), B)

∼= colimx∈Xn
homsSet(∆

[n], R(B)) ∼= homsSet(X,R(B)).

这里的每一步同构都是自然的，于是伴随性得证.

练习 1.10. 用Yoneda引理证明

L(∆[k]) =

∫ [n]

∆[k] ⊗ F = F ([n]).

事实上，我们完全可以将伴随函子的自然同构写出来.给定一个单纯集的态射

η ∈ homsSet(X,R(B))

给出了集合间的映射ηn : Xn → R(B)n = homD(F ([n]), B)，而利用它可以得到态射

η̃n : Xn ⊗ F ([n])→ B,

定义为
∐
x∈Xn

ηn(x).一方面，根据η的自然性有交换图

Xm homD(F ([m]), B)

Xn homD(F ([n]), B),

X(f)

ηm

(F (f))∗

ηn

对应于给定f : [n]→ [m]的交换图

Xm ⊗ F ([n]) Xm ⊗ F ([m])

Xn ⊗ F ([n]) B,

f∗

f∗

η̃m

η̃n
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根据余终止的定义，这给出了态射η♭ ∈ homD(L(X), B).

另一方面，给定态射h ∈ homD(L(X), B)，记余终止L(X)诱导的态射Xn ⊗ F ([n]) → L(X)为ξn，那么给

定f : [n]→ [m]，余终止的定义直接诱导了交换图

Xm ⊗ F ([n]) Xm ⊗ F ([m])

Xn ⊗ F ([n]) B,

f∗

f∗

h◦ξm
h◦ξn

进而上一段的对应将{h ◦ ξn}[n]∈∆对应到一族态射{h♯n : Xn → R(B)n = homD(F ([n]), B)}[n]∈∆，且上面的交

换图意味着

Xm homD(F ([m]), B)

Xn homD(F ([n]), B)

X(f)

h♯
m

(F (f))∗

h♯
n

是交换的，因此h♯是自然变换.

注意到两个对应实质是两个交换图的对应，因而二者互逆，这给出了伴随性的证明.

例 1.8. 定义函子

F : ∆→ Top

[n] 7→ ∆n,

其中∆n是标准n单形，于是它给出的右伴随函子恰是奇异单纯集S∗ : Top → sSet（例1.2）.同时由于张量

积Xn ⊗ F ([m])此时是将Xn看作具有离散拓扑的拓扑空间的乘积Xn × F ([m])，因此依据前面的讨论，如下定

义函子

|X| :=
∫ [n]

X ⊗ F = coeq

 ∐
f :[n]→[m]

Xm ⊗ F ([n])
f∗

⇒
f∗

∐
[n]

Xn ⊗ F ([n])


是S∗的左伴随函子，被称为几何实现(geometric realization)，下一节我们将详细讨论这个构造.

事实上，在这个公式中，它的形式是某类自由对象的商对象，这与代数中的张量积是非常类似的.从Kan扩

张的角度讲，二者是同一个对象，因此这也是选取记号⊗的原因.

例 1.9. 借助以上讨论，我们来证明sSet是笛卡尔闭的，即对任意单纯集Y，存在函子−× Y : sSet→ sSet的

右伴随.事实上，这对于所有小范畴上的预层（即到Set的函子）组成的范畴都成立.

对于给定的单纯集Y，考虑函子

F : ∆→ sSet

[n] 7→ ∆[n] × Y

f 7→ f × idY .

之前我们讨论过，L是F沿的Yoneda嵌入的左Kan扩张，而这里，F是Yoneda嵌入和− × Y的复合，因此直接
根据定义，L = −× Y .于是sSet是笛卡尔闭的.
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练习 1.11. 考虑所有群胚的范畴到小范畴的嵌入F : Gpd→ Cat，证明它给出了一对伴随函子

Π1 : sSet ⇆ Cat : N,

其中Π1是取单纯集的基本群胚.

练习 1.12. 将本节中的证明推广，证明任意给定小范畴C和余完备的范畴D，存在一一对应

Funct(C,D) ⇆ Adj(Ĉ,D),

其中Ĉ = Funct(C◦,Set).也就是说，存在图

C D

Pre(C).

F

r
SingF

|−|F

我们在4.2节还会讨论这个问题.

证明. 构造函子

练习 1.13. 求证自然的嵌入U : sSet∗ ↪→ sSet存在左伴随函子−+ : sSet → sSet∗，并且该函子满足对任意单

纯集X，

|X|+ ∼= |X+|.

证明. 定义

1.3 几何实现

之前稠密性定理（命题1.3）说明每个单纯集都是一个余极限，注意这个余极限是在范畴sSet中取得的.如

果我们在其他的范畴中取这个余极限会得到其他我们想要的对象，有时候这些对象会更加容易理解和计算：

定义. 给定单纯集X，称

|X| := colimx∈Xn
|∆[n]|

为X的几何实现(geometric realization)，其中|∆[n]|是标准n单形∆n.

定理 1.5. 下列函子对

| − | : sSet ⇄ Top : S

是伴随函子，即存在自然的同构

homTop(|X|, Y ) ∼= homsSet(X,SY ).
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证明. 根据定义和余极限的性质

homTop(|X|, Y ) :=

注意到例1.8中的构造也是函子S∗的左伴随函子，因此根据伴随函子的唯一性，有

推论 1.5.1. 本节中的定义与例1.8中几何实现的定义是自然同胚的.

练习 1.14. 在例1.5中我们讨论了∆[n]的具体形式，现在我们具体计算它的几何实现.

然而，直接根据如上推论和例1.8中的定义，|∆[n]|
考虑面映射

定理 1.6. 对任意单纯集X，|X|是CW复形.

证明.

例 1.10. 在拓扑中，一个单纯复形的三角剖分是一个重要的工具，我们考虑定义单纯剖分函子

范畴Top一个重要的性质是集合homTop上有自然的结构使得集合是一个拓扑空间，且

homTop(X × Y,Z) ∼= homTop(X,homTop(Y, Z))

是一个自然同构.伴随函子对(| − |, S)的存在提示这样的行为很可能也出现在范畴sSet中：

定义. 给定单纯集X∗, Y∗，它们的态射复形（映射空间）(function complex, mapping space)定义为

homsSet(X,Y )n := homsSet(∆
[n] ×X∗, Y ),

且面映射和退化映射分别为

d
[n]
i : homsSet(X,Y )n → homsSet(X,Y )n−1

f 7→ (di[n−1] × idX) ◦ f

和

s
[n]
i : homsSet(X,Y )n → homsSet(X,Y )n+1

f 7→ (si[n+1] × idX) ◦ f.

它定义的想法来源于此：在范畴Top中，0态射一般考虑为映射本身，1态射是映射之间的映射，即同伦，

因此更高阶态射考虑为高阶的同伦.拓扑中映射f, g : X ⇒ Y之间的同伦恰好是F : X ×∆1 → Y，那么不难推

广到更高阶的同伦.
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定义. 若单纯集X∗满足X0 = {∗}，则称它是约化的(reduced).所有约化单纯集组成的满子范畴记为sSet0.

在例1.2中我们构造了拓扑空间X对应的奇异单纯集S∗(X)，若X还是一个带有基点的拓扑空间，它的Eilenberg子

复形是

Sn(X) := {f : ∆n → X | f(vi) = ∗对∆n所有的顶点vi都成立}.

若记Top0,∗是所有连通且有基点的拓扑空间的全体组成的满子范畴，则

命题 1.7. 函子对

| − | : sSet0 ⇆ Top0,∗ : S

是伴随函子.

证明.

练习 1.15. 给定单纯集X∗，其上的一个同调系数系统(homological coefficient system)是一系列Abel群A，对

每个点x ∈ X都有一个Abel群Ax对应，且对每个∆中的态射f : [m]→ [n]，都有群同态A(f, x) : Ax → AX(f)x，

且满足函子性.试定义X以A为系数的同调.

证明.

Cn(X,A) :=

{∑
x∈Xn

a(x)x | a(x) ∈ Ax

}

dn

(∑
x∈Xn

a(x)x

)
=
∑
x∈Xn

n∑
i=0

A(∂in, x)(a(x)x)(−1)iX(∂inx)

1.3.1 同伦群

命题 1.8. 常值映射Const : Set→ sSet存在左右伴随，其中左伴随是π0，右伴随是ev0.

证明.

1.4 小范畴的神经

这一节我们详细讨论小范畴的神经.在非特别指出的情形下，本小节C都代表一个小范畴.回顾例1.1中的定

义，单纯集NC的全体n单形NCn包含有可连续复合的n个态射，记为(fn, · · · , f1).面映射d[n]i 将

A0
f1−→ · · · fi−2−−−→ Ai−1

fi−1−−−→ Ai
fi−→ Ai+1

fi+1−−→ · · · fn−→ An
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映到

A0
f1−→ · · · fi−2−−−→ Ai−1

fi◦fi−1−−−−→ Ai+1
fi+1−−→ · · · fn−→ An,

且在i = 0, n时映射舍弃Ai和相连的映射.类似地退化映射s
[n]
j 将

A0
f1−→ · · · fi−2−−−→ Ai−1

fi−1−−−→ Ai
fi−→ Ai+1

fi+1−−→ · · · fn−→ An

映到

A0
f1−→ · · · fj−2−−−→ Aj−1

fj−1−−−→ Aj
fj−→ Aj

fj−→ Aj+1
fj+1−−−→ · · · fn−→ An.

更一般地，对任意

命题 1.9. 1. 自然存在的映射N(C × D)→ NC ×ND是同构.

2. N是函子Cat→ sSet，即给定函子F : C → D，存在构造

F : C → D

满足函子性条件.

3. 给定自然变换α : F ⇒ G，

N(α) : NF ⇒ NG

是单纯同伦.

推论 1.9.1. 若F : C ⇆ D : G是伴随，那么NC ≃ ND.

1.4.1 例子与计算

例 1.11. 考虑范畴[n]，我们来求出它的神经.

按定义，Nk([n])包含了[n]中k个可复合的态射，并且[n]中可复合的态射是≤，因此

Nk([n]) = {(a0, · · · , ak) | 0 ≤ a0 ≤ a1 ≤ · · · ≤ ak ≤ n} = ∆[n]([k]).

另一方面，

di(0 ≤ a0 ≤ a1 ≤ · · · ≤ ai ≤ · · · ≤ ak ≤ n) = 0 ≤ a0 ≤ a1 ≤ · · · ≤ âi ≤ · · · ≤ ak ≤ n

且

si(0 ≤ a0 ≤ a1 ≤ · · · ≤ ai ≤ · · · ≤ ak ≤ n) = 0 ≤ a0 ≤ a1 ≤ · · · ≤ ai ≤ ai ≤ · · · ≤ ak ≤ n,

这恰与例1.5中的计算结果相同，于是我们证明了N([n]) = ∆[n].
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例 1.12. 设G是群，那么BG是一个只有一个对象的小范畴.由于mor BG = G，故NBGn = Gn.注意到BG中

态射的复合是群乘法，于是

di : G
n → Gn−1

(g1, · · · , gn) 7→


(g2, · · · , gn) i = 0

(g1, · · · , gigi+1, · · · , gn) 0 < i < n

(g1, · · · , gn−1) i = n

（注意到这里函子B对复合的方式产生了影响，因此角标产生了变化）和

sj : G
n → Gn+1

(g1, · · · , gn) 7→ (g1, · · · , gj−1, 1, gj , · · · , gn).

注意到这里的映射恰是群上同调所需要的映射.

另一方面，我们还有构造EG，其中ob EG = G，homEG(g, h) = {x ∈ G | xg = h} = {hg−1}且态射的复
合是群乘法. 此时，sj : (g0, · · · , gn) 7→ (g0, · · · , gj , gj , · · · , gn).
二者之间有如下的关系：

1. 存在自然的单纯集投影

p : NEG→ NBG

(g0, · · · , gn) 7→ (g0g
−1
n , · · · , gn−1g

−1
n ),

且它是由函子EG→ BG诱导的（习题1.16）.

2. G在NEG上有右作用

(g0, · · · , gn) · g = (g0g, · · · , gng),

于是有交换图

NEG NBG

NEG/G.

p∗

这是最简单的单纯G主从的例子：

NEG×NBG→ NBG

((g0, · · · , gn), (h1, · · · , hn)) 7→ (g0h1g
−1
1 , · · · , gn−1hng

−1
n ).

以上构造的单纯集分别记为BG和EG.

练习 1.16. 求证EG ∼= ∗/BG，并写出由该函子给出的单纯集上的映射.

证明.

(g0, · · · , gn) 7→ (g0
g−1
0 g1−−−→ g1

g−1
1 g2−−−→ · · ·

g−1
n−1gn−−−−→ gn)
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上面的例子给出了

例 1.13. 如例1.12中的描述，对于群G可以构造对应的单纯集BG，特别地当G = Z时，我们尝试具体地写
出BZ和|BZ|.
按照定义，

(BZ)n = ×ni=1Z

例 1.14. 设X是拓扑空间，U = {Ui}i∈I是X的一个开覆盖，那么如下的单纯对象称为U的Cech神经：

∐
i∈I Ui

∐
i,j∈I Ui ∩ Uj

∐
i,j,k∈I Ui ∩ Uj ∩ Uk · · · .s0

d1

d0 s0

s1
d1

d2

d0

特别地，如果C是存在纤维积的范畴，那么对任意态射U → X，如下的对象

U U ×X U
∐
i,j,k∈I Ui ∩ Uj ∩ Uk · · · .s0

d1

d0 s0

s1
d1

d2

d0

也被称为Cech神经.

练习 1.17. X good covering X ≃ ||.

例 1.15 (Borel构造). 设群G作用在集合X上，我们可以构造该作用的广群（groupoid，这是一个范畴不是一

个群）G ⟳ X：其中ob G ⟳ X = X，homG⟳X(x, y) = {g ∈ G | gx = y}且态射的复合是群乘法.于是NG ⟳

Xn = Gn ×X，面映射和退化映射分别为

di : G
n ×X → Gn−1 ×X

(g1, · · · , gn, x) 7→


(g2, · · · , gn, x) i = 0

(g1, · · · , gigi+1, · · · , gn, x) 0 < i < n

(g1, · · · , gn−1, gnx) i = n

和

sj : G
n ×X → Gn+1 ×X

(g1, · · · , gn, x) 7→ (g1, · · · , gj−1, 1, gj , · · · , gn, x).

注意NBG ∼= NG ⟳ {∗}且NEG ∼= NG ⟳ G.

例 1.16. 设C是一个小范畴，X : C → Set是协变函子，于是X的元素范畴
∫
X是小范畴.若η : X1 ⇒ X2是自然

变换，则我们可以构造一个函子 ∫
η :

∫
X1 →

∫
X2,

将对象(A, x)映到(A, ηA(x))，将态射(f : A→ B,φ)映到(f, ηA(φ)).这样对于任意的函子X，我们有

C X−→ Cat
N−→ sSet

|−|−−→ Top.
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1.4.2 等价构造与伴随

事实上，还可以用1.2.2节中的内容构造神经函子.令嵌入函子F : ∆→ Cat为

[n] 7→ [n],

其中[n]分别代表范畴∆中的对象和（小）范畴[n].那么1.2.2节中构造的右伴随函子给出

NCn := homCat([n], C),

这恰好是刚刚我们的定义.

同时，定理1.4说明神经函子sSet← Cat : N应当有左伴随函子，一般记为τ1 : sSet→ Cat，

∆ Cat

sSet,

y

N

τ1

它是一个左Kan扩张，如下我们具体地写出来：给定单纯集X，那么范畴τ1(X)的对象是

ob τ1(X) := X0,

τ1(X)的所有态射是X1中元素生成的全体（因为“复合”后可能不在X1中，因此要用类似于自由群生成的方

式进行生成），s0 : X0 → X1给出了单位态射，d0, d1 : X1 → X0分别给出了定义域和余定义域，并商去下列

等价关系：若存在x ∈ X2使得d2(x) = f, d0(x) = g, d1(x) = h，那么h = gf，用交换图来表示为

0 2

1 .

h

f g

由于构造中的生成，这自然是一个范畴.

命题 1.10. 如上构造的τ1是N的左伴随函子.进一步地，τ1 ◦N = id.

证明. 定理1.4已经说明了二者为伴随，只需要直接验证后面的论断.

事实上，τ1不仅是做伴随函子，而且它是N的左逆，这意味着函子N是满忠实的，因此N诱导了Cat到像

的等价，于是可以引入如下自然存在且非常重要的问题：N的像范畴是什么，即给定一个单纯集X，它是否

一定是某个小范畴的神经？如果不一定，在何时我们可以断定X是一个小范畴的神经？这个问题我们留到下

一节回答，这需要更多的工具来进行讨论.

1.5 子单纯集

在完成了许多关于单纯集的讨论，一个自然的想法是我们希望研究单纯集的子结构.按照代数中通常对于

子结构的定义，比较自然的，若Y是单纯集X的子单纯集，那么对于每个自然数n，Yn都需要是Xn的子集，并

且我们希望Y所给定态射都是完全由X给定的态射决定——对任意f : [n]→ [m]，X(f)在Yn的限制就是Y (f).后

一个条件就是在说范畴∆作用在Y上是封闭的.
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定义. 给定单纯集X∗, Y∗，若存在单纯集的态射i∗ : Y∗ → X∗使得对任意的n ≥ 0，in : Yn → Xn都是集合

之间的单射，则称Y∗是X∗的单纯子集().

例 1.17. 等式1.3定义的退化元素的全体不形成一个子单纯集.

通常，我们并不直接给出一个单纯子集，一般情况下我们给出一族称为生成元(generator)的态射，称包

含它们的最小X的子单纯集为这族态射生成的子单纯集.

定义. 给定自然数0 ≤ i ≤ n，标准n单形∆[n]由di[n−1] : ∆
[n−1] → ∆[n]生成的子集被称为∆[n]的第i面(i-th

face)，记为∂i∆
[n]，即

∂i∆
[n] := ∆[n−1]

di[n−1]−−−−→∆[n].

例 1.18. 具体来说，根据例1.5，我们可以具体地写出∂i∆
[n].由之前的讨论

∆[n]([k]) = {(a0, · · · , ak) | 0 ≤ a0 ≤ a1 ≤ · · · ≤ ak ≤ n},

并且

di[n−1] : ∆
[n−1] →∆[n]

(a0, · · · , ai−1, ai, ai+1, · · · , ak) 7→ (a0, · · · , ai−1, ai + 1, ai+1 + 1, · · · , ak + 1),

于是存在自然的单纯集的同构

di[n−1] : ∆
[n−1] → ∂i∆

[n].

进一步地，对如上的同构取几何实现函子，那么

练习 1.18. 给定单纯集X的两个子单纯集Y1, Y2，求证(Y1 ∪ Y2)也是X的子单纯集.

几何上，n单形的第i面就是标号为i的点相对的第i个坐标为0的面.如果我们将所有的面组合起来，几何上

这是一个n维球面，对单纯集的这样操作将得到单纯球面：

定义. 标准n单形∆[n]由{di[n−1] : ∆
[n−1] →∆[n] | 0 ≤ i ≤ n}生成的子单纯集称为标准单纯n球面(standard

simplicial n-sphere)，记为∂∆[n]，即

∂∆[n] =
⋃

0≤i≤n

∂i∆
[n].

有时也用拓扑中的记号S1来表示单纯球面.

例 1.19. 我们来具体地写出S1

练习 1.19. 求证：
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1. ∂∆[n] = colim
∆[n−2]

di
[n−1]−−−−→∆[n−1]

∆[n−1]
di[n]−−→∆[n].

2. 任取k < n，则∂∆[n]([k]) = hom∆([k], [n]).

更一般地，单纯集X的单纯n球面是单纯集间的映射∂∆[n] → X.如果几何球面去掉一个面，我们将得到

一个可缩的有界闭集.对应到单纯集则是

定义. 标准n单形∆[n]由{di[n] : ∆[n−1] →∆[n] | 0 ≤ i ≤ n, i ̸= k}生成的子单纯集称为标准单纯角(standard

simplicial horn)，记为Λ
[n]
k ，即

Λ
[n]
k =

⋃
0≤i≤n,i ̸=k

∂i∆
[n].

例 1.20. 考虑∆[1]，按照例1.5中的讨论

练习 1.20. 求证：

1. Λ
[n]
k = colim

∆[n−2]
di
[n−1]−−−−→∆[n−1]

∆[n−1]
di[n]−−→∆[n].

2. 任取j < n− 1，则Λ
[n]
k ([j]) = hom∆([j], [n])，且Λ

[n]
k ([n− 1]) = hom∆([n− 1], [n])− {dk}.

1.5.1 单纯集的商

定义. 给定单纯集X及其子单纯集Y，定义X关于Y的商单纯集(quotient simplicial set)X/Y满足

(X/Y )n := Xn/Yn,

且面映射和退化映射分别由X的面映射和退化映射诱导，即

d
X/Y ([n+1])
i (x) =

{
d
X([n+1])
i (x) x /∈ Yn+1

Yn/Yn x ∈ Yn+1

和

s
X/Y ([n−1])
i (x) =

{
s
X([n−1])
i (x) x /∈ Yn−1

Yn/Yn x ∈ Yn−1.

练习 1.21. 求证给定单纯集X及其子单纯集Y，X关于Y的商X/Y也是单纯集.

练习 1.22. 求证 ∐
0≤i<j≤n∆

n−2
∐
i̸=k∆

n−1 Λ
[n]
k

是余等值子图.
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例 1.21. 考虑单纯集∆[1]，态射d0, d1 : ∆[0] → ∆[1]给出了∆[1]的两个子单纯集，并且像集都是单点集.按照

例1.5的描述，di(∆[0])（i = 0, 1）在∆
[1]
n 中的像是

(i, · · · , i).

考虑∆[1]/(d0(∆[0]) ∪ d1(∆[0]))，即将∆
[1]
n 中的(0, · · · , 0)与(1, · · · , 1)等同起来，我们来计算该单纯集的几何实

现.

拓扑上，我们知道∆
[1]
n 对应单位区间，单点在d0, d1下的像分别是区间的端点，那么粘合单位区间的端点

拓扑上给出了S1，这恰好对应刚刚的计算.

1.6 提升性质

更一般地，单纯集X的单纯角是单纯集间的映射Λ
[n]
k → X（引理1.2） .值得注意的是，对任意的自然

数n和0 ≤ k ≤ n我们有自然的嵌入映射Λ
[n]
k ↪→ ∂∆[n].这样我们可以引入一个关于单纯集的特殊性质——角填

充(horn filling)，我们特别关心具有一定角填充性质的单纯集.

定义. 单纯集X若具有角填充性质，即对任意自然数n和0 ≤ k ≤ n，给定单纯映射f : Λ
[n]
k → X，存在

（但不要求唯一）f̃ : ∂∆[n] → X使得图

Λ
[n]
k X

∆[n]

f

f̃

交换，则称X为Kan复形(Kan complex).

例 1.22. 考虑∆[2]，按照例1.5中的讨论，∆[2]([k]) = {(a0, · · · , ak) | 0 ≤ a0 ≤ a1 ≤ · · · ≤ ak ≤ 2}，
即∆[2]([0]) = {0, 1, 2},∆[2]([1]) = {(0, 1), (0, 2), (1, 2)},∆[2]([2]) = {(0, 1, 2)}且其余都是退化的.

左逆

1

0 2

复合

1

0 2

右逆

1

0 2



1.6 提升性质 31

例 1.23. 设G是群胚，我们来说明NG是Kan复形.

事实上，反过来的命题也是对的：给定范畴G，若NG是Kan复形则G是群胚.

练习 1.23. 给定连通的群胚G（连通意味着对任意对象A,B，存在态射f : A → B或g : B → A），对任意对

象A定义

AutG(A) := homG(A,A),

这明显地是一个群.求证若G中态射的同伦等价都是相等，则存在范畴的等价

G ≃ B(AutG(A)).

证明. 记i : B(AutG(A))→ G是范畴的自然嵌入，

命题 1.11. 若X是拓扑空间，则它的奇异复形SX（例1.2）是Kan复形.

证明.

命题 1.12. 任意单纯群是Kan复形.

这个命题将会在之后证明.同时，Kan复形在同伦理论当中有重要的作用.

定理 1.13. 若X是Kan复形，那么|X|是

回到1.4节最后的问题，

定理 1.14. 单纯集X∗同伦于某个给定小范畴C的神经当且仅当它具有唯一的内角提升.

证明.

推论 1.14.1. 单纯集X∗同伦于某个给定群胚G的神经当且仅当它具有唯一的角提升.

定义. 单纯集X若具有内角填充性质，即对任意自然数n和0 < k < n，给定单纯映射f : Λ
[n]
k → X，存在

（但不要求唯一）f̃ : ∂∆[n] → X使得图

Λ
[n]
k X

∆[n]

f

f̃

交换，则称X为拟范畴(quasi-category)或无穷范畴(infinity category,∞-category).
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我们从另一个角度来考虑，设C是一个范畴，M ⊆ mor C是一类C的态射，若态射f : A → B满足对任

意M中的态射g : C → D，都存在态射h : C → A和k : D → B使得有态射φ : D → A满足交换图

A C

B D,

f

h

g

k

φ

则称f具有右对于M的右提升性质(right lifting property with respect to M).于是，无穷范畴的定义是说单纯

集X满足它关于单点单纯集∗的投影对于内角包含态射ik[n] : Λk
[n] ↪→∆[n], 0 < k < n有右提升性质.而ik[n]诱导了

homsSet(∆[n], X) homsSet(Λ
k
[n], X)

X([n]) = Xn Λk
[n](X),

∼= =

(ik[n])
∗

定义又等价于诱导的(ik[n])
∗是满射.

定理 1.15 (Joyal). 设QuasiCat是sSet中由无穷范畴组成的满子范畴，那么QuasiCat上有自然的模型

范畴结构.

例 1.24. 设C是任意局部小？范畴，则它的神经NC是一个无穷范畴.并且，这样得到的无穷范畴具有特别的性

质——它的内角填充都是唯一的，或者说之前讨论的映射(ik[n])
∗是单射.

定义. 给定范畴C和
饱和的(saturated)

定义. 单纯集∆[n]的支架(spine)是子单纯集

I [n] := {f : [k]→ [n] | im f = {j}或者{j, j + 1}}.

引理 1.3. 支架提升与锥提升等价

定理 1.16. 给定单纯集的包含i : K ↪→ K和Kan纤维p : X → Y，那么由交换图

homsSet(L,X) homsSet(L, Y )

homsSet(K,X) homsSet(K,Y )

p∗

i∗ i∗

p∗
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诱导的映射

homsSet(L,X)
(i∗,p∗)−−−−→

也是Kan纤维.

1.6.1

Anadyne 映射是K ↪→ L诱导了|K| ≃−→ |L|.

1.7 拓扑构造

1.7.1 单纯同伦

定义. 给定单纯集的态射f, g : X∗ → Y∗，那么一个f到g的单纯同伦(simplicial homotopy)是单纯态射

H : X ×∆[1] → Y,

满足如下是交换图：

L

X∗ ×∆[0] X∗ ×∆[1] X∗ ×∆[0].

f

idX×d[0]
H

g

idY ×d[0]

与拓扑空间稍微不同的地方是，单纯同伦并不一定保证给出所有

定理 1.17. 给定单纯集X∗, Y∗，若Y是Kan复形则单纯同伦是homsSet(X,Y )上的等价关系.

证明.

例 1.25. 我们将要在这个例子中说明，存在两个映射f, g : ∆[0] →∆[1]，使得一个方向的同伦存在，但另一个

方向的同伦不存在.

命题 1.18. 给定单纯集X∗，称包含为X的n骨架(n-skeleton).对任意的单纯集X，

X = colimnX
(n) =

⋃
n∈N

X(n).
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练习 1.24. 给定函子F,G : C → D，若α : F ⇒ G是自然变换，求证它诱导了同伦N(α) : NF ⇒ NG.

由此证明，若F : C ⇆ D : G是伴随对，则存在单纯集的弱等价NC ≃ ND.特别地，若C中有始对象（或终
对象），则NC弱等价于单点.

练习 1.25. 求证|PX| = P |X|.

练习 1.26. 求证若X是可缩的单纯集，那么S|X|是可缩的单纯集.

证明.

1.7.2 单纯同伦群

1.8 单纯范畴

定义. 给定范畴C，若存在映射空间(mapping space)函子

homC(−,−) : C◦ × C → sSet,

满足

1. homC(X,Y )0 = homC(X,Y )，

2. 函子homC(X,−) : C → sSet有左伴随

X ⊗− : sSet→ C,

满足结合律

X ⊗ (Y × Z) = (X ⊗ Y )⊗ Z,

3. 函子homC(−, Y ) : C◦ → sSet有左伴随

homC(−, Y ) : sSet→ C◦.

定理 1.19. 给定函子F : C → D，若对任意D中的对象B，斜线范畴F/B都是可缩的，则F是同伦等价.

推论 1.19.1. 若范畴C中有始（终对象），则C可缩.

推论 1.19.2. 若函子F : C → D存在右伴随，则F是同伦等价.

推论 1.19.3. 由嵌入诱导的BN→ BZ是同伦等价.

练习 1.27. 设C是一个单纯范畴，X是sC中的对象，定义

|X| :=
∫ [n]

X ⊗∆ = coeq

 ∐
f :[n]→[m]

Xm ⊗∆[n]
f∗

⇒
f∗

∐
[n]

Xn ⊗∆[n]

 .
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1. 假设X是常值函子，求证|X| ∼= X.

2. 假设C = Set，求证|X| ∼= diag X.

3. 假设C = Top，且X : ∆◦ → Top满足每个Xn都是离散空间，即存在一个分解X =: ∆◦ X̃−→ Set →
Top.求证|X| ∼= |X̃|.

4. 给定双单纯集(bisimplicial set)之间的映射f : X → Y，满足对于每一个n，fn : Xn → Yn都是弱等价，

求证f诱导了弱等价|X| ≃ |Y |.

证明.

练习 1.28. 给定函子F : C → D，我们有范畴D/F .

1. 令X是双单纯集，满足Xp,q是配对

(Bq → Bq−1 → · · · → B0 → F (A0), A0 → · · · → Ap)

的全体，横向和纵向的面映射分别由C和D的神经给出.借助X求证D/F弱等价于C.

2. 考虑图

C D/F D◦

D D/id D◦,

F

借助前一部分证明Quillen定理A.

证明.
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第二章 模型范畴

2.1 模型范畴的定义与性质I

定义. 设M是范畴，我们有M中的态射族WE,Fib和Cof，分别被称为弱等价（weak equivalence,
∼−→）、

纤维（fibration, ↠）和余纤维（cofibration, ↪→）满足：

MC1. M是（有限）完备和余完备的，

MC2. f, g和g ◦ f中任意两个是弱等价则第三个也是弱等价，

MC3. 若态射f是g的收缩(retract)1，则若g属于态射族WE,Fib或Cof，则f也属于相同的态射族，

MC4. 任给定交换图

A E

X B,

g

i p

f

h

其中i是余纤维p是纤维，且要么i要么p是一个弱等价，则存在提升h : X → E使整个图交换，

MC5. 任意M中的态射f : A→ B都有分解f = q ◦ i = p ◦ j，其中p, q是纤维，i, j是余纤维，i, p是弱等价，

则称范畴M是模型范畴(model category).

若p既是纤维又是弱等价，则称p是零调纤维(acyclic fibration)或平凡纤维(trivial fibration)，对偶地若i既

是余纤维又是弱等价，则称p是零调余纤维(acyclic cofibration)或平凡余纤维(trivial cofibration).

由于模型范畴M是（有限）完备和余完备的，故存在始对象∅和终对象{∗}.若M中的对象A满足∅ → A是

余纤维，则称A是余纤维对象(cofibrant object)，对偶地，若M中的对象B满足B → {∗}是纤维，则称B是纤
维对象(fibrant object).

关于图

A E

X B,

g

i p

f

h

37
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若提升h : X 99K E存在，则称p关于i有右提升性质(right lifting property, RLP)或称i关于p有左提升性质(left

lifting property, LLP).

例 2.1. 给定模型范畴M，C ∈ obM是给定的对象，那么M/C有自然的模型结构：

1. f/C : X/C → Y/C是弱等价当且仅当它本身在M中的态射f : X → Y是弱等价，

2. i/C : A/C → X/C是余纤维当且仅当它本身在M中的态射i : A→ X是余纤维，

3. p/C : E/C → B/C是纤维当且仅当它本身在M中的态射p : E → B是纤维.

例 2.2. 给定模型范畴M，那么范畴morM有自然的模型结构.

例 2.3. 给定范畴I = {1← 0→ 2}，那么Funct(I,M)存在一个模型结构，使得Funct(I,M)中的态射η : F ⇒
G是弱等价当且仅当ηi对任意i ∈ ob I是弱等价，且η是余纤维当且仅当η0是余纤维且诱导的

F (1)
∐
F (0)

G(0)→ G(1), F (2)
∐
F (0)

G(0)→ G(2)

是M中的余纤维.

我们将用接下来的整节给出一个模型范畴的例子，并且借此说明模型范畴一定程度上处理了我们关注的

同伦问题.

练习 2.1. 设P是偏序集且其上有模型结构.求证P通过一系列Quillen等价得到P≃，满足P≃中的所有态射都同

时是纤维和余纤维，且P≃中的弱等价是同构.[考虑P cof ↪→ P .]

练习 2.2 (收缩论断(retract argument)). 在范畴C中，若存在分解f = p◦ i，且f关于p有左提升性质，则f是i的
收缩.

证明. 考虑图

A B

C C,

i

f pr

左提升性质说明存在r : C → B使得整幅图交换，于是下图

A A A

C B C

f i f

r p

说明f是i的收缩.

2.2 拓扑空间

2.2.1 第一个模型结构
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定义. 给定拓扑空间的连续映射i : A→ X，若它满足同伦扩张性质(homotopy extension property, HEP)，

即对任意的f : X → Y，若存在同伦H : A× I → Y使得图

A A× I

Y

X X × I

i

i0

i×id

H

i0

f

H̃

是交换的，其中i0(x) = (x, 0)，那么存在同伦H̃ : X × I → Y是H的扩张，即H̃与整幅图交换，则称映

射i是余纤维(cofibration).

通常情况下，H̃的存在不是唯一的，我们也不要求有唯一性.考虑到Top是笛卡尔闭的，即对任意（紧生

成、弱Hausdorff）的拓扑空间Y, Z，存在homTop(Y, Z)上的自然的拓扑结构，记为Map(Y,Z)，满足

homTop(X × Y,Z) ∼= homTop(X,Map(Y, Z))

是一个自然同构.于是上图在这个自然同构下等价于交换图

A Map(I, Y )

X Y,

H

i p0

f

H̃

中H̃的存在性.

引理 2.1. 若i : A→ X是余纤维，g : A→ Y是任意映射，那么g诱导的映射Y → Y ∪g X也是余纤维.

证明. 注意到(Y ∪g X)× I ∼= (Y × I) ∪g×id (X × I)，考虑交换图

A A× I

Y Y × I

Z

Y ∪g X (Y ∪g X)× I

X X × I,

i0

i

g

g×id

i×id

H

H̃

由于左侧方块
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A X

Y Y ∪g X

i

g

是推出，右侧方块

A× I X × I

Y × I (Y ∪g X)× I

i

g

也是推出图.由于i : A → X是余纤维，因此存在X × I 99K Z与整幅图交换，这样由于(Y ∪g X) × I是推出存
在H̃ : (Y ∪g X)× I 99K Z是H的提升.

定义. 给定连续映射f : X → Y，则f的映射柱(mapping cylinder)是拓扑空间

Mf := Y ∪f (X × I),

其中f按照给定的映射定义在X × {0}上.

事实上，按定义Mf是推出

X X × I

Y Mf,

i0

f

因而连续映射的映射柱可以帮助检验一个连续映射是否是余纤维.考虑如下交换图

A A× I

Mi

X X × I,

i

i0

i×id

i0

r

如果存在使得图交换的连续映射r : X × I →Mi，那么对任意的Y满足

A A× I

X Y,

i0

i

f

映射柱的泛性质给出唯一的连续映射Mi→ Y，与r的复合是想要的同伦.反过来，若i是余纤维，取r是余纤维

定义给出的映射.

另一方面，任意给定的连续映射f : X → Y都有分解

X
j−→Mf

r−→ Y,
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其中j : x 7→ (x, 1)，r : Mf → Y满足r : y 7→ y, (x, s) 7→ f(x).记i : Y → Mf是自然的包含，那么r ◦ i = idY，

且H :Mf × I →Mf, (y, t) 7→ y, ((x, s), t) 7→ (x, (1− t)s)给出了同伦idMf ≃ i ◦ r.

引理 2.2. 如上讨论的映射j : X →Mf是余纤维.

证明.

事实上，连续映射f : X → Y的映射柱Mf满足这样的性质有更深刻的原因，这部分我们会作为同伦余极

限进行讨论.

练习 2.3. 若嵌入映射i : A→ X是余纤维，且A是可缩的，求证商映射q : X → X/i(A)是同伦等价.

证明. 考虑同伦H : A× I → A满足H(−, 0) = id，H(−, 1) = {∗}，那么由于i是余纤维存在提升

A A× I

X

X X × I,

i

i0

i×id

H◦i

i0

idX

H̄

满足H̃(−, 0) = id，H̃(−, 1)将i(A)映到一点，且H̃(i(A), 1) ⊆ i(A).这样，对于任意的t ∈ [0, 1]，q◦H̃(i(−), t)将i(A)映
到一点，根据商映射的泛性质存在交换图

X X

X/i(A) X/i(A).

H̃(−,t)

q q

H̄(−,t)

特别地当t = 1时，H̃(−, 1)已经将i(A)映到一点，定义

g : X/A→ X

x 7→

{
∗ x = i(A)/i(A)

H̃(x, 1) x ∈ X − i(A)
,

这样g ◦ q = H̃(−, 1)（这也是按照商映射的泛性质分解得到的），同时对任意x̄ ∈ X/i(A)，qg(x̄) = qgq(x) =

q ◦ H̃(x, 1) = H̄(q(x), 1) = H̄(x̄, 1)，即有交换图

X X

X/i(A) X/i(A).

H̃(−,1)

q q

H̄(−,1)

g

于是，gq = H̃(−, 1) ≃ H̃(−, 0) = id且qg = H̄(−, 1) ≃ H̄(−, 0) = id.

练习 2.4. 给定余纤维i : A→ X，f : X → X满足f ◦i = i，且f ≃ id.求证存在g : X → X满足g◦i = i且g◦f ≃
id(rel A).
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证明. 选定同伦H : f ⇒ idX，注意到H(i(−), 0) = f ◦ i = i且H(−, 1) = idX，映射H(i, idI)的同伦提升性质

说明

A A× I

X

X X × I

i

i0

i×id

H(i,id)

i0

idX

H̄

存在同伦H̄ : X × I 99K X使得H̄ ◦ (i× id) = H ◦ (i× id)，并且H̄(−, 0) = idX .令g := H̄(−, 1)，那么

g ◦ i = H̄(i(−), 1) = H(i(−), 1) = idX ◦ i = i.

再次考虑同伦提升

A× I A× I × I

X

X × I X × I × I,

i×id

i0

i×id×id

K

i0

J

L

其中J是同伦J : g ◦ f ≃ id，定义为

J(x, s) :=

{
H̃(f(x), 1− 2s) s ≤ 1

2

H(x, 2s− 1) s ≥ 1
2

,

K是同伦

K(a, s, t) :=

{
H̃(i(a), 1− 2s(1− t)) s ≤ 1

2

H(i(a), 1− 2(1− s)(1− t)) s ≥ 1
2

,

于是

g ◦ f = J(−, 0) = L(−, 0, 0) ≃ L(−, 0, 1) ≃ L(−, 1, 1) ≃ L(−, 1, 0) = J(−, 1) = id(rel A),

这即为要证.

与如上对偶地，有纤维的概念，它的性质几乎完全对偶于余纤维：

定义. 给定拓扑空间的连续映射p : E → B，若它满足同伦提升性质(homotopy lifting property, HLP)，即

对任意的f : Y → E，若存在同伦H : Y × I → B（同样记为H : Y → BI）使得图

E EI

Y

B BI

p

p0

i×id

f

H

H̃

p0

是交换的，其中p0(γ) = γ(0)，则称映射p是纤维(fibration).
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上面的这个自然同构下等价于交换图

Y E

Y × I B,

f

i0 p

H

H̃

中H̃的存在性.同样地，我们有

引理 2.3. 若p : E → B是纤维，g : Y → B是任意映射，那么g诱导的映射Y ×B E → Y也是纤维.

引理2.3和2.1说明了余纤维关于推出封闭，纤维关于拉回封闭，事实上这是模型范畴一般正确的结论，我

们将在引理2.3中证明一般的结果.

然而，这并不是范畴Top上唯一可能的模型结构，为做区别，称这里定义的余纤维是Hurewicz余纤维，

纤维是Hurewicz纤维.范畴Top中的Hurewicz余纤维和Hurewicz纤维都是非空的，例如CW子复形诱导的映射A ↪→
X是余纤维，当B是仿紧拓扑空间时B上的纤维丛是纤维.

定义. 给定连续映射p : E → B，定义它的道路空间(mapping path space)是

Np := E ×p BI = {(x, γ) | γ(0) = p(x)} ⊆ E ×BI .

明显地Np是拉回

Np BI

E B,

p0

p

因而连续映射的道路空间可以帮助检验一个连续映射是否是纤维，即若图中

E EI

Np

B BI

p

p0

i×id

p0

Np 99K EI存在则p是纤维.

引理 2.4. 若i : A→ X是纤维且B是空间，则诱导的映射

Bi : BX → BA

是纤维.
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证明. 首先注意到

BMi = Map(Mi,B) = Map(colim(X ← A
i0−→ A× I), B)

= lim(Map(X,B)→ Map(A,B)
i∗0←− Map(A× I,B))

= lim(Map(X,B)→ Map(A,B)
i∗0←− Map(A,BI))

= lim(BX → BA i∗0←− (BA)I) = NBi.

考虑收缩映射r : X × I →Mi，那么

Br : NBi ∼= BMi → BX×I ∼= (BX)I

给出了想要的提升.

同时，对任意的连续映射f : X → Y，可以找到分解

X
ι−→ Nf

q−→ Y,

其中ι : x 7→ (x, constf(x))，constf(x)是在点f(x)上的常值路径，q : (x, γ) 7→ γ(1).于是

q(ι(x)) = q(x, constf(x)) = f(x).

令π : Nf → X是自然的投影(x, γ) 7→ x，那么π ◦ ι = idX，且存在形变收缩

H : Nf × I → Nf

((x, γ), t) 7→ (x, γt),

其中γt(s) = γ((1− t)s)，这给出了idNp ≃ ι ◦ π.

引理 2.5. 如上讨论的映射q : Nf → Y是纤维.

证明. 任意给定范畴Top中的交换图

A Np

A× I Y,

g

i0 q

H

H̃

我们需要构造同伦提升H̃.记g : a 7→ (g1(a), g2(a))和

γ(a,t)(s) =

{
g2(a)(s+ st) if 0 ≤ s ≤ 1

1+t

H(a, s+ st− 1) if 1
1+t
≤ s ≤ 1,

令

H̃(a, t) = (g1(a), γ(a,t)),

那么根据

q ◦ H̃(a, t) = q(g1(a), γ(a,t))(1) = H(a, t)

可知H̃是所要的提升.
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这样，我们可以叙述第一个具体的模型结构的结果了：

定理 2.1. 在范畴Top上存在模型结构，满足

1. 弱等价是同伦等价，即映射f : X → Y满足存在g : Y → X，使得f ◦ g ≃ idY , g ◦ f ≃ idX，

2. 纤维是所有的Hurewicz纤维，

3. 余纤维是所有的Hurewicz余纤维.

证明.

2.2.2 第二个模型结构

除去第一小节介绍的模型结构，Top上还存在其他的模型结构，一般而言这个模型结构

定理 2.2. 在范畴Top上存在模型结构，满足

1. 弱等价是弱同伦等价，即映射f : X → Y满足诱导的πi(f) : πi(X)→ πi(Y )对所有的i都是同构，

2. 纤维是所有的Serre纤维，

3. 余纤维是胞腔粘贴映射的收缩，即图

A2 A1 A2

X2 X1 X2

s

j2

r

j1 j2

i p

中若r ◦ s = idA2
, p ◦ i = idX2

，嵌入映射j1 : A1 ↪→ X1是相对CW复形（即X1/A1是CW复形），

则j2 : A2 → X2是余纤维.

在这个模型结构中，所有的拓扑空间都是纤维对象，更重要的，它强调了CW复形的特殊地位：余纤维

对象恰是CW复形的收缩.今后提到范畴Top时，若不加指明所指的模型结构是本小节提到的Serre模型.

练习 2.5. 在范畴Top中，若A ↪→ X是相对CW复形，求证它沿f : A→ Y的推出Y ↪→ X
∐
A Y也是相对CW复

形.

若相对CW复形A ↪→ X同时还是弱同伦等价，求证它沿f : A→ Y的推出Y ↪→ X
∐
A Y也是弱同伦等价.

证明.

证明. 首先来证明MC5)，即连续函数的分解.考虑所有形如

—ΛnD

kD
— X

—∆nD

kD
— Y

αD

f

βD
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的交换图，它们一起诱导了推出X1 ∐
D—ΛnD

kD
— X X0

∐
D—∆nD

kD
— X1 Y,

{αD}

i1 f=f0

{βD} f1

这样根据推出的泛性质我们得到了一个分解f0 = f1◦i1.由于
∐
D |Λ

nD

kD
| ↪→

∐
D |∆

nD

kD
|是弱同伦等价的相对CW复

形，i1也是弱同伦等价的相对CW复形（习题2.5）.同样的构造考虑所有形如

—ΛnD

kD
— X1

—∆nD

kD
— Y

αD,1

f1

βD,1

的交换图，它们一起诱导了推出X2 ∐
D—ΛnD

kD
— X1

∐
D—∆nD

kD
— X2 Y,

{αD,1}

i2
f1

{βD,1} f2

这样根据推出的泛性质我们得到了一个分解f1 = f2 ◦ i2.将这个操作进行下去，我们得到了图

X = X0 X1 X2 · · ·

Y,

i1

f=f0

i2

f1

i3

f2

那么余极限的泛性质给出了如下图

X = X0 colimiXi

Y,

i∞

f0=f f∞

这样需要证明i∞是零调余纤维，f∞是纤维即可.

由于每一个in : Xn−1 ↪→ Xn都是相对CW复形，

colimiXi =
⋃
i∈N

Xi,

于是

(colimiXi)/X0 =

(⋃
i∈N

Xi

)/
X0 =

⋃
i∈N

(Xi/X0)

是CW复形，因而i∞ : X0 → colimiXi是相对CW复形.为证明i∞是弱同伦等价，任取

f : (Dn, Sn−1)→ (colimiXi, X0),

由于Dn是紧集，根据CW复形的性质f的像一定在某个Xm中.但是X0 ↪→ Xm是弱同伦等价，因此存在g : Dn →
X0使得f ≃rel Sn−1 g，这样[f ] ∈ πn(colimiXi, X0)是0，即i∞是弱同伦等价.

最后来证明f∞是纤维.考虑图
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—Λnk— colimiXi

—∆n
k— Y,

α

f∞

β

|Λnk |和|∆n
k |的紧性说明存在j使得图

—Λnk— colimiXi

Xj

—∆n
k— Y,

α

αj

f∞

fj

β

成立，于是只要找到提升|∆n
k | → Xj即可.但Xj+1的定义（作为推出）使得图

—Λnk— Xj

Xj+1

—∆n
k— Y,

α

fj

ij

fj+1βj+1

β

存在，因此得到了提升βj+1 : |∆n
k | → Xj+1.

Quillen称如上证明的这个技巧为小对象论断(small object argument)，我们之后会对这个证明进行更详

细的讨论和推广.

2.3 模型范畴的定义与性质II

这一节我们将继续探索模型范畴的一般性质，在之前一节的例子中这些都有良好的拓扑含义.

2.3.1 封闭性

更准确地讲，上一节定义的模型范畴是闭模型范畴(closed model category)，它在下述意义下是闭的，即

零调纤维（对应的零调余纤维）和余纤维（对应的纤维）相互决定：

引理 2.6. 设M是模型范畴，那么如下论断成立：

1. 映射i : A → X是余纤维当且仅当它对所有的零调纤维满足左提升性质.或者形式化地写为Cof =

LLP(Fib ∩W )，其中LLP表示满足所有左提升性质(left lifting property)的态射全体.

2. 映射i : A→ X是零调余纤维当且仅当它对所有的纤维满足左提升性质.

3. 映射p : E → B是纤维当且仅当它对所有的零调余纤维满足右提升性质.

4. 映射p : E → B是零调纤维当且仅当它对所有的余纤维满足右提升性质.
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证明. 1.设i : A ↪→ X是给定的余纤维，p : E
∼
↠ B是给定的零调纤维，且有交换图

A E

X B,

g

i p

f

那么自然由定义，存在h : X 99K E与图交换，因此Cof ⊆ LLP(Fib ∩W ).反过来，若给定映射i : A → X，满

足对任意零调纤维有左提升性质，那么有交换图

A E

X X,

j

i p

id

k

其中A ↪→ E ↠ X是A→ X按照MC5进行的分解，且p是零调纤维，这意味着i是收缩

A A A

X E X,

id

i

id

j i

k p

于是根据MC3)，i也是余纤维.

2. 仿照上一部分的定义，其中分解A ↪→ E ↠ B要求j : A ↪→ E是零调余纤维即可.剩余部分的证明可以

完全对偶地完成.

引理2.6自然地推出

命题 2.3. 在一个模型范畴中，

1. 余纤维和零调余纤维都对复合和推出封闭，特别地，任意同构都是余纤维.

2. 纤维和零调纤维都对复合和拉回封闭，特别地，任意同构都是纤维.

证明. 设i : A→ X是纤维，f : A→ Y是任意态射，于是有交换图

A Y

X X
∐
A Y,

f

i

根据引理2.6，只需要证明Y → X
∐
A Y对所有的零调纤维具有左提升性质即可.任给定的交换图

A Y E

X X
∐
A Y B,

f

i ph̃

满足p : E ↠ B是零调余纤维，于是存在提升h̃ : X → E与图交换.注意到X
∐
A Y是推出，因此根据泛性质存

在h : X
∐
A Y → E，这就是所要的提升.

给定余纤维i : A→ X, j : X → Y，对任意的零调纤维E ↠ B，考虑交换图
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A E

X

Y B,

i

p

j

由于i : A → X是余纤维，因此存在对于A → E和X → Y → B的提升X 99K E使得图交换，再由于j : X →
Y是余纤维，存在对于X 99K E和Y → B的提升Y 99K E使得图交换，因此证明了j ◦ i对p : E → B有左提升性

质，因此j ◦ i是余纤维.

其余部分的证明完全类似.

注意到以上命题中任意一条对弱等价都不成立.但实际情况下有些模型范畴对弱等价也有好的推出和拉回

的性质，于是

定义. 给定模型范畴M，若M中的弱等价沿余纤维的推出也是弱等价，则称M是左正规的(left proper)，

对偶地若M中的弱等价沿纤维的拉回也是弱等价，则称M是右正规的(right proper).若M同时左右正规，
则称M是正规的(proper).

回到一般的理论中，事实上，Quillen最初对模型范畴的定义并不是这里的定义，最开始的定义不包含MC3)三

个态射族对取收缩的封闭性（注意到这一条在封闭性的证明中起到核心的作用），对应的最初的定义多了命

题2.3及其对偶所述的条件，根据前面的证明，这是封闭性的推论，因此为强调有时会称本章刚开始定义的模

型范畴为闭模型范畴(closed model category).虽然这样按Quillen最初定义的模型范畴更一般一点，但通常我

们见到的都是闭模型范畴，在之后提到模型范畴时我们也指闭模型范畴.

练习 2.6. 证明所有同构的全体满足6选2公理.进而证明，任意范畴中的任意一族态射，若包含恒等态射并且

满足6选2公理，则一定包含同构.

证明.

练习 2.7. 给定一族态射{iλ : Aλ → X}λ∈Λ且
∐
λ∈ΛAλ存在，求证{iλ : Aλ → X}λ∈Λ中的每个态射都是（零

调）余纤维当且仅当诱导的 ∐
λ∈Λ

iλ :
∐
λ∈Λ

Aλ → X

是（零调）余纤维.

证明. 由于后面内容使用到零调余纤维的情形，我们这里证明这个结论，余纤维的证明完全相同.

定义. 给定模型范畴M和其中的对象A，(MC5)说明典范态射∅ → A有分解∅ ↪→ QA
∼
↠ A，其中∅ ↪→

QA是余纤维，QA
∼
↠ A是零调纤维，称QA是A的余纤维替代(cofibrant replacement).

任给定f : X → Y，我们可以找到X,Y的余纤维替代QX,QY，于是有交换图
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QX QY

X Y,
f

转化为

∅ QY

QX X Y

∼ Qf

f

后根据(MC4)，存在Qf : QX 99K QY使得图是交换的，称Qf（也记为f̃）是f的余纤维提升(cofibrant lifting).

对偶地，对任意M中的对象X，典范态射X → {∗}有分解X ∼
↪→ RX ↠ {∗}，其中X ∼

↪→ RX是零调余纤

维，RX ↠ {∗}是纤维，RX称为X的纤维替代，且任意态射f : X → Y也有纤维提升Rf : RX 99K RY

X Y RY

RX {∗}.

∼ Rf

练习 2.8. 若模型范畴M中的对象X是纤维对象，那么它的余纤维替代QX同时是纤维对象和余纤维对象.

练习 2.9. 设范畴C是一个有限预序范畴(finite order)，完备且余完备，设W是C中的一族态射.求证C上存在一
个以W为弱等价的模型当且仅当

1. W满足3选2公理，

2. 记Wc是W中拉回依旧在W中的态射，对偶地Wf是W中推出依旧在W中的态射，则任意W中的态射都可

以分解为Wc与Wf中的态射的复合（Wf中的态射在后面）.

练习 2.10. 求证所有偏序上的模型结构都Quillen等价于平凡的模型结构，即所有的弱等价、纤维和余纤维都

是同构.

练习 2.11. 求证若模型范畴M中的对象X,Y之间存在正反链接(zig-zag)，那么存在长度为4的正反链接.

练习 2.12. 这个习题中我们将要引入新的概念，并借助此分类Set上的所有的模型结构.

给定范畴C，(L,R)是C中的一对态射族，若满足

• �R = L

• L� = R

• 对任意C中的态射f : A→ B，都存在fL : A→ X和fR : X → B满足fL ∈ L, fR ∈ R且fRfL = f

则称(L,R)是C的一个弱分解系统(weak factorization system).

1. 求证任意弱分解系统(L,R)满足L在收缩和推出下封闭，R

2. 求证一个模型结构等价于给出一个满足3选2公理的一族态射W和两个弱分解系统(L1, R1)和(L2, R2)满

足L2 =W ∩ L1且R1 =W ∩R2.

3. 求证Set上的弱分解系统有且仅有以下6种：

4. 求证Set上的模型结构有且仅有以下9种：
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2.3.2 同伦与同伦等价

我们建立模型范畴的语言就是为了讨论同伦关系，因此在模型范畴中探讨合适的同伦的定义是必要的，

这里的定义与Top中的同伦基本是相同的，但一般的模型范畴中同伦分左右，而在Top中左右同伦是相同的.

定义. 设M是模型范畴，A是M中的对象.对余对角线∇ : A
∐
A→ A，MC5说明它可以分解为

A
∐
A

A× I A,

∇i0+i1

∼

其中i0 + i1 : A
∐
A → A × I是余纤维，A × I ↠ A是零调纤维，称A × I是对象A的柱对象(cylinder

object).给定两个态射f, g : A⇒ B，若存在A的柱对象到B的态射H满足图

A
∐
A

A× I B,

f+g
i0+i1

H

交换，则称f左同伦于(left homotopic to)g，记为f ≃l g，H : f ⇒ g是f, g的左同伦(left homotopy)，意

味着ι0 ◦ (i0 + i1) ◦H = f, ι1 ◦ (i0 + i1) ◦H = g.

由于MC5)中保证的分解并不一定具有函子性，因此也不能保证柱对象的存在具有函子性.注意在以上定

义中，A × I并不表示两个对象的积，i0 + i1也不表示两个态射的和，它们只是存在的某个对象和态射的记

号.事实上，通常我们称这样的柱对象是非常好的(very good cylinder object)，之后会有在非模型范畴中关于

柱对象的讨论，相应地定义也会有一定的弱化

1. 若余对角线∇ : A
∐
A→ A有分解A

∐
A

i0+i1−−−→ A× I → A，满足i0 + i1是余纤维且A× I → A是弱等价，

则称A× I是好的柱对象(good cylinder object)，

2. 若分解A
∐
A

i0+i1−−−→ A× I → A只满足A× I → A是弱等价，则称A× I是柱对象(cylinder object).

同样地，如上定义的左同伦是非常好的左同伦，这因为分解的对象A × I是非常好的柱对象；当分解的对

象A× I是好的柱对象或者柱对象时，相应的左同伦被称为好的左同伦和左同伦.我们始终用记号f ≃l g表示态
射f与g左同伦.

按定义，存在交换图

∅ A

A A
∐
A,

ι0

ι1

与i0 + i1的复合给出了A⇒ A
∐
A→ A× I，两个态射分别记为i0, i1.
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引理 2.7. 若A是模型范畴M中的余纤维对象，A× I是一个好的柱对象，那么i0, i1 : A→ A× I是零调余
纤维.

证明. 根据假设，交换图中

∅ A

A A
∐
A,

ι0

ι1

∅ → A是余纤维，上图中的ι0, ι1都是余纤维，而A × I是好的柱对象，i0 + i1也是余纤维，于是i0, i1 : A →
A× I是余纤维的复合，因此也是余纤维.

另一方面，复合A
ι0−→ A

∐
A

i0+i1−−−→ A × I → A = A
ι0−→ A

∐
A

∇−→ A = id，注意到A × I → A是弱等价，

由MC2)，i0 : A→ A× I是零调余纤维.对i1的证明完全相同.

引理直接说明了若f ≃l g，那么f是弱等价当且仅当g是弱等价.这是因为，H ◦ i0 : A→ A
∐
A→ A× I =

A → A
∐
A → B = f，同理H ◦ i1 = g，而引理说明i0, i1都是弱等价，因此按照MC2)，f是弱等价当且仅

当H是弱等价，当且仅当g是弱等价.

引理 2.8. 若态射f ≃l g : A → X，那么存在好的左同伦H : f ⇒ g.如果X还是纤维对象，那么存在非常

好的左同伦H : f ⇒ g.

证明. 设H : A× I → X是左同伦f ≃l g，根据MC5)态射A
∐
A

i0+i1−−−→ A× I有分解

A
∐
A

A× J A× I A,

∇
i0+i1

j0+j1

∼ ∼

其中j0 + j1是余纤维，因此A× J是一个好的柱对象（A× I → A不一定是纤维），因此

f + g = H ◦ (i0 + i1) = H ◦ (A× J → A× I) ◦ (j0 + j1),

即H ◦ (A× J → A× I)是一个好的同伦.

再假设X是纤维对象，根据前一部分的证明假定H : f ⇒ g是一个好的左同伦A × I → X.由MC5)，存

在A× I → A的分解

A
∐
A

A× I A,

A× J

∇i0+i1

∼

j
∼
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其中j : A × I → A × J是余纤维，A × J → A是零调纤维，MC2)说明j也是弱等价.记j0 + j1 = j ◦ (i0 + i1)，

因此A× J是一个很好的柱对象.考虑交换图

A× I X

A× J {∗},

H

j

MC4)说明存在提升A× J 99K X，这即是我们想要的同伦.

引理2.8的前半部分说明对于模型范畴，存在左同伦H : f ⇒ g当且仅当存在好的左同伦H ′ : f ⇒ g，左同

伦关系完全可以用好的左同伦的存在性来定义.但是左（对偶地，右）同伦不一定必须要在模型范畴上定义，

在其他情况下引理2.8并不正确.

命题 2.4. 给定M中的纤维对象X和f ≃l g : B → X，h : A→ B是任意态射，那么f ◦ h ≃l g ◦ h.

证明. 假设H : B × J → X是非常好的左同伦f ⇒ g，其中B × J是一个非常好的柱对象.取A的一个好的柱对

象A× I，那么有交换图

A
∐
A B

∐
B B × J

A× I A B,

h
∐
h

h

根据MC4)存在提升K : A× I 99K B × J，于是交换性说明态射H ◦K : A× I → B × J → X满足

(H ◦K) ◦ i0 = H ◦ j0 = f, (H ◦K) ◦ i1 = H ◦ j1 = g,

是所要的同伦.

命题 2.5. 若A是M中的余纤维对象，那么≃l是homM(A,X)上的等价关系.

证明. 自反性：由于A是自身的柱对象，于是交换图

A
∐
A

A B

f
∇

f

给出了想要的同伦.

对称性：考虑ι1+ ι0 : A
∐
A→ A

∐
A（即换序态射），注意到(f +g)(ι1+ ι0) = g+f，这说明若f ≃l g那

么g ≃l f .
传递性：假设f ≃l g, g ≃l h，取定好的同伦H : A× I → X,K : A× J → X（即H : f ⇒ g和K : g ⇒ h），

考虑推出图
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A A× I

A× J A× IJ

i1

j0 i

j

（选择i1, j0的原因是二者与相应同伦的复合都是g），由引理2.7，i1, j0都是零调余纤维，再根据命题2.3，A→
A× IJ是零调余纤维.另一方面，A

i1−→ A× I
∼
↠ A = A

j0−→ A× J
∼
↠ A = idA，根据推出的泛性质

A A× I

A× J A× IJ

A

i1

j0 i
∼

j

∼

存在A × IJ 99K A，由MC2)这是一个弱等价.同时，习题2.7说明i1 + j0 : A
∐
A → A × IJ是零调余纤维，因

此A× IJ是一个好的柱对象.再次根据推出的泛性质

A A× I

A× J A× IJ

X

i1

j0 i
H

j

K

HK

存在由同伦H,K诱导的态射HK : A× IJ → X，注意到

HK ◦ (i ◦ i0) = (HK ◦ i) ◦ i0 = H ◦ i0 = f

且

HK ◦ (j ◦ j1) = (HK ◦ j) ◦ j1 = H ◦ j1 = h,

这就是我们想要的同伦HK : f ⇒ h.

以上的结果提示，当A是余纤维对象的时候，可以定义商集[A,X]l := homM(A,X)/ ≃l（或记为πl(A,X)），

它是homM(A,X)中所有等价类的全体.当A不是余纤维对象的时候，也可以定义[A,X]l是由左同伦生成的等

价类的全体.

引理 2.9. 给定模型范畴M中的余纤维对象A，p : E → B是零调纤维，那么

p∗ : [A,E]l → [A,B]l

[f ] 7→ [p ◦ f ]

给出了集合间的双射.



2.3 模型范畴的定义与性质II 55

证明. 首先验证映射是良定义的.给定f, g : A→ E，H : f ⇒ g是左同伦A×I → E，那么p◦H : p◦f ⇒ p◦g是
左同伦A× I → E → B，因此[p ◦ f ] = [p ◦ g].
接下来验证p∗是满射.取定[h] ∈ [A,B]l，那么有交换图

∅ E

A B,

p

h

MC4)说明存在提升f : A→ E，交换性说明p ◦ f = h，即[h] = [p ◦ f ] = p∗([f ]).

最后说明p∗是单射.假设f, g ∈ homM(A,E)满足p∗(f) = p∗(g)，于是可以找到（好的）左同伦H : p ◦ f ⇒
p ◦ g，于是有交换图

A
∐
A E

A× I B,

f+g

p

H

根据MC4)存在提升K : A× I 99K E，这即是要找到同伦K : f ⇒ g.

命题 2.6. 给定模型范畴M中纤维对象X，那么M中的复合诱导了映射

[A,B]l × [B,X]l → [A,X]l

([f ], [g]) 7→ [g ◦ f ].

证明. 我们这里并未假定B是余纤维的，因此[B,X]l中的等价关系并不完全由左同伦给出.但是，只需要证明

若f ≃l h : A→ B且g ≃l k : B → X，那么g ◦ f和k ◦ h是同一等价类即可.由命题2.4，g ◦ h ≃l k ◦ h.另一方面，
设H : f ⇒ h是给定的左同伦，那么g ◦H : A× I → B → X给出了同伦g ◦ h ≃l g ◦ f .

对偶地

定义. 设M是模型范畴，B是M中的对象.于是对角线∆ : B → B
∏
B可以分解为

BI

B B
∏
B,

(p0,p1)

∆

∼

其中B → BI是零调余纤维，(p0, p1) : B
I ↠ B

∏
B是纤维，称BI是对象B的路径对象(path object).给定

两个态射f, g : A⇒ B，若存在A到B的路径对象的态射H满足图

BI

A B
∏
B,

(p0,p1)

(f,g)

H

交换，则称f右同伦于g，H是f, g的右同伦(right homotopy).
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相应地路径对象也有对偶的性质，也有好的和非常好的右同伦，也可以定义[A,X]r.我们这里不再罗列，

它们的证明也与之前关于柱对象和左同伦的证明相同.然而，这里我们更愿意讨论左同伦和右同伦之间的关

系：

命题 2.7. 给定模型范畴M中的态射f, g : A→ X，那么

1. 若A是余纤维对象且f ≃l g，那么f ≃r g，

2. 若A是纤维对象且f ≃r g，那么f ≃l g.

证明. 由于两个结论互为对偶，我们这里只证明1.设H : A × I → X是给定的左同伦，且A × I是一个好的柱
对象满足复合A

∐
A

i0+i1−−−→ A× I j−→ A是余对角态射∇ : A
∐
A→ A.于是此时i0 : A→ A× I是零调余纤维.取

定X的一个好的路径对象XI，记∆ : X → X
∏
X的分解为X

q−→ XI (p0,p1)−−−−→ X
∏
X，于是MC4)说明交换图

A XI

A× I X
∏
X

q◦f

i0 (p0,p1)

(f◦j,H)

K

存在提升K : A× I 99K XI，这样只要说明K ◦ i1是需要的右同伦即可.注意到

p0 ◦ (K ◦ i1) = (p0 ◦K) ◦ i0 = f ◦ j ◦ i1 = f

且

p1 ◦ (K ◦ i1) = (p1 ◦K) ◦ i1 = H ◦ i1 = g,

这完成了验证.

通常情况下，同一组态射的不同同伦可能由不同的柱对象给出，但命题2.7事实上说明

推论 2.7.1. 命题2.7中的结论等价于

特别地，当模型范畴M中的对象X,Y同时都是纤维对象和余纤维对象的时候，左右同伦都给出homM(X,Y )上

的等价关系，且f, g : X → Y的左同伦等价等价于右同伦等价.此时，记同伦等价为f ≃ g，[X,Y ] := homM(X,Y )/ ≃.

例 2.4. 在范畴Top中，

下面的定理可以看作是抽象版本的Whitehead定理，在范畴Top中恰是经典的Whitehead定理：

定理 2.8. 设f : A → B是模型范畴M中的态射，且A,B同时是纤维对象和余纤维对象，那么f是弱等价
当且仅当f存在同伦逆，即存在g : B → A满足g ◦ f ≃ idA, f ◦ g ≃ idB.

证明. 首先假设f : A→ B是弱等价.于是MC5)说明存在分解

A
i−→ X

p−→ B,

其中i : A→ X是零调余纤维，p : X → B是纤维，那么MC2)说明p也是弱等价.由于A是纤维对象，交换图



2.3 模型范畴的定义与性质II 57

A A

X {∗}

i

id

r

存在提升r : X 99K A满足r ◦ i = idA.由引理2.9的对偶，i给出了双射

i∗ : [X,X]r → [A,X]r

[g] 7→ [g ◦ i],

同时i∗([i ◦ r]) = [i ◦ r ◦ i] = [i]，于是双射说明[i ◦ r] = [id].对偶地由于B是余纤维对象，

∅ X

B B,

p

id

s

存在提升s : B 99K X满足p ◦ s = idB.由引理2.9，p给出了双射

p∗ : [B,X]l → [B,B]l

[f ] 7→ [p ◦ f ],

同时p∗([s ◦ p]) = [p ◦ s ◦ p] = [p]，于是双射说明[s ◦ p] = [idX ].这样，取g : B → A = r ◦ s，那么

g ◦ f = (r ◦ s) ◦ (p ◦ i) = r ◦ (s ◦ p) ◦ i ≃ r ◦ i = idA

且

f ◦ g = (p ◦ i) ◦ (r ◦ s) = p ◦ (i ◦ r) ◦ s ≃ p ◦ s = idB

于是g是f的同伦逆.

另一方面，假定f : A → B存在同伦逆g : B → A，H : A × I → B是（左）同伦f ◦ g ≃l idB.再次

由MC5)说明存在分解

∅

A X B

{∗},

i p

其中i : A → X是零调余纤维，p : X → B是纤维，那么命题2.3说明X也同时是纤维对象和余纤维对象，并且

根据MC2)只需要说明p是弱等价.根据MC4)交换图

B X

B × I B

i0

i◦g

p

H

K
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存在提升K : B × I → X.令s := K ◦ i1 : B → B × I → X，那么p ◦ s = p ◦ K ◦ i1 = H ◦ i1 = idB.注意

到i : A→ X是零调余纤维，前面的讨论说明它有同伦逆r : X → A，因此

p = p ◦ idX ≃ p ◦ i ◦ r = f ◦ r,

同时K : B × I → X给出了同伦i ◦ g ≃l s，合起来

s ◦ p ≃ i ◦ g ◦ p ≃ i ◦ g ◦ f ◦ r ≃ i ◦ idA ◦ r ≃ idX .

根据引理2.7之后的讨论，s ◦ p是一个弱等价.进而交换图

X X X

B X B

id

p

id

s◦p p

s p

说明p是s ◦ p的收缩，因此p也是弱等价.

2.3.3 Quillen对

引理 2.10. 给定模型范畴M,N和伴随函子对

F :M⇆ N : G,

则如下条件等价：

1. 函子F将M中的余纤维映为N中的余纤维，将M中的零调余纤维映为N中的零调余纤维；

2. 函子G将N中的纤维映为M中的纤维，将N中的零调纤维映为M中的零调纤维；

3. 函子F将M中的余纤维映为N中的余纤维，G将N中的纤维映为M中的纤维.

证明. 我们只证明1 =⇒ 2，其余的证明是类似的.

给定N中的纤维p : E → B，考虑M中的交换图

A G(E)

X G(B),

i

f♭

G(p)

g♭

其中i是零调余纤维，由于F,G是伴随，这对应了N中的交换图

F (A) E

F (X) B.

F (i)

f♯

p

g♯

根据假设，F (i)是N中的零调余纤维，因此存在提升
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F (A) E

F (X) B,

F (i)

f♯

p
l♯

g♯

再次根据伴随得到M中的交换图

A G(E)

X G(B),

i

f♭

G(p)

g♭

l♭

根据引理2.6，G(p)是纤维.

定义. 设M,N是模型范畴，若伴随函子对

F :M⇆ N : G

满足引理2.10中的任意条件，则称(F,G)是Quillen对(Quillen pair).

引理 2.11. 给定Quillen对F : M ⇆ N : G，那么若f : A → B是M中余纤维对象之间的弱等价，那
么F (f)是N中的弱等价，对偶地若g : X → Y是N中纤维对象之间的弱等价，那么G(g)是M中的弱等价.

证明.

例 2.5. 考虑函子对

| − | : sSet ⇄ Top : S

定义. 给定模型范畴M,N和伴随函子对

F :M⇆ N : G

是Quillen对，A是M中的余纤维对象，X是N中的纤维对象，且M中的态射

f# : A→ G(X)

是弱等价当且仅当它的伴随

f ♭ : F (A)→ X

是弱等价，则称(F,G)是Quillen等价(Quillen equivalence).
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2.4 链复形

任意给定一个Abel范畴A，经典的同调代数给出了关于Com≥0(A)的结果，

定理 2.9. 在范畴Com≥0(A)上存在（投射）模型结构满足

1. 弱等价定义为拟同构，

2. 余纤维{in : Xn → Yn}n∈Z定义为对任意的n，fn是单同态且余核是投射对象，

3. 纤维{pn : Xn → Yn}n∈Z定义为对任意的n，fn是满同态.

例 2.6. 我们考虑这个模型范畴的左同伦.

2.5 单纯集

定理 2.10 (Quillen). 在范畴sSet上存在模型范畴结构满足

1. 弱等价定义为Quillen弱等价，

2. Cof包含所有的单态射，即每层都是单态射，

3. Fib包含所有的Kan纤维化.

注意到定理2.10所给的纤维对象恰好是Kan复形.

定理 2.11. 定理2.10所给的模型结构是余纤维生成的.

定义.

定理 2.12 (Joyal). 在范畴sSet上存在模型范畴结构满足

1. 弱等价定义为Joyal弱等价，

2. Cof包含所有的单态射，即每层都是单态射，

3. Fib包含所有的.
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注意到定理2.12所给的纤维对象恰好是拟范畴.

2.6 同伦范畴和导出函子

2.6.1 同伦范畴

引理 2.12. 模型范畴M中态射f : X → Y的余纤维提升Qf : QX → QY左同伦下或者右同伦下只依赖

于f，并且Qf是弱等价当且仅当f是弱等价.若Y还是纤维对象，则余纤维提升Qf : QX → QY左同伦下或

者右同伦下只依赖于f的同同同伦伦伦等等等价价价类类类.

证明. 考虑Qf的定义图

∅ QY

QX X Y,

pY

pX

Qf

f

引理2.9说明pY : QY → Y诱导了双射

(pY )∗ : [QX,QY ]l → [QX,Y ]l

[Qf ] 7→ [pY ◦Qf ] = [f ◦ pX ],

这意味着[Qf ]只依赖于f .由于QX是余纤维对象，再根据命题2.7，Qf的左同伦类是右同伦类，于是同伦类仅

依赖于f .

弱等价这部分是MC2)的直接推论.最后根据命题2.6，当Y是纤维对象的时候，(pY )∗([Qf ]) = [f ◦ pX ] =
[f ] · [pX ]，只取决于[f ].

对偶地，纤维替代所给出的纤维提升也是“同伦下唯一的”.

引理2.12说明idX的提升QidX左（右）同伦于idQX，同样地考虑f : X → Y, g : Y → Z，那么有Q(g ◦ f) :
QX → QZ和Qg ◦Qf : QX → QY → QZ，引理同样说明了Q(g ◦ f) ≃ Qg ◦Qf .

另一方面，当取到X的余纤维替代QX后，还可以进一步找到QX的纤维替代RQX，相应地有提升RQf .值

得注意的是，不同的纤维替代和余纤维替代并不改变对应的提升：

引理 2.13. 给定模型范畴M， 设Q1X和Q2X是X的余纤维替代， Q1Y和Q2Y是Y的余纤维替代，

Q1Z和Q2Z是Z的余纤维替代，那么存在tX : Q1X → Q2X，对任意f : X → Y, g : Y → Z，下图

Q2X Q2Y Q2Z

Q1X Q1Y Q1Z

X Y Z

Q2f

tX

Q2g

tY tZ

Q1f Q1g

f g
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交换，tX与Q1X → X的复合恰好是Q2X → X，并且这诱导了双射

[Q2X,Q2Y ]l → [Q1X,Q1Y ]l.

证明. 考虑交换图

∅ Q2X

Q1X X X,

p2

p1

tX

idX

于是MC4)说明存在提升tX : Q1X → Q2X，且tX与Q1X → X的复合恰好是Q2X → X.由于p1, p2同时都是零

调余纤维，根据MC2)，tX是弱等价.

引理2.13和它的对偶说明给定模型范畴中的对象X,Y，集合[RQX,RQY ]不依赖于纤维替代和余纤维替

代的选取，并且不同选取之间的同构与复合是相容的，因此余纤维替代和纤维替代的选择并不影响余纤维和

纤维提升，不影响同伦等价类及其复合，因此当选定对象的余纤维和纤维提升后，提升在同伦等价类下有比

较好的函子性.在之后的讨论中，给定对象A,X，我们用QA表示A的选定的余纤维提升，RX表示X的选定的

纤维提升.若A是余纤维对象，取QA = A，对偶地若X是纤维对象取RX = X，并且RidA = idRA, QidX =

idQX .

定义. 给定模型范畴M，它对应的同伦范畴(homotopy category)（或称为导出范畴(derived category)）

HoM满足

1. ob(HoM) = obM，

2. homHo M(X,Y ) = [RQX,RQY ]，

3. 复合由M中的复合诱导：

[Y,Z]× [X,Y ]→ [X,Z]

([g], [f ]) 7→ [g ◦ f ].

引理2.13说明如此定义的homHo M(X,Y )与余纤维替代和纤维替代的选取无关，命题2.6说明这是一个范

畴.同伦范畴的构造事实上使我们可以非常方便地讨论原来模型范畴中的弱等价：

命题 2.13. 给定模型范畴M，存在自然的函子γ :M → HoM，满足任意态射f : A → B是弱等价当且

仅当γ(f)是HoM中的同构.
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证明. 如下定义

γ :M→ HoM

X 7→ X

(f : X → Y ) 7→ [RQf ] ∈ [RQX,RQY ],

我们需要验证这是一个函子.按照前一段关于替代选取的讨论，γ(idX) = idγ(X)，

若f : X → Y是M中的弱等价，那么引理2.12说明RQf : RQX → RQY也是弱等价，于是Whitehead定

理（定理2.8）说明RQf存在同伦逆，这意味着γ(f) = [RQf ]在[RQX,RQY ]中的逆存在，因此是同构.反过

来γ(f)可逆等价于RQf的同伦逆存在，如上相同使用Whitehead定理和引理2.12，f是一个弱等价.

X QX RQX

Y QY RQY

f Qf RQf

引理 2.14. 给定模型范畴M和函子F :M→ D，且F将M中的弱等价映为D中的同构，那么若M中的态
射f, g : A→ B满足f ≃l g或f ≃r g，则F (f) = F (g).

证明. 我们这里只证明f ≃l g的情形，假定H : A× I → X是一个好的左同伦H : f ⇒ g，交换图

A
∐
A

A× I A

∇i0+i1

w
∼

给出w ◦ i0 = w ◦ i1 = idA，因此F (w)◦F (i0) = F (w)◦F (i1).注意到w是弱等价，因此F (w)是同构因此F (i0) =
F (i1).于是

F (f) = F (H ◦ i0) = F (H) ◦ F (i0) = F (H) ◦ F (i1) = F (H ◦ i1) = F (g),

即是要证的.

命题 2.14. 给定模型范畴M，同伦范畴中的态射集homHo M(X,Y )由γ的像和弱等价的像的形式逆生成.

特别地，给定余纤维对象A和纤维对象X，那么函子γ诱导了满射homM(A,X) → homM(A,X)，并

且这诱导了[A,X] ∼= homHo M(A,X).

证明. 考虑

RQX

∅ QX {∗},

X

iQX

pX
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由于iQX , pX都是弱等价，γ(iQX) ◦ γ(pX)−1给出了HoM中的同构X
∼=−→ RQX.于是，对于任意的对象X,Y ∈

obM，函子γ诱导了满射

homM(X,Y )→ homHo M(X,Y ),

于是任意HoM中的态射f : X → Y，存在g ∈ homM(X,Y )使得

f = γ(pY )γ(iQY )
−1γ(g)γ(iQX)γ(pX)

−1,

这是第一部分.

根据命题2.13和引理2.14，函子γ诱导了映射[A,X]→ homHo M(A,X)，且有交换图

[RA,QX] [A,X]

homHo M(RA,QX) homHo M(A,X),

γ γ

其中水平的映射由(iA, pX)诱导.之前的证明说明了下层的映射是双射，根据引理2.9，上层的映射是双射，左

侧的γ事实上是定义，因此右侧是双射.

推论 2.14.1. 设F,G : HoM→ D是两个给定的函子，η : F ◦ γ ⇒ G ◦ γ是自然变换，那么η也给出了自然变
换F ⇒ G.

证明.

下面的定理

定理 2.15. 给定模型范畴M和函子F :M→ D，若F将M中的弱等价映为D中的同构，那么存在唯一的
函子F̃ : HoM→D使得F = F̃ ◦ γ.

证明. 首先证明唯一性.由于HoM与M有相同的对象，因此在对象层面上F̃与F相同.注意到命题2.14说明任

意f ∈ homHo M(X,Y )可以写成

f = γ(pY )γ(iQY )
−1γ(g)γ(iQX)γ(pX)

−1,

其中g ∈ homM(X,Y )满足RQg = f，那么

F̃ (f) = F̃ (γ(pY )γ(iQY )
−1γ(g)γ(iQX)γ(pX)

−1)

= F̃ (γ(pY ))F̃ (γ(iQY )
−1)F̃ (γ(g))F̃ (γ(iQX))F̃ (γ(pX)

−1)

= F (pY )F (iQY )
−1F (g)F (iQX)F (pX)

−1,

因此F̃是唯一确定的.

再来证明存在性.如上唯一性的证明给出了一个构造，还需要证明这样是良定义的并且给出一个函子.注

意到引理2.12及其对偶说明f仅取决于g的同伦等价类，并且引理2.14说明相同的等价类在F下给出相同的像，
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因此如上是良定义的.若f = idA，取g = idA，那么显然F̃ (f) = F (pA)F (iQA)
−1F (g)F (iQA)F (pA)

−1 = idA.给

定A
f1−→ B

f2−→ C，引理2.13说明存在A
g1−→ B

g2−→ C使得RQg1 = f1, RQg2 = f2.于是

F̃ (f2 ◦ f1) = F (pC)F (iQC)
−1F (g2 ◦ g1)F (iQA)F (pA)−1

= F (pC)F (iQC)
−1F (g2)F (iQB)F (pB)

−1F (pB)F (iQB)
−1F (g1)F (iQA)F (pA)

−1

= F̃ (f2) ◦ F̃ (f1),

这样F̃是一个函子.

2.6.2 导出函子

定义. 给定模型范畴M和范畴间的函子F : M → D，若存在函子LF : HoM → N和自然态射η : LF ◦
γM ⇒ F

M D

HoM

F

γM
LF

ϵ

满足对任意的函子H : HoM→N和自然变换ξ : H ◦ γM ⇒ F，存在唯一的δ : H ⇒ LF，使得下图

H ◦ γM F

LF ◦ γM

ξ

δ◦γM ϵ

交换，则称LF是函子F的导出函子(derived functor).

引理 2.15. 给定模型范畴M和函子F : M → D，满足对任意M中余纤维对象间的零调余纤维被映为同
构，那么对任意M中的余纤维对象A,B和态射f, g : A→ B，若f ≃r g，则F (f) = F (g).

证明. 根据引理2.8的对偶，存在右同伦H : A → BI满足BI是一个非常好的道路对象，使得H : f ⇒ g.于

是c : B ↪→ BI是一个零调余纤维，由于B是余纤维对象，BI也是余纤维对象.这样，以上的假设说明F (c)是

一个同构.注意到p0 ◦ c = p1 ◦ c = idB，因此F (p0) ◦ F (c) = F (p1) ◦ F (c)，消去F (c)后F (p0) = F (p1)，于

是F (f) = F (p0 ◦H) = F (p0) ◦ F (H)) = F (p1) ◦ F (H) = F (p1 ◦H) = F (g).

命题 2.16. 给定模型范畴M和函子F :M → D，使得F将余纤维对象间的弱等价映为同构，那么F的导
出函子(LF, η)存在，且对任意M中的余纤维对象A，ηA : LF (A)→ F (A)是同构.

证明. 首先我们构造相应的导出函子.
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定义. 给定模型范畴间的函子F :M → N，若存在函子LF : HoM → Ho N和自然态射η : LF ◦ γM ⇒
γN ◦ F

M N

HoM Ho N ,

F

γM γN

LF

ϵ

满足对任意的函子H : HoM→ Ho N和自然变换ξ : H ◦ γM ⇒ γN ◦ F，存在唯一的δ : H ⇒ LF，使得

下图

H ◦ γM γN ◦ F

LF ◦ γM

ξ

δγM ϵ

交换，则称LF是函子F的全导出函子(total derived functor).

事实上，导出函子是Kan扩张.

定理 2.17 (Quillen). 给定Quillen对F :M ⇆ N : G，那么F的左导出函子LF和G的右导出函子RG都存

在，且

LF : HoM⇆ Ho N : RG

是伴随函子对.其中，对任意X ∈ HoM和f ∈ homHo M(X,Y )，

LF (X) = γF (QX), LF (f) = γF (Qf),

其中QX是X的余纤维消解，Qf是f的余纤维提升.

引理 2.16 (Brown). 若模型范畴间的函子F : M → N将M中余纤维对象间的零调余纤维映为弱等价，
则F将纤维对象间的弱等价映为弱等价，此时F的全左导出函子LF存在，且与定理2.17中的定义一致.

证明.

命题 2.18. 给定左正规的模型范畴M，f : A ↪→ X是余纤维，且A是M中的余纤维对象，那么对任意g :

A→ Y，g沿f的同伦推出与g沿f的推出在HoM中同构.

例 2.7.



第三章 单纯代数

3.1 单纯模

3.1.1 单纯模范畴

如同先前的定义，给定一个交换环R，一个单纯环是函子

A∗ : ∆◦ → R−Algebras,

具体来说，这个函子给定了一族R代数An = A([n])，且存在R代数同态

d
[n]
i : An → An−1

和

s
[n]
j : An → An+1

满足相应的单纯关系.

例 3.1. 任意给定一个交换环R，我们有自然存在的单纯R代数s(R)∗，其中对任意n，s(R)n := R，d
[n]
i =

s
[n]
j = idR.

定义. 给定单纯代数A∗，则一个A∗模(A∗-module)是一个单纯对象M∗，其中M([n])是一个An模，存在同

态

d
[n]
i :Mn →Mn−1

和

s
[n]
j :Mn →Mn+1

满足相应的单纯关系，且与A∗的单纯结构相容，具体说来，对于任意a ∈ An和v ∈ Vn，d
M[n]

i (av) =

d
A[n]

i (a)d
M[n]

i (M)且s
M[n]

j (av) = s
A[n]

j (a)s
M[n]

j (v).

例 3.2. 类似于例3.1，任意给定一个R模M，都存在自然的单纯s(R)∗模S(M)∗，其中对任意n，s(V )n := V，

d
[n]
i = s

[n]
j = idM .

例 3.3. 假设R是交换环，A是R代数（可能非交换），M是任意A双模，定义单纯模

Cn(A,M) :=M ⊗R A⊗n,

67
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满足面映射是

d
[n]
i : Cn(A,M)→ Cn−1(A,M)

d0(m⊗ a1 ⊗ · · · ⊗ an) := ma1 ⊗ · · · ⊗ an
di(m⊗ a1 ⊗ · · · ⊗ an) := m⊗ a1 ⊗ · · · aiai+1 ⊗ · · · ⊗ an
dn(m⊗ a1 ⊗ · · · ⊗ an) := anm⊗ a1 ⊗ · · · ⊗ an−1,

退化映射是

s
[n]
j : Cn(A,M)→ Cn+1(A,M)

m⊗ a1 ⊗ · · · ⊗ an 7→ m⊗ a1 ⊗ · · · ⊗ aj ⊗ 1⊗ aj+1 ⊗ · · · ⊗ an.

我们略去它是单纯对象的验证，事实上，它是更一般结论的特例.

在同调代数中，这个单纯模给出的复形恰好是Hochschild复形，因而计算的是Hochschild同调.

3.1.2 单纯模的同伦群

考虑给定一个单纯s(R)∗模M∗，我们有一个R模复形N(M∗)•

N(M∗)n :=

{
0 n ≤ 0⋂n−1

i=0 Ker d
[n]
i n ≥ 1

,

且边缘映射∂n := (−1)nd[n]n .这个复形称为V∗的正规化(normalization).

除了正规化还存在其他的方法，对一个给定的单纯s(R)∗模M∗，还可以构造一个对应的R模复形M•，满

足Mn =Mn，边缘映射

∂n :=
n∑
i=0

(−1)id[n]i .

虽然两种方式给出的链并不相同，但这两个链是拟等价的——它们具有相同的同调.今后为做区别，∂•仅表

示Moore复形的边缘算子.

引理 3.1. 设R是交换环，给定一个单纯s(R)∗模M∗，那么(N(M∗)•, (−1)nd[•]n )构成链复形.

证明. 我们需要证明d
[n]
n (N(M∗)n) ⊆ N(M∗)n−1并且，d

[n−1]
n−1 ◦ d

[n]
n = 0.

一方面，对任意的m ∈ N(M∗)n，根据单纯等式1.2，

d
[n−1]
i (d[n]n (m)) = d

[n−1]
n−1 ◦ d

[n]
i (m) = 0

因此d
[n]
n (m) ∈ N(M∗)n−1.另一方面，任取m ∈ N(M∗)n，再根据单纯等式1.2，

d
[n−1]
n−1 ◦ d[n]n (x) = d

[n−1]
n−1 ◦ d

[n]
n−1(x) = 0,

得证.
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引理 3.2. N(M∗)•是M•的子复形.

证明. 这只需要证明自然的嵌入映射i• : N(M∗)• →M•是复形同态，即有交换图

N(M∗)n N(M∗)n−1

Mn Mn−1.

(−1)nd[n]
n

in in−1

∂n

对任意的x ∈ N(M∗)n，按定义d
[n]
i (x) = 0对i = 0, · · · , n − 1都成立，于是∂ ◦ i(x) = (−1)nd[n]n (x)，故交换图

成立.

练习 3.1. 记Nk(M∗)n :=
⋂k
i=0 Ker d

[n]
i （k = 1, · · · , n−1）.求证若x ∈ Nk−1(M∗)n，则x−skdk(x) ∈ Nk(M∗)n

（0 < k < n）.

证明. 对任意0 ≤ i < k，di(x−skdk(x)) = di(x)−diskdk(x)，单纯关系d[n+1]
i s

[n]
k = s

[n−1]
k−1 d

[n]
i 和d

[n]
i d

[n+1]
k =

d
[n]
k−1d

[n+1]
i (i < k)说明di(x) − diskdk(x) = −sk−1dk−1di(x) = 0；另一方面，根据单纯关系d

[n+1]
k s

[n]
k =

id[n]，dk(x− skdk(x)) = dk(x)− dkskdk(x) = dk(x)− dk(x) = 0.

引理 3.3. 记DkMn :=
∑k

j=0 sj(Mn−1)和Nk(M∗)n :=
⋂k
i=0 Ker d

[n]
i ，求证

DkMn ⊕Nk(M∗)n =Mn

对任意0 ≤ k ≤ n− 1都成立.

证明. 单纯关系d
[n+1]
0 s

[n]
0 = id[n]说明

Ker d
[n+1]
0 ⊕ Im s

[n]
0 =Mn+1,

注意到Ker d
[n]
0 = N0(M∗)n且Im s

[n−1]
0 = D0Mn这就完成了k = 0情形的证明.

假设我们已经证明了Dk−1Mn⊕Nk−1(M∗)n =Mn，我们希望证明D
kMn⊕Nk(M∗)n =Mn.一方面，单纯

关系d
[n]
k s

[n−1]
k = id[n−1]意味着s

[n−1]
k 是单态射，单纯关系sksj = sjsk−1（j < k）意味着sk :Mn−1/D

k−1Mn−1 →
Mn/D

k−1Mn是良定义的，于是

0→Mn−1/D
k−1Mn−1

sk−→Mn/D
k−1Mn →Mn/D

kMn → 0

是短正合列.另一方面，单纯关系d
[n+1]
i s

[n]
k = s

[n−1]
k−1 d

[n]
i (i < k)说明sk : Nk−1(M∗)n−1 → Nk−1(M∗)n是良定义

的，根据习题3.1，我们希望证明

0→ Nk−1(M∗)n−1
sk−→ Nk−1(M∗)n

x7→x−skdk(x)−−−−−−−−→ Nk(M∗)n → 0

是短正合的.明显地sk是单射且Im sk ⊆ Ker id− skdk；任取y ∈ Nk(M∗)n ⊆ Nk−1(M∗)n，y− skdk(y) = y，因

此id− skdk是满射；若(id− skdk)(x) = 0，则x = skdk(x) ∈ Nk−1(M∗)n，显然Ker id− skdk ⊆ Im sk.

于是对于图
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0 Nk−1(M∗)n−1 Nk−1(M∗)n Nk(M∗)n 0

0 Mn−1/D
k−1Mn−1 Mn/D

k−1Mn Mn/D
kMn 0,

sk id−skdk

sk

其中纵向的映射都是子商，左侧方块交换是显然的，右侧方块交换是因为DkMn的定义.根据刚刚的讨论，横

行都是短正合列，归纳假设说明左侧两个纵向映射都是同构，于是5引理说明Nk(M∗)n → Mn/D
kMn是同构，

这就完成了证明.

定理 3.1. 设R是交换环，给定一个单纯s(R)∗模M∗，那么

Hn(M•) ∼= Hn(N(M∗)•)

对所有n成立，我们称这个群为M∗的第n阶同伦群(the n-th homotopy group)，记为πn(M∗).

证明. 我们将证明存在分解

M• ∼= N(M∗)• ⊕D•,

其中D•是一个零调复形，于是定理自然是该结论的推论.事实上，引理3.3表明D•恰好是退化部分.

定义

F pMn := {x ∈Mn | d[n]i (x) = 0, 0 ≤ i < min(n, p)},

（链边缘映射取∂n|FpMn
，p ≤ n时F pM• ∼= Np(M∗)p）于是自然的包含关系F

p+1Mn ⊆ F pMn给出了链复形

的嵌入

ip+1 : F p+1M• ↪→ F pM•.

注意到当p ≥ n时F pMn = N(M∗)n且F
0Mn =Mn，这意味着有链复形的滤子

M• = F 0M• ⊇ F 1M• ⊇ · · · ⊇ N(M∗)•.

接下来证明每一个嵌入ip都诱导了同调上的等价.

事实上，考虑

fpn : F pMn → F p+1Mn

x 7→

{
x n ≤ p

x− spdp(x) n > p,

习题3.1说明映射是良定义的，那么

1. fp : F pM• → F p+1M•是链映射，即有交换图

F pMn F p+1Mn

F pMn−1 F p+1Mn−1.

fp

∂n ∂n

fp
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此时有两种情况：

(a) 若n ≤ p，则F pMn = F p+1Mn = N(M∗)n且∂
p
n = ∂p+1

n = (−1)nd[n]n ，交换性是显然的；

(b) 若n > p，fp = id− spdp，于是任取x ∈ F pMn，

fp∂pn(x) = fp

(
n∑
i=p

(−1)id[n]i (x)

)

=
n∑
i=p

(−1)id[n]i (x)−
n∑
i=p

(−1)is[n]p d[n−1]
p d

[n]
i (x),

另一方面

∂p+1
n fp(x) =

n∑
i=p+1

(−1)id[n]i fp(x)

=
n∑

i=p+1

(−1)id[n]i (x)−
n∑

i=p+1

(−1)id[n]i s[n]p d[n−1]
p (x).

注意到d
[n−1]
p d

[n]
p = d

[n−1]
p d

[n]
p+1，d

[n]
p+1s

[n]
p d

[n−1]
p = d

[n−1]
p 且当i > p + 1时d

[n]
i s

[n]
p d

[n−1]
p = s

[n]
p d

[n−1]
p d

[n]
i ，

于是fp∂pn(x) = ∂p+1
n fp(x).

2. fp ◦ ip+1 = id.当n ≤ p时是显然的；当n > p时，按定义fp ◦ ip+1(x) = x− s[n]p d
[n−1]
p (x) = x.

3. 定义

tpn : F pMn → F pMn+1

x 7→

{
0 n > p

(−1)psp(x) n ≤ p.

于是

(a) 若n > p，ip+1和fp都是idN(M∗)•，此时∂n+1t
p + tp∂n = id− ip+1 ◦ fp = 0.

(b) 若n ≤ p，注意到当i > p+ 1时d
[n+1]
i s

[n]
p = s

[n−1]
p d

[n]
i−1，且d

[n+1]
p s

[n]
p = d

[n+1]
p+1 s

[n]
p = idMn

，于是

∂pn+1t
p(x) + tp∂pn(x) =

n+1∑
i=p

(−1)i+pd[n+1]
i sp(x) +

n∑
i=p

(−1)i+pspd[n]i (x)

=
n+1∑
i=p+2

(−1)i+pd[n+1]
i sp(x) +

n∑
i=p

(−1)i+pspd[n]i (x)

=
n+1∑
i=p+2

(−1)i+pspd[n]i−1(x) +
n∑
i=p

(−1)i+pspd[n]i (x)

= spd
[n]
p (x)

这恰好是(id− ip+1 ◦ fp)(x).

综上我们有

∂n+1t
p + tp∂n = id− ip+1 ◦ fp,

即t•是链同伦id ≃ ip+1 ◦ fp.
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现在令g : M• → N(M∗)•是链映射，满足gn := fn−1 ◦ fn−2 ◦ · · · ◦ f0，且i• : N(M∗)• → M•是自然的嵌

入，那么如上的结果说明i和g是互逆的拟同构，并且g ◦ i = id|N(M∗)•，于是M• ∼= N(M∗)• ⊕Ker g.

引理3.3提示取Dn :=
∑n−1

j=0 sj(Mn−1)，于是按定义Ker g ⊆ D∗.反过来，给定k满足0 ≤ k < n和0 ≤ i < k，

注意到

1. fk(sk(x)) = sk(x)− skdksk(x) = 0和

2. f i(sk(x)) = sk(x)− sidisk(x) = sk(f
i(x))，

于是fk ◦ fn−1 ◦ · · · ◦ f0(sk(x)) = 0，即D∗ ⊆ Ker f，这样就完成了证明.

练习 3.2. 设R是交换环，S是R代数，求证N(s(S)) = S.

练习 3.3. 给定交换环R和单纯R代数A∗，且设V∗是单纯A∗模.证明N(V∗)n,Ker ∂n, Im ∂n+1都是Vn的An子模.

定义. 单纯R代数间的态射(morphism)φ∗ : A∗ → B∗是一族态射φn : An → Bn，满足

An An−1

Bn Bn−1.

dAn
i

φn φn−1

dBn
i

和

An An+1

Bn Bn+1.

sAn
j

φn φn+1

sBn
j

对于任意i, j都成立.

若φ∗ : A∗ → B∗是单纯代数之间的态射，那么我们有自然的R模的态射

π∗(φ) : π∗(A)→ π∗(B),

或者更准确地说π是一个函子s(R−Algebras)→ R−Mod.

若φ∗ : A∗ → B∗诱导的R模态射π∗(φ)都是同构，则称φ是弱等价(weak equivalence).

3.1.3 单纯模中的代数对象

定义. 给定交换环R和单纯R代数A∗，M∗, N∗是A∗模，定义A∗模M∗ ⊗A∗ N∗满足

(M ⊗A N)n :=Mn ⊗An
Nn

对任意n ≥ 0都成立，且面映射和退化映射分别由M∗, N∗诱导.称(M ⊗A N)∗为M∗与N∗的张量积(tensor

product).
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引理 3.4. 给定交换环R和单纯R代数A∗，M∗, N∗是A∗模，记它们对应的Moore复形是M•, N•，定义映射

AW : (M ⊗A N)∗ → (M ⊗N)•

a⊗ b ∈Mn ⊗An
Nn 7→

n∑
i=0

(dM [n]
n )n−i(a)⊗ (d

N [n]
0 )i(b),

其中(d
M [n]
n )n−i表示dM [n]

n 复合n− i次，那么AW诱导了链映射，称为Alexander-Whitney映射.

引理 3.5. 给定非负整数p, q， 设µ, ν是集合{0, 1, · · · , p + q − 1}的划分， 满足µ1 < µ2 <

· · · < µp, ν1 < ν2 < · · · < νq， 记sgn(µ, ν) = sgn(µ1, µ2, · · · , µp, ν1, ν2, · · · , νq)， 其
中sgn(µ1, µ2, · · · , µp, ν1, ν2, · · · , νq)是(µ, ν)作为置换的符号.那么，映射

sh : (M ⊗N)• → (M ⊗A N)∗

a⊗ b ∈Mp ⊗Nq 7→
∑
(µ,ν)

sgn(µ, ν)(sνq ◦ · · · ◦ sν1)(a)⊗ (sµp
◦ · · · ◦ sµ1

)(b)

诱导了自然的链映射，称该映射为洗牌映射(shuffle map).

练习 3.4. 设T∗ : (M ⊗AN)∗ → (N ⊗AM)∗和T• : (M ⊗N)• → (N ⊗M)•是换序映射，求证AW ◦T∗和T• ◦AW
（对应地，sh ◦ T•和T∗ ◦ sh）是链同伦的.

3.2 Dold-Kan对应

定理 3.2 (Eilenberg-Zilber). Alexander-Whitney映射和洗牌映射都是拟同构，并且二者互为同调层面的

逆.

证明. 一方面，在正规复形层面，AW ◦ sh = id.

给定合适的R模链复形M•，我们希望构造单纯R模Γ(M)∗，使得它的同伦群同于M•同调群.注意到定理3.1说

明获得单纯R模的同伦群信息只需要它的正规化链复形，于是这个反方向的构造实际上就是要把正规化之外

的部分再加进来——而引理3.3告诉我们正规化之外的部分都是退化的，于是我们会考虑如果把退化部分加回

来那就找回了我们原本的单纯R模.于是

定义. 给定R模链复形M• ∈ Com≥0(R)，Γ∗(M)是如下单纯R模：

1. 作为向量空间，Γn(M) :=
⊕

[n]↠[k]

Mk.
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2. 作为

定理 3.3.

3.2.1 模型结构

3.3 单纯消解

定义. 设X = {Xn}n≥0是一族未定元.若单纯R代数R[X]∗满足

1. R[X]n是R[Xn]，即R上的以Xn为未定元的多项式环，

2. 对任意的j, n，s
R[X]n
j (Xn) ⊆ Xn+1，即退化映射将生成元映为生成元，

则称R[X]∗是半自由单纯R代数(semi-free simplicial R-algebra).

定义. 给定交换环R和单纯R代数A∗，且X = {Xn}n≥0是一族未定元.若单纯R代数A[X]∗满足

1. A[X]n是An[Xn]，即An上的以Xn为未定元的多项式环，

2. 对任意的j, n，s
A[X]n
j (Xn) ⊆ Xn+1，

3. 嵌入映射A∗ ↪→ A[X]∗是单纯R代数同态，

则称A[X]∗是A∗的自由单纯扩张(free simplicial extension).

引理 3.6. 若R是交换环，A∗是单纯R代数，P∗是A∗的自由单纯扩张，若φ : A∗ → B∗是单纯态射，

则B∗ ⊗A∗ P∗是B∗的自由单纯扩张.

命题 3.4. 单纯R代数间的态射φ∗ : A∗ → B∗是余纤维当且仅当它是某个自由扩张的收缩.
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定义. 设φ : A∗ → B∗是单纯R代数的态射，那么φ的一个单纯消解(simplicial resolution)是如下一个分解

A∗ ↪→ P∗
ψ
↠ B∗

满足复合是φ， A∗ ↪→ P∗是A∗的自由单纯扩张， ψ是单纯满态射，且是一个弱等价.通常，我们也

称P∗是B∗在A∗上的单纯消解(simplicial resolution of B∗ over A∗).

定理 3.5. 若R是交换环，A∗, B∗, C∗是单纯R代数，P∗是A∗的自由单纯扩张，若φ : A∗ → B∗是单纯态射，

ψ : B∗ → C∗是满态射且是弱等价，那么存在提升κ : P∗ → B∗使得下图

A∗ B∗

P∗ C∗

φ

ψ
κ

交换.

给定一个单纯消解A∗ ↪→ P∗，我们可以构造

A[X,X]∗ := A[X]∗ ⊗A∗ A[X]∗,

这个单纯R代数.它在如下意义是具有函子性的：给定单纯代数的态射

φ,ψ : A[X]∗ → B∗,

我们可以构造新的单纯态射

φ⊗ ψ : A[X,X]∗ → B∗

x⊗ y 7→ φ(x)ψ(y).

定义. 给定交换环R、单纯R代数A∗和单纯消解A∗ ↪→ A[X]∗，设A[X,X, Y ]∗是A[X]∗在A[X,X]∗上的单纯

消解，则称A[X,X, Y ]∗是A∗代数A[X]∗的柱对象(cylinder object).若给定的态射φ,ψ : A[X]∗ → B∗可以构

造交换图

A[X,X]∗ A[X,X, Y ]∗

B∗,
φ⊗ψ

则称φ和ψ同伦(homotopic)，记为φ ≃ ψ.

这里同伦的定义完全同于拓扑中同伦的定义——R代数范畴中的余积就是张量积，因而这个图恰好对应

于拓扑空间组成范畴的同伦的定义图.
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定理 3.6 (提升的唯一性).

推论 3.6.1 (消解的唯一性).

练习 3.5. 这个习题证明对于任意单纯R代数A∗，存在它的自由扩张.

任取正自然数n，令w ∈ An−1满足它在N(A∗)n−1是闭链，即d
[n−1]
0 (w) = 0

我们来具体构造任意给定单纯R代数f : A∗ → B∗的单纯消解.具体的想法是这样的：

定义. 设R是环，对于集合S，记R[S]为S中元素生成的R多项式环.给定环同态f : R → S，令P0 := R[S]，

且当n ≥ 1时，

Pn := R[Pn−1].

定义s 称P∗为f : R→ S的标准消解(standard resolution).

例 3.4. 给定R代数φ : R[x]→ R, x 7→ 0，将它自然地看为单纯代数的同态，那么如下构造的复形给出了f的单

纯消解：令

Pn := R[x]⊗R

(
n⊗
i=1

R[x]

)
,

记Pn在R[x]的生成元为xn,1 = 1⊗ x⊗ · · · ⊗ 1, · · · , xn,n = 1⊗ 1⊗ · · · ⊗ x.构造面映射和退化映射分别为

d
[n]
i (f(x)⊗ g1(x)⊗ · · · ⊗ gn(x)) :=


f(x)g1(x)⊗ · · · ⊗ gn(x) i = 0

f(x)⊗ g1(x)⊗ · · · ⊗ gi(x)gi+1(x)⊗ · · · ⊗ gn(x) 1 ≤ i ≤ n− 1

f(x)φ(gn(x))⊗ g1(x)⊗ · · · ⊗ gn−1(x) i = n

和

s
[n]
i (f(x)⊗ g1(x)⊗ · · · ⊗ gn(x)) :=


f(x)⊗ 1⊗ g1(x)⊗ · · · ⊗ gn(x) i = 0

f(x)⊗ g1(x)⊗ · · · ⊗ gi(x)⊗ 1⊗ gi+1(x)⊗ · · · ⊗ gn(x) 1 ≤ i ≤ n− 1

f(x)⊗ g1(x)⊗ · · · ⊗ gn(x)⊗ 1 i = n,

不难看出这是一个单纯R代数，是R[x]的单纯扩张.接下来验证这是一个单纯消解，即要验证P∗ → R是弱等价.

构造如下R[x]模复形K(x)：

R[x]
x←− R[x]← 0,

我们要验证这个复形与P∗同伦.考虑

R[x] R[x] 0

R[x] P1 P2,

id x⊗−

x
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练习 3.6. 设R是交换环，A→ B,C → D是R代数同态，且A,B作为R模是平坦的.求证若P∗, Q∗是A→ B和C →
D的单纯消解，那么P∗ ⊗R Q∗是A⊗R C → B ⊗R D的单纯消解.

例 3.5. 设r是交换环R的非零因子，S := R/(r)且p : R→ S是自然投射.考虑交换图

R[x] R

R S = R⊗R[x] R,

x7→0

x 7→r

这是因为Ker(x 7→ 0) = (x),Ker(x 7→ r) = (x− r)，于是

R⊗R[x] R = R[x]/((x− r) + (x)) = R/(r) = S.

设P∗是R[x]
x 7→0−−−→ R的单纯消解，令

R[x] P∗

R Q∗ := R⊗R[x] P∗,

x 7→r

根据基变换Q∗是R的自由扩张.对

R[x]→ P∗ → R

做函子R⊗R[x] −，其中R[x]→ R定义为x 7→ r，那么有态射

R→ Q∗ → S,

于是Q∗是R→ S的单纯消解.

我们具体将Q∗写出来.按照定义，

Qn := R⊗R[x] Pn = R⊗R[x] R[x, x1, · · · , xn] = R[x]/(x− r)⊗R[x] R[x, x1, · · · , xn]

= R[x, x1, · · · , xn]/(x− r) = R[x1, · · · , xn],

并且

d
[n]
i : Qn → Qn−1 = id⊗ d[n]i

将t⊗ f(x)⊗ g(x1, · · · , xn)映到
f(x)g1(x)⊗ · · · ⊗ gn(x) i = 0

f(x)⊗ g1(x)⊗ · · · ⊗ gi(x)gi+1(x)⊗ · · · ⊗ gn(x) 1 ≤ i ≤ n− 1

f(x)φ(gn(x))⊗ g1(x)⊗ · · · ⊗ gn−1(x) i = n

由于P∗的正规化同伦于

0← R[x]
x←− R[x]← 0,

故Q∗的正规化同伦于

0← R
r←− R← 0,

于是π0(Q∗) = S，π1(Q∗) = (0 : r) = 0.
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命题 3.7. 若R是交换环，S是R代数，M是R模，R ↪→ P∗ → S是单纯消解，那么

πn(P∗ ⊗RM) ∼= TorRn (S,M).
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给定图X : J → Top∗
U−→ Top，那么有对应的

hocolimTop
J (U ◦X)→ U(hocolim

Top∗
J (X)),

一般情况下这不是一个弱等价.考虑余纤维序列

BJ → hocolimTop
J (U ◦X)→ U(hocolim

Top∗
J (X))

4.1 图的范畴

4.1.1 小对象论断

回顾定理2.2中讨论的小对象论断，

对象的紧性

设κ是一个正则基数(regular cardinal)，若集合S的基数小于κ，则称S是κ小的(κ-small).对于小范畴C，若
所有态射的全体组成的集合是κ小的，则称C是κ小的.

但是，我们需要讨论到不是κ小的范畴，甚至不是小的范畴，逻辑上解决这个问题的工具叫做Grothendieck宇

宙(Grothendieck universe)，但对它的讨论并不是必须的，我们始终假定存在一个强不可得的(strongly inac-

cessible)基数.

定义. 给定范畴J，若对任意的有限范畴J0（只有有限多个态射）和图D : J0 → J，都存在图下的锥，则
称J是有限可滤的(finitely filtered).

如上定义可以解释为，任意J中的有限图都有J中的上界.或者用更范畴化的语言说，对任意有限图D :

J0 → J，记J +
0 是图J0自由加入终对象后得到的范畴，那么J是有限可滤的意味着D可以延拓为图D̃ : J +

0 →
J .
自然地，可以推广如上定义中的有限性.注意到有限范畴意味着它是ℵ0小的，因此这里可以用其他基数代

替：

79



80 第四章 同伦极限和同伦余极限

定义. 给定正则基数κ和范畴J，若对于任意κ小的范畴J0图D : J0 → J都存在图下的锥，则称J是κ可滤
的(κ-filtered).

对偶地，给定正则基数κ，我们有κ余可滤的概念.

定义. 给定范畴C和图D : J → C，若J是κ可滤的且余极限colimJ D存在，则称余极限colimJ D是可滤的

余极限(filtered colimit).

换句话说，可滤余极限是可滤指标范畴给出图的余极限.

给定范畴C，其中的所有小的余极限都存在，J是一个κ可滤的范畴，A是C中的对象.设D : J → C是图，
那么存在诱导的映射

φ : colimJ homC(A,D(j))→ homC(A, colimJ D),

其中

定义. 若范畴C中的对象A满足对任意的κ可滤的余极限交换，即对任意一个κ可滤的范畴J和任意图D :

J → C，诱导的映射
φ : colimJ homC(A,D(j))→ homC(A, colimJ D)

都是双射，则称对象A是κ紧的(κ-compact).若存在正则基数κ使得A是κ紧的，则称对象A是小的(small).

特别地，若对特定的κ可滤的范畴J和图D : J → C，诱导的映射

φ : colimJ homC(A,D(j))→ homC(A, colimJ D)

是双射，则称对象A相对于图D是κ紧的(κ-compact relative to D).给定C的子范畴D，若A相对于D中的
图D是κ紧的，即对任意诱导的映射

φ : colimJ homC(A,D(j))→ homC(A, colimJ D)

都是双射，对象A相对于D是κ紧的(κ-compact relative to D).

我们在这里给出了相当一般情况的定义，但很多时候具体情形的应用取κ = ℵ1，于是基数小于ℵ1的集合
都是可数的，因而ℵ1紧的对象

例 4.1. 给定环R，考虑R模链复形范畴Com•(R)，那么复形C•是ℵ1紧的当且仅当C•与一个双边有界且每一阶

都是有限生成的投射模拟同构.
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命题 4.1. A κ-small colimit of ズ-compact objects is again a κ-compact object.

小对象论断

定义. 给定范畴C满足

1. C中所有小的余极限都存在，

2. 存在C中对象组成的集合S，使得C中所有的对象都是S中对象的余极限，

3. C中的对象都是小的，

4. 对任意对象A,B ∈ ob C，homC(A,B)是小的，

则称范畴C是可表的(presentable).

Quillen在研究代数拓扑时遇到了一类问题，它们统称为提升问题.给定范畴C中的一族态射S，记�S为所

有相对于S有左提升性质的C中态射的全体，记S�为所有相对于S有右提升性质的C中态射的全体.显然S ⊆
(�S)�.有时，也称�S为S余纤维(S-cofibration)，记为S − Cof，对偶地称S�为S纤维(S-fibration)，记为S −
Fib.

定义. 给定范畴C使得C中所有小的余极限都存在，S是C中的一族态射，满足

1. S关于推出是封闭的，即给定C中的态射f : A→ B和S中的态射u : A→ X，对于如下推出图

A B

X Z,

f

u v

v : B → Z也是S中的态射，

2. S关于超限复合是封闭的，

3. S关于取收缩是封闭的，即在C中的图

A B A

X Y X

i

f

p

g f

j q

中，若p ◦ i = idA, q ◦ j = idX，且g是S中的态射，则f是S中的态射，

则称S是弱饱和的(weakly saturated).
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明显弱饱和的态射族的交也是弱饱和的.任意给定态射族S ⊆ mor C，若范畴C使得所有的小的余极限都存
在，那么包含S的最小的弱饱和态射族存在，称为S生成的弱饱和态射族.

练习 4.1. 证明若范畴C使得所有的小的余极限都存在，那么包含S的最小的弱饱和态射族存在.

命题 4.2. 给定范畴C使得C中所有小的余极限都存在，S是C中的一族态射，(�S)�

定理 4.3 (Small object argument). 给定可表的范畴C和一族C中的态射A0 = {fi : Ai → Bi}i∈I，对自然
数n，记NCn是所有从线性范畴{0→ 1→ · · · → n− 1→ n}到C的函子组成的范畴.那么存在函子

F : NC1 → NC2,

满足

1. F将态射h : X → Z映到图

X Z

Y,

h

f g

其中f在A0生成的弱饱和态射族中，g对A0有右提升性质，

2. 若正则基数κ满足对任意i ∈ I，Ai, Bi都是κ紧的，那么F与κ可滤的余极限交换.

换句话说，函子F给出了一个分解

证明.

4.1.2 余纤维生成的范畴

定义. 给定范畴C的一族态射I（也是一个子范畴），若任意I中态射f : A → B的定义域A都相对于I是κ紧

的，则称态射族I给出了κ小对象论断(permits a κ-small object argument).

例 4.2. 定理2.2中

定义. 给定模型范畴M，若存在一族余纤维I满足

1. I给出了κ小对象论断，
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2. I� = Fib ∩WE，

和另一族零调余纤维J满足

1. J给出了κ小对象论断，

2. J� = Fib，

则称M是余纤维生成的(cofibrantly generated).

例 4.3. 给定环R，考虑R模链复形范畴Com•(R)，对任意的R模M，记S
n(M) := M [−n]是在第n阶项为M，

其余项都为0的复形；记Dn(M) := M [−n]⊕M [−n+ 1]是在第n阶和第n− 1项为M，边缘映射为M上的单位

映射，其余项都为0的复形.于是存在自然的嵌入Sn−1(M) ↪→ Dn(M).令

I := {Sn−1(R) ↪→ Dn(R)}

和

I := {0→ Dn(R)},

则Com•(R)是余纤维生成的.

定理 4.4. 给定范畴M和其中的一族态射WE，满足模型范畴的前三条公理，且存在态射族I, J满足

1. I, J都给出了κ小对象论断，

2. I� ⊆ J� ∩WE，

3. �(J�) ⊆ �(I�) ∩WE，

4. 2,3中的任意包含是相等，

那么(M,WE, I, J)构成了余纤维生成的模型范畴.

定理 4.5 (模型提升). 给定余纤维生成的模型范畴(M,WEM, I, J)，

F :M⇆ N : G

是伴随函子对，且N是完备和余完备的范畴.若

1. I, J都给出了κ小对象论断，

2. G将相对F (J)胞腔复形映到弱等价，
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则(N ,WEN , F (I), F (J))构成了余纤维生成的模型范畴，其中

WEN := {g ∈ morM | G(g) ∈WEM}.

此时，(F,G)是Quillen配对.

模型范畴之间的态射应当是Quillen对

定理 4.6 (Hir,11.6.17). 给定余纤维生成的模型范畴(M,WEM, I, J)，对任意小范畴J，

(Funct(J ,M),FunctWE(J ,M),FunctI(J ,M),FunctJ(J ,M))

给出了Funct(J ,M)上的余纤维生成（点态）模型结构，其中给定态射族S，

FunctS(J ,M) = {α ∈ mor Funct(J ,M) | αA ∈ S, ∀A ∈ ob J },

且纤维

Fib(Funct(J ,M)) = FunctFib(M)(J ,M).

证明. 记J δ是J对应的离散范畴，那么

Funct(J δ,M) ∼=
∏

A∈ob J

M,

根据定理4.4，Funct(J δ,M)是余纤维生成的模型范畴.

注意到存在自然的嵌入函子i : J δ → J，它诱导了限制函子（实际上也是忘却函子）

Funct(J δ,M)← Funct(J ,M) : i∗,

它存在左伴随函子

F : Funct(J δ,M)→ Funct(J ,M)

X 7→

B 7→ ∐
A∈ob J

∐
f∈homJ (A,B)

X(B)

 ,

于是定理4.5完成了证明.

4.1.3 弱分解系统

定义. 给定范畴C和其中的态射族L,R，若满足

1. L� = R，
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2. �R = L，且

3. 对任意C中的态射f : A→ B，存在fL : A→ X ∈ L和fR : X → B ∈ R满足f = fRfL，

则称(L,R)是C的一个弱分解系统(weak factorization system).

4.2 万有模型范畴

回顾给定小范畴C，记Pre(C) = Funct(C◦,Set)为C上的预层范畴，其中的对象，即函子

X : C◦ → Set

被称为C上的预层.

在1.2.2节（和习题1.12）中，我们事实上证明了如下结果：

定理 4.7. 给定小范畴C，对任意余完备的范畴D和函子F : C → D，都存在函子

| − | : Pre(C)→ D

是F沿Yoneda嵌入函子的扩张，即图

C D

Pre(C)

F

h
η

|−|

在差一个自然同构的情形下交换，并且如此的函子| − |唯一，更准确地说若有两个函子| − |1, | − |2 :

Pre(C)→ D满足如上的交换性，那么存在唯一的自然同构ζ : | − |1 ⇒ | − |2.
此外，函子| − | : Pre(C)→ D有右伴随.

如上的定理说明，对任意小范畴C，范畴Pre(C)可以视为C的万有余完备化，任何C下的余完备范畴F :

C → D都可以看成由Pre(C)得到的范畴.这个关系非常类似于一个代数的展示(presentation)是一个自由代数

的商，Pre(C)扮演的角色就是自由代数，可以看作C将所有余极限都加进来生成的最小的“自由范畴”.

但是当C是模型范畴的时候，单纯地将余极限加进来会破坏原来范畴的模型结构，因此需要找到一个相对
万有的包含余极限的范畴，使得C下的余完备范畴都是由这个万有的模型范畴给出的.类似于定理4.7，此处具

有如此特性的范畴是sPre(C)，即C上所有单纯预层（习题1.9）给出的范畴.

定理4.7中唯一需要特殊对待的是函子的唯一性，为此需要引入如下概念：

定义. 给定小范畴C和模型范畴M,N，F : C →M, G : C → N是函子，那么G沿F的分解(factorisation of

G through F )是三元组(L,R, ϵ)，其中

L :M⇆ N : R
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是Quillen对，ϵ : L ◦ F ⇒ G是自然弱等价（即对任意A ∈ ob C，ϵA : L(F (A)) → G(A)都是弱等价），如

图

C N

M.

G

F R
ϵ

L

分解(L1, R1, ϵ1), (L2, R2, ϵ2)之间的态射是自然变换α : L1 ⇒ L2，满足对任意A ∈ ob C，有交换图

L1(F (A)) L2(F (A))

G(A).

αA

(ϵ1)A (ϵ2)A

范畴sPre(C)上有自然的（投射）模型结构，满足：

1. 对于函子F,G : C◦ → sSet，α : F ⇒ G是弱等价当且仅当αA : F (A)→ G(A)是sSet中的弱等价，

2. 对于函子F,G : C◦ → sSet，α : F ⇒ G是纤维当且仅当αA : F (A)→ G(A)是sSet中的纤维.

定理 4.8 (Dugger[D]). 给定小范畴C，记函子r是复合

C h−→ Pre(C) ↪→ sPre(C),

则(sPre(C), r)是如下意义的万有模型范畴：

1. 任意给定模型范畴M和函子F : C →M，存在F沿r的分解

C M

sPre(C).

F

r
Sing

ϵ
|−|

2. 如此的分解是“唯一的”，更准确地讲，分解的范畴（这是一个群胚）是可缩的.

这与Bousfield-Kan的cosimplicial resolution in model cats (Hischorne)是等价的

练习 4.2. A groupoid is contractible iff objects are unique up to a unique isomorphism.

推论 4.8.1.

| − | : sPre(C)/S := LS(sPre(C)) ⇆M : Sing

是Quillen等价.

4.3 同伦余极限

命题1.10讨论了神经函子N : Cat→ sSet的左伴随，
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定义. 给定F : J → Set ↪→ sSet，定义

hocolimJF := N

(∫
J
F

)
其中

∫
J F是元素范畴.

练习 4.3. 记C h−→ Pre(C)是Yoneda嵌入，给定预层F ∈ Pre(C)，求证

1. h/F = C/F .

2. 图C/F ↪→ C
h−→ Pre(C)的余极限是F .

我们之前证明了，对任意的X ∈ sSet，

∥X∥ := hocolim∆◦X ≃ |X|,

我们还有“循环实现”∥ − ∥cyc使得

∥X∥cyc := hocolim∆C◦X ≃ ES1 ×S1 |X|.

那么自然的问题是是否存在类似的实现函子，使得对任意的拓扑群G，都有一个G指标范畴∆G和G实现函

子∥ − ∥G使得
∥ − ∥G : Funct(∆G◦,Set) ⇆ G−Top : SingG,

且存在G神经

NG
∗ : Cat→ Funct(∆G◦,Set).

定义. 假设h : ∆ → sSet是Yoneda嵌入，那么对任意给定的单纯集X ∈ sSet，定义范畴h/X（实际上

是h/ConstX）满足

1. 对象是([n], x ∈ Xn)的全体，

2. Homh/X(([n], x), ([m], y))定义为所有满足X(f)(y) = x的f : [n]→ [m]，

3. 态射([n], x)
f−→ ([m], y)

g−→ ([k], z)的复合为g ◦ f .

称h/X为X的单形范畴(category of simplicies)，也记为Delta/X.

练习 4.4. 回顾给定单纯集X ∈ sSet，我们可以定义范畴∆X :=
∫∆

X（Grothendieck构造），满足

1. 对象是([n], x ∈ Xn)的全体（用到了Yoneda引理），

2. Hom∫ ∆X(([n], x), ([m], y)) := {f : [m]→ [n] | X(f)(x) = y}.
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求证 ∫ ∆

X ∼= (∆X)◦.

给定小范畴C，记∆C := ∆(NC)，求证∆C ∼= ∆/C，其中∆ : ∆ ↪→ Cat.

定理 4.9. 函子i∆ : X 7→∆X是函子N : Cat→ sSet的同伦逆.

例 4.4. 对于例1.2给出的函子∆ : ∆→ Top，每一个对象上都有一个自然的循环作用：

τn : (x0, · · · , xn) 7→ (x1, · · · , xn, x0).

定理 4.10. 设X是循环空间（即函子X : ∆◦
C → Top），那么限制回∆后取几何实现的拓扑空间|X| :=∐

n≥0Xn ×∆n

≃
上有自然的S1作用，即| − |是函子

Funct(∆◦
C ,Top)→ S1 −Top.

4.4 测试范畴

在结束了之前的讨论之后，一个现实的问题是，我们为什么要关注范畴∆？或者换个问题，我们如何公

理化地描述范畴∆应该拥有的性质？

回顾给定小范畴C，记Pre(C) = Funct(C◦,Set)为C上的预层范畴(category of presheaves)，其中的对象，

即函子

X : C◦ → Set

被称为C上的预层(presheaf).

定义. 给定小范畴T，则一个T集X(T -set)是Pre(T )中的对象，即一个函子

X : T ◦ → Set.

所有T集组成的范畴记为T − Set.

明显地，对任意T中的对象B，函子

hB : T ◦ → Set

A 7→ homT (A,B)

是一个T集.
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引理 4.1. 给定小范畴T和函子

iT : T − Set→ Cat

X 7→ hX ,

那么函子iT存在右伴随

T − Set← Cat : NT ,

定义为

NT (C) : T ◦ → Set

X 7→ Funct(T/X , C).

NT也记为i∗T .

记ϵC : iT ◦NT ⇒ idCat是伴随给出的余单位，

定义 (Grothendieck). 给定小范畴T，若满足

1. BT是可缩的，且

2. 对任意有终对象的小范畴C和T中的对象X，iTX
◦NTX

(C)也是可缩的，

则称T是一个测试范畴(test category).

定理 4.11 (Cisinski). 给定测试范畴T，那么范畴T − Set上存在封闭的模型范畴结构，满足

• f : X → Y是弱等价当且仅当

B(iT (f)) : B(iT (X))→ B(iT (Y ))

是弱等价，

• f : X → Y是余纤维当且仅当f是T图的单射，

且伴随

iT : T − Set ⇆ Cat : NT

给出了Quillen等价.
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定义. 给定Cat中的一族函子W，若满足

1. 3选2公理，

2. 关于取收缩是封闭的，且

3. 若C中有终对象，则C → {∗} ∈W，

则称W是基本局部化子(fundamental localiser).

记W∞ =
⋂

W是基本局部化子

W是极小基本局部化子，那么（猜想）W∞包含所有取神经之后是弱等价的函子.



第五章 单纯群

5.1 单纯集的骨架

记∆≤n为∆包含[0], · · · , [n]的满子范畴，记in : ∆≤n ↪→ ∆是范畴之间自然的嵌入. 对任意单纯集X，

in,∗(X) := X◦i◦n是函子∆◦
≤n → Set，它称为单纯集X的n截断(n-trunction).记所有n截断形成的范畴为sSet≤n，

记函子τn := in,∗ : sSet→ sSet≤n.

sSet

sSet≤n,

τn
i∗n i!n

sk X := i∗n(τn(X)).

定义. 给定单纯集X，若X ∼= sk X，则称X是n骨架的(n-skeletal)，对偶地，

定理 5.1. 给定（小）范畴C，NC是2余骨架的，即NC ∼= cosk NC.

5.2 泛

给定单纯群G : ∆◦ → Gp，可以构造EG和BG如下

事实上，存在自然、典范的EG和BG选择，可以定义

WGn := Gn ×Gn−1 × · · · ×G0,

并且

di(gn, gn−1, · · · , g0) =

{
(dign, di−1gn−1, · · · , (d0gn−1)gn−i−1, gn−i−2, · · · , g0) i < n

(dngn, dn−1gn−1, · · · , d1g1) i = n

si(gn, gn−1, · · · , g0) = (sign, si−1gn−1, · · · , s0gn−i, e, gn−i−1, · · · , g0)

G×WG→WG

(h, (gn, gn−1, · · · , g0)) 7→ (hgn, gn−1, · · · , g0)
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WG :=WG/G.

引理 5.1. 映射q :WG→WG是纤维.

命题 5.2. WG是可缩的.

5.3 回路群

定理 5.3. There is a pair of adjunction

G : sSet0 ⇆ sGp :W

where G is called the Kan loop group construction and WG is the classfying simplicial complex.

Actually the functor G preserves weak equivalences and cofibrations, and the functor W preserves weak

equivalences and fibrations. Thus this is a pair of Quillen equivalence, which gives an equivalence of homotopy

categories

Ho sSet0 ≃ Ho sGp.

The detailed construction is as follows: Given a reduced simplicial set X, the set of n-simplicies is

GXn := ⟨Xn+1⟩/⟨s0(x) = 1,∀x ∈ Xn⟩ ∼= ⟨Bn⟩,

where Bn := Xn+1 − s0(Xn) and the isomorphism is induced by the inclusion Bn ↪→ Xn. The degeneracy

maps sGXj : GXn → GXn+1 are induced by sj+1 : Xn+1 → Xn+2, and the face maps dGXi : GXn → GXn−1 are

given by

dGXi (x) :=

{
d1(x) · (d)(x))−1 i = 0

di+1(x) otherwise.

命题 5.4. 对任意给定的约化单纯集X，GX是半自由的，更准确地说，对任意n > 0，复合映射Xn →
⟨Xn⟩↠ GXn−1限制在Xn上是单射，并且Xn的像Bn−1组成了

定理 5.5. 对任意给定的约化单纯集X，存在拓扑空间的弱等价

|GX| ≃ Ω|X|.
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5.4 约化单纯集

Σ : sSet∗ → sSet0

X 7→ C∗(X)/X

C∗(X)n := {(x,m) | x ∈ Xn−m, 0 ≤ m ≤ n}

(∗,m) ∼ ∗

d
C∗[n]
i : C∗(X)n → C∗(X)n−1

(x,m) 7→

{
(x,m− 1) 0 ≤ i < m

(d
X[n]
i−m(x),m) m ≤ i ≤ n

s
C∗[n]
j : C∗(X)n → C∗(X)n+1

(x,m) 7→

{
(x,m+ 1) 0 ≤ j < m

(s
X[n]
j−m(x),m) m ≤ j ≤ n

d1(x, 1) = ∗ x ∈ X0.
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第六章 同伦范畴和局部化

定义. 一个同伦化范畴(homotopical category)是一个给定的范畴C和其中称为弱等价(weak equivalence)的

一族态射W，这族态射满足6选2公理(2-out-of-6)，即对任意给定的态射· f−→ · g−→ · h−→ ·，

· ·

· ·

f

W∋gf
hg∈W

g

h

若gf, hg ∈W，则f, g, h, hgf ∈W .

例 6.1. 任意给定范畴C，取W是C中的所有同构，

例 6.2. 给定模型范畴M，

M N

HoM Ho N ,

F

γM γN

LF

ϵ

用近现代的观点来看，同伦理论实质上是对同伦化范畴的研究，或者更具体一点，给定所想要的等价关

系，我们希望借此对这个范畴进行按此等价关系描述的分类.

定义. 给定同伦化范畴(C, U)和(D,W )，若函子F : C → D满足将弱等价映到弱等价，即F (U) ⊆W，则称
函子F是同伦化的(homotopical).

练习 6.1. 任意给定范畴C中的一族态射W，若W满足3选2公理，则其满足6选2公理.

6.1 范畴的局部化

定理 6.1. 设C是一个范畴，U是其中的一族态射，则存在同构下唯一的范畴C[U−1]和函子Q : C →
C[U−1]，使得U中所有的态射都被Q映到C[U−1]中的同构，且满足如下泛性质：对任意范畴D和任意函
子F : C → D，若F将U中所有的态射映到D中的同构，则有唯一的分解
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C C[U−1]

D.

Q

F F̃

我们称范畴C[U−1]为的C局部化(localization).

事实上，所有这样的分解组成一个可缩的群胚.这里需要注意，因为范畴中的一族态射U可以取得非常不

理想，因此局部化之后的范畴可能并非再是局部小的.但这里我们忽略这样的问题，我们假定（虽然并不真实，

但相较于主要问题，范畴本身的问题需要在其他的地方讨论）我们还是得到想要的范畴.另一个问题是U并不

能控制在C[U−1]中可逆的态射：定义

Ũ = {f ∈ mor C[U−1] |},

如果U = Ũ，我们称U是(saturated).

6.1.1

定义. 给定范畴C和其中的一族态射U，若对象X满足对任意U中的态射f : A→ B，诱导的映射

f∗ : homC(B,X)→ homC(A,X)

都是同构则称对象X是U局部的(U -local).

换句话说，U局部的对象X给出的函子hom(−, X)将U中的态射看作是同构.

定义. 给定范畴C和其中的一族态射U，若态射g : A→ B满足对任意U局部的对象X，诱导的映射

g∗ : homC(B,X)→ homC(A,X)

都是同构则称态射g : A→ B是U等价(U -equivalence).

如前，g : A → B是U等价意味着U局部的对象（通过Yoneda嵌入函子）将g视作同构.很明显地，U中的

态射都是U等价.因此，记所有的U等价为Û，U ⊆ Û .

练习 6.2. 若C中的对象X,Y都是U局部的，且f : X → Y ∈ Û，求证f是同构.

定义. 给定范畴C中的一族态射U和对象X，若存在U局部对象LUX和U等价ηX : X → LUX，则称

ηX : X → LUX

是X的一个U局部化(U -localisation).
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引理 6.1. 给定范畴C中的一族态射U和对象X，ηX : X → LUX是X的局部化，则

1. 对任意态射f : X → Y，若Y是U局部的，则存在唯一的分解

X Y

LUX,

f

ηX

2. 对任意g : X → Z ∈ U，存在唯一的分解

X LUX

Z.

g

ηX

如上引理中U被Û代替后是否正确？

命题 6.2. 若η1,X : X → L1,UX和η2,X : X → L2,UX都是U的局部化，则存在f : L1,UX → L2,UX是同构

且

X

L1,UX L2,UX

η1,X η2,X

f

是交换图.

命题 6.3. U局部对象保余极限，U等价保极限.

命题 6.4. 设范畴LU (C)是C中所有U局部化组成的范畴，态射是交换图.那么忘却函子

C ← LU (C) : U

X ←[ (ηX : X → LUX)

是满忠实的函子.
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定理 6.5. 给定范畴C中的一族态射U，若C中的每个对象都有U局部化，则

C ← LU (C) : U

存在左伴随，称为C的Bousfield局部化Q : C → LU (C)(Bousfield localisation).

定理 6.6. Bousfield局部化是局部化.具体而言，

练习 6.3. 证明局部化函子具有高阶泛性质.具体说来，定理6.1给出的是一阶泛性质，即函子C[U−1] → D和
将U中态射映为同构的函子C → D之间的一一对应.求证局部化函子Q : C → C[U−1]同样给出了C[U−1] → D之
间的自然变换和将U中态射映为同构的函子C → D之间的自然变换的一一对应.
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6.2 同伦范畴的导出函子

定义. 给定同伦化范畴(C,W )，那么范畴C关于W的局部化范畴C[W−1]被称为同伦化范畴(C,W )的同伦范

畴(homotopy category)，记为Ho C.

定义. 给定同伦化范畴C,D之间的函子F : C → D，γD ◦ F关于局部化函子γC的右Kan扩张

C D

Ho C Ho D

F

γC γD

LF :=RγC (F )

ϵ

被称为F的全左导出函子(total left derived functor)，记为LF .对偶地， γD ◦ F关于局部化函子γC的
左Kan扩张

C D

Ho C Ho D

F

γC γDη

RF :=LγC (F )

被称为F的全右导出函子(total right derived functor)，记为RF .

注意到这里导出函子的左右与Kan扩张的左右是相反的.这样定义左右的原因一方面可以从图中看出来，

LF是从左侧逼近函子F的.

引理 6.2. LF将弱等价映为同构.

定义. 给定同伦化范畴C,D和函子F : C → D，

1. F的点集左导出函子(point-set left derived functor)包含了同伦化的函子LF : C → D和自然变换ϵ :

LF ⇒ F使得γD ◦LF : C → HoD（根据定理6.1，这同于给出函子Ho C → HoD）和γDϵ : γD ◦LF ⇒
γD ◦ F是全导出函子，如图

C D

C D Ho D =

Ho C Ho C.

F

γC γD

F

LF

γD
ϵ

γD◦LF

γDϵ
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2. 对偶地，F的点集右导出函子包含了同伦化的函子RF : C → D和自然变换η : F ⇒ RF使得γD ◦RF :

C → HoD（根据定理6.1，这同于给出函子Ho C → HoD）和γDη : γD ◦F ⇒ γD ◦RF是全导出函子，
如图

C D

C D Ho D =

Ho C Ho C.

η

F

γC γDη
γD

F

RF

γD

γD◦RF

事实上这个定义有些过强了.

定义. 1. 给定同伦化范畴C，则C上的左形变(left deformation)是函子Q : C → C和自然弱等价q : Q ⇒
idC（即q是自然变换且对任意C中的对象A，qA都是弱等价）.

2. 给定同伦化范畴之间的函子F : C → D，则F的左形变是指C的一个左形变(Q, q)，满足F保Q的像子

满范畴的所有弱等价，即若w是im Q中的弱等价则f(w)也是弱等价.

完全对偶地，有右形变的概念.这里，称函子Q的像子满范畴为C的左形变收缩(left deformation retrac-

tion)，记为CQ.此时，函子的左形变就是给定了定义域上的一个左形变，使得该函子在形变收缩上是“同伦
化”的.

例 6.3. 给定模型范畴M，

命题 6.7. 若同伦化范畴之间的函子F : C → D有左形变(Q, q : Q⇒ idC)，那么

(F ◦Q,Fq)

是F的点集左导出函子.

证明. 首先考虑任意同伦化函子G : C → Ho D和自然变换α : G ⇒ γD ◦ F，由于G是同伦化的，Gq : GQ ⇒
G是自然同构.对于图

GQ γD ◦ F ◦Q

G γD ◦ F,

αQ

Gq (γD◦F )q

α

α的自然性说明
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GQ(A) γD ◦ F ◦Q(A)

G(A) γD ◦ F (A)

αQ(A)

G(qA) (γD◦F )(qA)

αA

是交换图，因而之前的图是交换的.这意味着α有分解

α : G
(Gq)−1

====⇒ GQ
αQ
==⇒ γD ◦ F ◦Q

(γD◦F )q
=====⇒ γD ◦ F,

这恰好是所需要的分解.为证明分解的唯一性，假设有分解

α : G
β
=⇒ γD ◦ F ◦Q

(γD◦F )q
=====⇒ γD ◦ F,

同样地β的自然性给出了交换图

GQ γD ◦ F ◦Q2

G γD ◦ F ◦Q,

βQ

Gq (γD◦F◦Q)q

β

根据左形变的定义竖直的两个自然变换都是自然同构，因而β完全由βQ来决定.但注意到分解给出

αQ : GQ
βQ
==⇒ γD ◦ F ◦Q2 (γD◦F◦Q)q

=======⇒ γD ◦ F ◦Q,

并且(γD ◦ F ◦Q)q是同构，因而分解是唯一的.

考虑一般的情形，注意到

命题 6.8. 左形变存在的函子F : C → D的全导出函子是绝对Kan扩张.

证明. 这里只需要验证对任意H : Ho D → E，(H ◦ γD ◦F ◦Q, (H ◦ γD ◦F )q)都定义了一个Kan扩张即可.由于

函子H保同构，(Q, q)也是H ◦ γD ◦F的左形变，命题6.7就直接说明了(H ◦ γD ◦F ◦Q, (H ◦ γD ◦F )q)是Kan扩

张.

在通常的同调代数或同伦代数中，可形变的函子一般由伴随函子对给出，其中左伴随函子附带左形变，

右伴随函子附带右形变.在此情况下，两个函子的全导出函子恰好是伴随对，但令人惊讶的是，这个结果依赖

于命题6.8：

定理 6.9. 设F : C ⇆ D : G是同伦化范畴之间的伴随函子对，且F有全导出函子LF，G有全导出函子RG，
且两个全导出函子都是绝对Kan扩张，则

LF : Ho C ⇆ Ho D : RG

构成伴随函子对.

证明.
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定义.

练习 6.4. 求证同伦化范畴C上的函子Q : C → C若弱自然等价于单位函子，即存在自然弱等价q : Q ⇒ id，

则Q是同伦化函子.

6.3 模型范畴的Bousfield局部化

定义. 给定模型范畴M，若存在函子

mapM :M◦ ×M→ sSet

满足

1. mapM(X,Y )0 = homM(X,Y )，

2. 存在复合

则称mapM(X,Y )是一个(homotopy function complex)

命题 6.10. 若模型范畴M有具有函子性的余纤维替代，那么存在homotopy function complex.

给定模型范畴M和M中的一族态射U ⊆ morM，我们希望构造M上的新的模型结构，使得弱等价包含
了U中的态射

定义.

6.4 模型逼近

在定理6.9中，我们给出了导出函子是伴随函子对的情况，但实际当中条件过于理想，很难找到合适的能

够应用的场景.本节利用之前讨论的模型范畴的理论，给出一种构造导出伴随函子对的方式

定义. 给定同伦化范畴C，若存在模型范畴M和伴随

l :M⇆ C : r
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满足

1. r是同伦化的，即r(WC) ⊆WM，

2. l对于M中的余纤维对象是同伦化的，

3. 伴随对(l, r)接近于Quillen等价，准确地讲，若A是M中的余纤维对象，X是C中的任意对象，f ♭ :

A→ r(X)是M中的弱等价当且仅当它在伴随下的对应f ♯ : l(A)→ X也是C中的弱等价，

则称M是C的左模型逼近(left model approximation).

模型逼近定义的原则是对于一个同伦化范畴C，它是模型范畴（例6.2）和它有模型逼近（在同伦代数的

意义下）并没有本质的差别

例 6.4. 记Mon是所有幺半群组成的范畴，那么存在伴随

L : Mon ⇆ Gp : U,

其中函子L给出幺半群M的局部化，这个伴随可以自然地扩展为一个新的伴随

L : sMon ⇆ sGp : U,

并且左右两边的模型结构都继承自sSet（定理2.10），那么可以证明如上伴随使得sMon是sGp的模型逼近.

对于第三条，

定理 6.11. 给定同伦化范畴之间的伴随函子

F : C ⇆ D : G,

并假定l :M⇆ C : r是C的左模型逼近，使得存在伴随函子对

F̂ :M⇆ C : Ĝ,

满足

1. F̂是左可形变的，Ĝ是右可形变的，

2. ()是左形变对，且存在自然的弱等价F̂ ◦ r ⇒ F，

3. im RĜ ⊆ im Rr，

则F,G有全导出函子

LF = LF̂ ◦ Rr

和

RG = Ll ◦ RĜ,

且

LF : Ho C ⇆ Ho D : RG

是伴随.
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第七章 无穷范畴

范畴论是非常强大的工具，借助它

考虑例1.23的结论，我们有如下图

Gpd Cat

Kan sSet

N N

7.1 拟范畴

7.1.1 拟范畴的范畴行为

给定拟范畴C，我们引入如下的概念：

1. C中的对象是C0中的元素，

2. C中的态射是C1中的元素，注意到我们有面映射d0, d1 : C0 → C1，对于C中的态射f，称s(f) := d1(f)为f的

定义域，t(f) := d0(f)为f的余定义域，此时Set中的拉回图

homC(A,B) C1

∗ C0 × C0

(s,t)

(A,B)

(7.1)

定义了homC(A,B).

3. 退化映射s0 : C0 → C1给出了对象的单位态射.

4. 给定态射f : A→ B和g : B → C，这样就给定了C中的一个内角Λ
[2]
1 → C：

B

A C,

gf

那么根据定义必然存在（可能不唯一的）提升∆
[2]
1 → C，称d0(σ)为f与g的一个复合.

之后我们会证明，所有可能复合的全体是可缩的.
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定义. 给定拟范畴C中的态射f, g : A→ B，若存在2单形σ : ∆[2] → C使得∂σ = (g, f, idA)，即

A

A B,

gidA

f

则称f, g是同伦的，σ是f到g的同伦，记为σ : f ≃ g.

容易验证，若拟范畴取自某个范畴C的神经，那么同伦是离散的；同时若拟范畴取自某个拓扑空间，那么
同伦就是拓扑空间之间的同伦.

引理 7.1. 给定拟范畴C和其中的对象A,B ∈ C0，那么同伦是homC(A,B)上的等价关系.f : A → B的等价

类记为[f ].

证明.

定理 7.1. 单纯集X是拟范畴当且仅当i∗ : homsSet(∆
2, X)→ homsSet(Λ

2, X)是零调Kan纤维.

我们把homsSet(Λ
2, X)理解为“复合问题”全体形成的空间，类似地hom(∆2, X)应被理解为“复合问题

的解”全体形成的空间，定理？说明，拟范畴的定义性质使得二者同伦意义上是相同的. 给定C中的态射f :

A→ B, g : B → C，拉回图

C homsSet(∆
2, X)

∆0 homsSet(Λ
2, X)

i∗

可以被视作g和f的复合空间.

定义. 对任意拟范畴C，如下范畴Ho C被称为C的同伦范畴(hmotopy category)：

1. ob(Ho C) = C0，

2. 对任意的对象A,B，homHo C(A,B)/ ≃，其中homC(A,B)如7.1定义，

3. idA := [idA] = [s0(A)]，其中等式左边是Ho C中的对象，等式右边是C中态射决定的等价类，

4. 复合定义为[g] ◦ [f ] = [g ◦ f ]，其中g ◦ f是C中任意可能的复合.
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引理 7.2. 如上定义给出的同伦范畴是一个范畴，并且存在自然的同构Ho C ∼= τ1(C).

证明.

我们稍微总结一下，拟范畴的行为相比于普通的范畴，应当具有以下的特点：

1. 拟范畴应当有任意维数的态射，这些所有的态射组成一个空间（而不仅是一个集合），

2. 态射是可以复合的，且复合可能的选取的全体（是一个空间）是可缩的，

3. 所有的高阶态射都是“可逆的”，我们把这样的拟范畴称为(∞, 1)范畴.

定义. 给定拟范畴C，态射f : A→ B若满足[f ]是Ho C中的同构，则称f是等价(equivalence).

引理 7.3. 给定拟范畴C，态射f : A → B是等价当且仅当存在两个2单形σl, σr : ∆[2] → C满足σl|
Λ

[2]
0

=

(f, id)和σr|
Λ

[2]
2

= (f, id).

定义. 给定拟范畴C，若它的同伦范畴Ho C是群胚，则称C是无穷群胚(infinity groupoid).

定理 7.2. 给定无穷范畴C和整数n ≥ 2，锥σ : Λn0 → C若满足σ|∆0,1是等价，则σ可扩张为单形∆n → C.

推论 7.2.1. 拟范畴C是Kan复形当且仅当它是无穷群胚.

给定无穷范畴C，定义C≃为拉回对象

C≃ C

N((τ1C)∼=) N(τ1(C)).

η

(A,B)

Inf cat is a composer in which all choices of compositions are unique up to contractible space of choices.

IfX is a composer plus inner 3-horn properties, then in the diagram

homC(A,B) homsSet(∆
[2], C)

∗ homsSet(Λ
[2], C)

(s,t)

(A,B)

the pullbacl is connected.

Thm(Joyal) If furthermore C is an inf cat, then the pullback is contractible.
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7.2 单纯范畴

sCat和Cat∆

练习 7.1. 求证存在自然的嵌入Cat∆ ↪→ sCat.

证明.

7.3 同伦凝聚神经

Cat∆

Cat,
Uπ0

Const

其中U是取底范畴.

我们回顾对于范畴C的神经的构造：

N(C)− := homCat([−], C).

此时，它并不能完全地反映范畴的高阶信息.正确的想法是寻找范畴[n]的单纯thickening，并且定义新的神经

函子.

给定全序集(P,≤)，且视为一个单纯范畴 C(∆P )：

1. C(∆P )对象的全体是P，

2. homC(∆P )(i, j)是P中所有以i为最小值且以j为最大值的全序集对应的范畴，即若记Pi,j := {S ⊆ P |
minS = i, maxS = j}，则

homC(∆P )(i, j) :=

{
∅ j < i

N(Pi,j) i ≤ j.

3. 复合是集合取并集.

引理 7.4. 1. N(P0,n) = (∆1)n−1.

2. 若i ≤ j，则Pi,j = P0,j−i.

我们如何去理解构造（Dugger-Spivak necklaces）

homC(∆[n])(i, j) = {偏序集[n]中的所有路径i→ j} =


∆j−i+1 j > i

∆0 j = i

∅ j < i

引理 7.5. 存在范畴的同构

π0(C(∆
[n])) ∼= [n],

并且作为偏序集，这样的同构是唯一的.
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例 7.1. 我们来尝试理解

命题 7.3. C(∆[n])→ Const [n]是一个DK等价，且给出了sCat中的余纤维替代.

构造P 7→ C(∆P )是函子化的，并且注意到如此定义的范畴是poset enriched.于是对应[n] 7→ C(∆[n])给出

了函子

C(∆−) : ∆→ sCat,

而这引出了最重要的定义：

定义. 给定单纯范畴C，它的同伦凝聚神经(homotopy coherent nerve)是单纯集

N∆(C)∗ := homsCat(C(∆
∗), C).

sCat和Cat∆，后者是sSet充实的.

N∆(C)n := homsCat(C(∆
n),Const C)

= homsCat(π0(C(∆
n)), C)

= homCat([n], C)

命题 7.4. Cat∆是完备和余完备的.

证明. 我们实际上是证明若B是完备且余完备的范畴，那么所有B充实的（小）范畴的全体CatB也是完备且余

完备的范畴.（Wolff 77’）

于是借助Kan扩张，C[−]可以构造为一个函子

sSet→ sCat

X 7→ colimh/X(C[−] ◦ π),

其中h/X是X的单形范畴，π : h/X →∆是自然的忘却函子.

引理 7.6. 给定满子范畴C ⊆ D和小范畴J，若图D : J → C的余极限在D中存在且在C中，则colimC
J D存

在且

colimC
J D ∼= colimD

J D.
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定义. 给定拟范畴C和其中的对象A,B，A到B的映射空间(mapping space)MapC(A,B)定义为sSet中的拉

回对象

MapC(A,B) Hom(∆[1], C)

∆[0] Hom(∂∆[1], C).

res

(A,B)

定理 7.5. 设单纯范畴C ∈ Cat∆满足对任意对象A,B，HomC(A,B)都是Kan复形，那么

1. N∆(C)是拟范畴，

2. 对任意对象A,B ∈ C，MapN∆(C)(A,B) ∼= HomC(A,B).

定理 7.6 (Joyal-Lurie). 伴随

C : sSet ⇆ Cat∆ : N∆

是Quillen等价，其中sSet上取Joyal模型结构.

定义. 给定单纯函子F : C → D，若满足

1. 诱导的函子π0(F ) : π0(C)→ π0(D)是本质满的，

2. 对任意的对象A,B ∈ C，HomC(A,B)→ HomD(F (A), F (B))

则称F是一个弱等价(weak equivalence)，或者Dwyer-Kan等价.

7.3.1 下降条件

定义. 给定范畴C中的余单纯对象X : ∆→ C，则X的totalization定义为lim∆X.

定义. 1. ∆+ := ∆ ∪ [−1].
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2. ∆∞满足ob ∆∞ = ob ∆+，对任意m,n，hom∆∞([m], [n]) := {满足 − ∞ 7→ −∞的保序映射[m] ∪
{−∞} → [n] ∪ {−∞}}.

7.3.2 Duskin神经构造

定义. 给定一个范畴C，NDuskinCn包含了如下信息：

1. 对象A0, · · · , An，

2. 对任意i < j，存在fi,j : Ai → Aj，

3. 对任意i < j < k，存在µi,j,k : fj,k ◦ fi,j ⇒ fi,k满足上闭链条件.

命题 7.7. NDuskin给出了strictly unitary lax functor和单纯态射之间的对应.

定理 7.8. 给定2范畴C，那么下列陈述等价：

1. C是一个(2, 1)范畴，即HomC(A,B)中的态射都是同构，

2. NDuskin(C)是一个拟范畴.

7.4 基理论

例 7.2. Aff是Sch的基，对于任意的预层F : Sch→ V，

i∗i
∗F ≃ F,

其中i∗是右Kan扩张.

[A, Appendix]

7.5 范畴的join

我们希望直觉上说明A ∗ B ≃ hocolim(A← A×B → B).

范畴A ∗ B是范畴

• 对象的全体是ob A
∐

ob B，
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• Hom(X,Y ) =


HomA(X,Y ) X,Y ∈ ob A
HomB(X,Y ) X,Y ∈ ob B

∗ X ∈ ob A, Y ∈ ob B
∅ X ∈ ob B, Y ∈ ob A.

给定函子P : B → C，定义

FunctP (A ∗ B, C) := {F : A ∗ B → C | iB ∗ (F ) := F ◦ iB = P}

其中iB → A ∗ B是自然的嵌入.

考虑函子A 7→ FunctP (A ∗ B, C)，它是可表的，这个代表元记为Cone/P，称为P上的锥范畴(category of

cones over P )，即FunctP (A ∗ B, C) ∼= Funct(A,Cone/P ).
对任意的指标范畴J，定义J −∞是比J增加一个始对象的范畴，那么对任意图F : J → C，CF/ ∼= FunctF (J −∞, C).
无穷范畴中的limit：给定无穷范畴B和无穷范畴的图D : J → B，即一个无穷函子，对任意B中的对象X

（即函子X : ∆[0] → B），都可以定义常值函子

ConstX : J → B

J →∆[0] X−→ B.

考虑自然变换α : ConstX ⇒ F，即

ConstX = J ∼= J ×∆[0] 1×δ0−−−→ J ×∆[1] α−→ B

且

F = J ∼= J ×∆[0] 1×δ1−−−→ J ×∆[1] α−→ B.

定义. 若B中的对象L和自然变换α : ConstL ⇒ F满足复合

MapB(X,Y )→ MapFunct(J ,L)(Cone/X ,Cone/Y )
α∗−→ MapFunct(J ,L)(Cone/X , F )

是一个弱等价，则称(L,α)给出了(exhibits)极限lim
J
F

7.5.1 代数范畴

定义. 给定范畴C中的对象X，若HomC(X,−)保可滤余极限，则称X是紧对象(compact).

例 7.3. S是Set中的紧对象当且仅当S是有限集，X是sSet中的紧对象当且仅当X是有限单纯集.
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定义. 给定范畴C中的对象X，若HomC(X,−)保自反余极限，则称X是投射对象(projective).

定义. 给定范畴C，若存在（小的）子范畴EC ⊆ C使得Funct⊗(E◦C , C)是范畴的等价，则称C是代数的.

定理 7.9 (Scholze,-C,19). 如下陈述是等价的：

1. C是代数的，

2. 记FC是C中所有投射紧对象组成的满子范畴，Funct⊗(F◦
C , C)是范畴的等价，

3. 对任意存在可滤余极限和自反余极限的范畴D和函子F : FC → D，都存在唯一的扩张F̃ : C → D保
如上结构.
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