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Caution. Within this notes we will only work on varieties /C [[I]. You’d better skip all the proofs if this is the first time you
learn toric varieties.

Example 1. Given the polytope

Cy C2

we then can produce a morphism

@:A%S’t)ﬁﬂm5
s,t)—|1,s,8%, 57,1, st|.
t 1,s,82, 83 t, st

Let X := p(A2), then X is our first toric variety.

1 A Bad Definition of Toric Varieties

Definition. The n-torus is defined to be
(C*)™ := Spec Clwy, 27", -+, @, 1, 1],
where the group structure is given component-wisely.

Proposition 1 (Good properties). 1. Let Ty and Ts be tori and let ¢ : T — 15 be a morphism that is a group homomor-
phism. Then the image of ¢ is closed in T5.

2. Let T be a torus and let H C T be an irreducible subvariety of T that is a subgroup. Then H is a torus.

Definition. A character of torus (C*)™ is a morphism  : (C*)" — C*. Dually, a cocharacter, or say a one parameter
subgroup is a morphism A : C* — (C*)™.

Example 2. Givenanm = (ay,--- ,a,) € Z", there is a character ™ : (C*)" — C* defined by
X"t ) = £t
The amazing thing is that all characters come in this way. Also, there is a 1-PS associated with m
AT CF = (CH)"
t— (70, o).
All 1-PS’s come in this way as well.

Assume that a torus 7" acts linearly on a finitely dimensional vector space W over C. A basic result is that the maps
w — ¢ - w are simultaneously diagonalizable as follows. Given m € M, define the eigenvector space

Wpi={weW|t-w=x"(t)wforallt e T}.

Then one can show that W = P W

meZn
Definition (Bad Definition). A foric variety is an irreducible variety V' containing a torus 7' := (C*)™ as a Zariski open subset
such that the action of 7" on itself extends to an algebraic action of 7 on V.

Example 3. Consider the canonical embedding C* < C given by C[z] — C[z, z7!]. Generalizing this gives that all affine
spaces are toric varieties.



Definition. A lattice is a free abelian group of finite rank. Thus a lattice of rank n is isomorphic to Z".
By Example we say the torus (C*)™ has lattice of characters M = Z" and has lattice of 1-PS N = MY ~ 7",
Theorem 2. Given a torus (C*)", and a set A = {mq,--- ,ms} C M, then there is a map
Dy (CH" = C°,

defined by
Da(t) = (X™(8),- - X" (1))

Let X 4 be the Zariski closure of the image of ® 4(t). Then X 4 is an toric variety of character lattice ZA.

Theorem [2)is much more concrete than our definition. However it is still hard to see the Zariski closure. We will later give
another definition and prove that they are equivalent.

[1] [o] o 1
Example 4. Consider 0¥ N M be the rational cone generated by vectors {0| , |1, [0|, | 1 |, since
10 0 1 -1
1 0 0 1]
O+ |1 =0 =] 1] =0,
0 0 1 —1]

the affine coordinate ring is C[z, y, 2, w]/(zy — 2w). Since V = Spec C[z, y, 2, w]/(zy — 2w) is in C4,
VN (C)* = {(t1, ta, t3, trtats 1) | t; € C*} =2 (C*)3,

where the isomorphism is (¢, t2,t3) — (t1,te, t3, tltgtgl).

2 Cones and Fourier-Motzkin

Definition. Let V' be a finite dimensional vector space over R, S C V' is a non-empty subset.
1. S bea(convex) coneifVr,y € S,a, 8 € R, if a, 8 > 0then ax + By € S.
2. Sbea(convex) setif Vr,y € S,a, € R,if o, > 0and a + 8 = 1 then ax + By € S.
3. A convex polyhedral cone is of the form
o = cone(S) = {Z cull | ¢y > 0} )
u€es
where S C V is finite. We say that o is generated by S.

Example 5 (Key examples). 1. Let A e R™*" A = [ay, - ,ay] where a; € R™. Define
veone(A) := {x1a1 + - + xna, | z; >0} = {Ax | ¢ > 0},
where a cone of this form is called finitely generated.

2. Notations as before, define

n
conv(A) = {z1a1 + -+ xpa, | 2 > O,in =1},
i=1

where a set of this form is called a polytope.



b1
3. Let B= | : | where b; € (R™)*. Define
by

heone(B) :={y € (R™)" | (y,b;) <0} ={y € (R™)" | By <0}.
4. A e R™*" b e R™, define
P(A,b) :={x ¢ R"| Az <b}.
This is called to be polyhedral.

Definition. Note that the span of a cone o is the smallest subspace of V' containing o. Then the relative interior of o, denoted
by relint o, is the interior of ¢ in its span.

Lemma 1. For a cone o,
u € relint o < (m,u) >0

Definition. For a cone o C V/, its dual cone is
oV i={yeV*|(y,z) <0,Vz e V}.
Lemma2. [. Ifo = vcone(A), then ¢V = hcone(AT).
2. o is a vcone if and only if it is an hcone.
3. 0V =o.
Theorem 3 (Fourier-Motzkin Elimination).

Theorem 4 (Weyl-Minkowski). Let o C R”™ be a cone. Then o is finitely generated if and only if o is polyhedral.

3 Polytope Geometry

Definition. Let 0 C R”™ be a polyhedral cone. The linear space of o is the largest subspace contained in . The cone o is
said to be pointed or strongly convex if its linear space is 0.

Proposition 5. 1. The following are equivalent:

(a) oN—o=0.
(b) o is pointed.
(c) Thereisau € o” witho N U+ = 0.
(d) oV spans V.

(e) dimo = dimoY = dim V.
2. Any cone o C 'V can be written as the sum of a linear space and a pointed cone. In face
c=L+T,
where L := 0 N —o and 7 := o N L is pointed.
Definition. A face of a polyhedral cone 0 C R"™ is a subset 7 C o of the form
Ti=0cNut

for some u € oV. A 1-dimensional face is called an edge or an extremal ray. A 1-codimensional face is called a facet.



Definition. Given any u € R”, we define
Hy o= {f € (R")" | (f,u) =0}
and

Hy, = {f € [R")" | (f,u) > 0}.
Lemma 3. 1. o itselfis a face.

2. The smallest face is 0 N —o.

3. A face T of 0 is also a polyhedral cone.

4. A face of a face is also a face.

5. If o =vcone(ay, -+ ,ay), u € 0¥, then T = vcone(a; | (u,a;) = 0).
Definition. A cone o in V' = R" is said to be rational if it is generated by vectors (i.e. vcone) in Q™ (or equivalently Z™).
Lemma 4. A cone 0 C R" is rational if and only if oV is rational.

Definition. Let M be a lattice, then M = Z" for some integer n which is the rank. We have M C Mg := Q" C Mg :=R",
and My, := M ®z k. Let N be the dual lattice := Homgy(M,Z) = M*. We say o is a cone in N if o is a rational polyhedral
cone in Ng.

Definition. Let o be a cone in IV, we define
Sy =0 NM.

Note that S, is a semi-group. Natural question: why not S, := o N N?

Definition. A semi-group is a set S with an associative binary operation and an element of identity. We say a semi-group S
is affine if S is further required:

1. The binary operation is commutative.
2. The semi-group is finitely generated.

3. S can be embedded into a lattice.

Example 6. Let o := vcone (_1 _1>.

h g




One can read from the picture that

Example 7. Let o := vcone (_12 _1>.

One can read from the picture that

o= (B BBl

Definition. A (commutative, finitely generated) semigroup is a set .S with an associative and commutative binary operation

and an identity element, that can be embedded into a lattice.

~

Proposition 6 (Gordan’s Lemma). If o is a cone in N, then S, is a finitely generated semi-group.

Proof. Let 0V = vcone(vy, -+ ,vs), and let K := {z1v; + -+ + x5vs | 0 < z; < 1}. Then ¥ N M is generated by

{v1,---,vs} N K.

Definition. Let o be a pointed cone. Consider 0 # m € oV N M = S,, it is called irreducible if for any decomposition

m=k+1in S,, eitherk =0orl = 0.

Proposition 7. Let o be a pointed polyhedral cone in R™, and let

H :={m € S, | mis irreducible},

then
1. |H| < 0.
2. H generates S,.

3. Every generating set contains H.



Here the set is called the Hilbert basis.
Definition. A polytope P is said to be simplicial if all its facets are simplices.
Definition. A lattice polytope P C Mpy is said to be normal if
(kPYNM+(IP)NM=(k+)P)NM
for all k,1 € N.
Theorem 8. Let P C My be a full dimensional lattice polytope of dimension n > 2, then kP is normal for all k > n — 1.
Definition. A sub-semi-group .S C M is said to be saturated if whenever m € M and pm € M forsomep € Ny, m € S.

Definition. A lattice polytope P C Mp is said to be very ample if for every vertex m € P, the semi-group Sp,, =
N(P N M — m) is saturated in M.

Proposition 9. A normal lattice polytope is very ample.
Definition. A fan ¥ in Ny is a finite collection of cones such that:

1. Every o € ¥ is a strongly convex rational polyhedral cone.

2. For all o € ¥, each face of o is also in 2.

3. Forall 01,09 € %, the intersection o1 N o3 is a face of each.
Definition. Given a full-dimensional lattice polytope P in R"™, for each face F of the polytope, define

op :={u € Ngr | {y—=z,u) <0,Vr € F,y € P}.

LetXp := {op | F C P isaface}, then Xp is a fan, called the normal fan associated with the polytope P.

Example 8. Given the polytope

C1

we shall have the normal fan

C2



Example 9. Given the polytope

C1

Cy C2

C3

we shall have the normal fan

4 Toward Toric Varieties

Let o be a rational polyhedral cone in Ng = R"™. Here comes our main construction:
Definition. Let A, := C[S,] be a C-algebra, such that

1. {t™ | m € S,} forms a C-basis for A,.

2. tmgme = gt

We then call U, := Spec A, the affine toric variety associated to o. Notice that this construction can be generalised to a
semigroup, where C[S] is called the semigroup algebra for the semigroup S.

If S, = {my,--- ,m,), then A, is generated (as a ring) by t™*, - -- | ¢™. In particular A, is Noetherian.

Example 10. Let o := vcone <_1 _1). Then S, = <{(1)] , {ﬂ> and thus C[S,] = C[s,t], U, = C2. Similarly, if

o = vecone(—I,), then U, =

cn.

-1 =1 |0 —1p—-1 2
Example 11. Let o := vcone 1 1) Then S, = I and thus C[S,] = C[s~ 't~ 1, t] = Clx,y], U, = C=.
-2

1 1). From previous computation we know that A, = C[s, st, st?] = C[x,y, 2]/(y? —

Example 12. Let o := vcone (
Question: the previous examples have 2 generators and 3 generators respectively. What are the differences?
Example 13. Let o := vcone(0), then S, = Z? and A, = C|s, s~ !, t,t71], hence U, is the 2-torus.



The toric variety defined in Theorem [2]is a Zariski closed subset in an affine space, so it is an affine variety. Therefore we
would like to find its defining ideal. As in the proof, we have an induced 4 : Z5 — M. Let K be its kernel then there is a
short exact sequence

0— K —17Z°— M.

Anelement k = (kq1,--- ,ks) € K satisfies Z;l k;m; = 0, i.e. a linear relation among the m;. Let k. := Zki>0 k;e; and
letk_ := — Zk,»<o kje;,thenk =k, —k_and bk, k_ € N° The binomial
o — gk = H xf‘ — H xj_kj
k;>0 k;<0

vanished on the image of ® 4, because
[T ok =TTy = Lo ™ (H o= 1) =0
ki>0 k; <0 k; <0 i=1
So the ideal contains the set
(b —azF- ke K) = (™ — 2" | m,n € N*andm —n € K).
In fact, we have
Theorem 10. The ideal of the toric variety X 4 for A = {my,--- ,ms} C M is
(M —ah | ke K) = (a™ — 2" | m,n € N*and m —n € K).
Definition. Let KX C 7Z° be a sublattice.
1. Theideal (™ — 2™ | m,n € N®* and m — n € K) is called a lattice ideal.
2. A prime lattice ideal is called a toric ideal.
Hence by Theorem[I0} the defining ideal for the toric variety X 4 is a toric ideal.
Proposition 11. An ideal I C Clxy,--- ,x] is toric if and only if it is prime and generated by binomials.

We then consider a semigroup S in M, then we have a semigroup algebra C[S]. It is an integral domain and finitely
generated as a C-algebra.

Proposition 12. The variety Spec C[S] is a toric variety. If the semigroup S = NA is generated by the set A = {my,--- ,ms},
then
Spec C[S] & X 4.

Theorem 13. This construction gives us an affine toric variety and all affine toric varieties (probably not normal) come from
this way (from a semigroup). More precisely, if V is an affine variety, then the following are equivalent:

1. 'V is an affine toric variety.

2. V & X 4 for a finite set A in a lattice.

3. V is an affine variety defined by a toric ideal.

4. V = Spec C[S] for an affine semigroup S.
Proposition 14. An affine toric variety has a fixed point of the torus action if and only if
Definition. Let o be a pointed cone in N = Z". We say

1. o is simplicial if the number of extremal rays = dim o.

2. o is smooth if o is generated by a part of a Z-basis of V.



Recall that a C point of a variety X is a morphism C — X. When X = Spec C[o¥ N M] is an affine toric variety, it is

given by the associated ring map
Cle¥ N M] — C.

This has to come from a semi-group homomorphism:

Proposition 15. Let V' = Spec C[S] be the affine toric variety of the affine semi-group S. Then there is a correspondence
between the following:

1. C-pointsinV.
2. Maximal ideals m in C[S].
3. Semi-group homomorphisms S — C, where C is considered as a semi-group under multiplication.
Theorem 16. Let o be a pointed cone in N and dim Span o = k, then the following are equivalent:
1. U, is smooth.
2. U, 2 CF x (C*)"*,
3. o is smooth.
Theorem 17. For an affine toric variety X, the following are equivalent:
1. X is normal.
2. X := Spec C[S] where S is a saturated affine semi-group.
3. X 2 U, for some strongly convex rational polyhedral cone.
Proposition 18. For the toric variety X, := Spec C[o¥ N M],
dimTx, p, = |H|
where H is the Hilbert basis of o¥ N M.

Proposition 19. Let 7 = o N u™ be a face of o where u € o

C[S,] at the point t™ € C[S,].

Then the semi-group algebra C[S;] is the localization of

Actually Proposition [T9] gives us the information which is called the gluing data. Suppose 7 is a common face of o1, o2,
then we have
Uy, U = Us,,

and we can glue U,, and U,, along U,. But where can we find the structures including common faces? The definition of a
fan and here is also where polytopes can be related.

Proposition 20. If 01,02 € Y and T = 01 N 09, then
Sy = Sy, + S
Proof. The inclusion S,, + S,, C S, follows directly from the general fact that oy + oy = (o1 Nog)Y =7V, O

Example 14. Consider the normal fan of the polytope P =

C1 C2

3

then by previous computation, the associated fan

10



has affine pieces U1 2 = Spec C[s™!,st] = C?,U;3 = Spec C[s~1,¢t7!] = C?,U; 3 = Spec C[st,t"!] = C?, and
gluing affine open subsets U; = C[s™!,st],-1 = Spec C[s™1,t71],-1, Uy = Spec C[s™1, st]ss = C[st,t ", and Uz =
C[s~*,t7'];-1 = C[st,t],-1. This gives the variety CP?.

Example 15. Consider the normal fan of the polytope P =

C1
Cy C2
c3
then by previous computation, the associated fan
A~ C2
<—

~

has affine pieces Uy o = Spec C[st?,t] = C%,U; 4 = Spec C[s™',t] = C?,Us4 = Spec C[s7,t7!] = C?, Uy 3 =
Spec C[st?,t7!] = C?, and gluing affine open subsets U; = CJt,st?]; = Spec C[s~!,t];, Us = Spec C[st? t]y> =
Spec C[st?,t71] 2, Us = Spec C[st?,t71],-1 = Spec C[s™1, ¢ !],-1,and Uy = C[s~ !, ¢ !],-1+ = C[t, s~ !],-1. This gives
the variety at the very beginning. The surface is called the Hirzebruch surface F.

In conclusion, we have the following

Theorem 21. Given a fan ¥, there is a toric variety Xy, associated with the fan, which is separated and normal.

Proof. We omit the verification of compatibility. The variety is normal because we know there is an affine open cover where
each affine open is normal.
To see Xy, is separated, it suffices to show that for each pair of cones o1, o5 in X, the image of the diagonal map

A:U; 5 Uy XUgy, T =01 N0
is Zariski closed. But A comes from the C-algebra homomorphism
A* : C[Ss,] ®c C[Ss,] = C[S]
given by Y™ ® x™ — x™ 1", By Proposition A* is surjective, so that
C[S;] = (C[S,,] ©c C[S,,])/1,

hence the image of A is Zariski closed. O

11



Theorem 22. Given a fan %, denote by Xy, the toric variety associated with the fan. Then
1. All normal Toric varieties arise from a fan.
2. Xy is smooth if and only if 3. is smooth, i.e. all the cones are smooth.

3. Xx is simplicial (i.e. Xx is an orbifold, having only finitely many quotient singularities) if and only if 3 is simplicial.
When the fan 3. comes from a polytope, this is equivalent to that the polytope is simplicial.

4. X is complete if and only if the support |X| = |J, 5, 0 is all of Nr.

5 Where is the Action?

We assume in this section dim o = rank N is the maximal. Notice that we always have ¢ C N, or ¢V C M, which leads to
a ring homomorphism
CleY N M] — C[M]

and thus
Cle¥Y N M] — C[M] ®@c C[o¥ N M].
Recall that a G action is a morphism ¢ : G x X — X satisfying

GxGxXMGxX

(idcﬁ)l lﬂ

o

GxX ——— X,

where 1 is the multiplication.
Similarly, for a toric variety given by a fan, every affine piece and every intersection contains the torus given by M, so we
have the torus acting on the variety.

6 Orbit-Cone Correspondence

We use a concrete example to illustrate this. Consider in Example |14} the toric variety is X5, = CPP?, where the torus is 72 C
CP? with homogeneous coordinates (1, s,t) s.t. s, # 0 (there are also other embeddings). For each u = (a,b) € M = Z2,
we have the corresponding curve (actually an 1-parameter subgroup \* composed with the embedding T, — CP?):

N(t) = (1,t79,t70).

Consider the limit point as ¢ — 0, for instance, if a < 0,b < 0, then lim;_,(1,t=%,¢7%) = (1,0,0). If a = b > 0, then
lim;_,0(1,£7%,¢7%) = (0,1, 1). Some further computations tell us that we can just recover the structure of the fan by taking
limits!
Back to T} acting on CP?, there are exactly seven orbits:
0, =
O
O3
O4
Os
OF
Os.

This list shows that each orbit contains a unique limit point. Hence we obtain a correspondence between cons and orbits. In
general, we have:

Theorem 23. Let X be the toric variety of the fan > C N. Then:

12



1. There is a bijective correspondence
{cones o in X} +— {Tn-orbits in Xx}
o «— O(0) =2 Homgz(c¥ N M, C*).
2. Let n = dim Ng. For each cone o € ¥, dimO(o) =n — dimo.

3. The affine open subset U,, is the union of orbits

4. 7 < ocifandonly if O(c) C O(o), and

where O(T) denotes the closure in both the classical and Zariski Topologies.

7 Slogan: In Toric World, Geometries are Combinatorics

Theorem 24. A normal toric variety is Cohen-Macaulay.

When the polytope is very ample, we not only get a projective toric variety, but also the morphism how it is embedded
into a projective space. This information is called a very ample line bundle.

Theorem 25 (Ehrhart). We have seen that the Ehrhart series for a full dimensional polytope P C R™

Ehr(P,—):N— N
t— #{PNZ")

is a polynomial with a reciprocity
Ehr(P, —t) = (—=1)%Ehr(P, t)

where d is the degree of the polynomial.

This theorem can be proved using toric varieties. Let V' be the (projective) toric variety associated with the polytope P,
then (some enlarged) the polytope gives an ample line bundle L over V. Then the Ehrhart series coincides with the Hilbert
series of this line bundle almost by definition. Since the Hilbert series is a polynomial, we are done.

Theorem 26 (Stanley, 86’, [2]). Let P be a n-dimensional simplicial polytope, and let the f-vector f = (fo, -, fn—1) be a
sequence of numbers where f; is the number of j-faces of P. Let f_1 = 1. Define

(A= i
hi = Z (d B Z) (—1) ij,1
7=0
then we have the so called h-vector. The Dehn-Sommerville equations say that
hi = hn—;,V1 <1 <mn,

which hold for any simplicial convex polytope. A sequence of integers (ko,--- ,ky) is said to be an M-vector (after
ES.Macauley) if ‘
ko =1and ki1 < klmforalll <i<n-—1,

k<i>‘_ n; +1 . anrl
i+ j+1)

13

where klm is defined to be



where n; > n;_1 > n; > j > 1 are those (unique) numbers such that

A sequence of integers (ho, -+ , hy,) is the h-vector of a simplicial convex n-polytope if and only if ho = 1, h; = hy—;
and the sequence (ho,hy — ho, -+, Rjn/2) — Ripy21—1) is an M-vector.

This was originally conjectured by McMullen [3]], and proved by Stanley using some great toric tools (Hard Lefschetz).

8 The Proofs

Proof of Theorem[2] By Proposition [1] the image 7' = ®4((C*)™) is a torus, which is also closed in (C*)*. Thus T' =
X4 N (C*)® since X 4 is the Zariski closure. Furthermore, it is a torus so it is irreducible, so is X 4.
We next consider the action. Since T C (C*)*, an element ¢ € T acts on (C*)® and takes varieties to varieties. Notice that

T=t-TC Xa,

which means ¢ - X 4 is also a variety containing T'. Thus X4 C ¢ - X4 because X 4 is the Zariski closure. Replacing ¢ by ¢!
leadstot- X4 C X 4,50 X4 =1t- X 4. Therefore X 4 is a toric variety.
It remains to compute the character lattice. We have a commutative diagram of tori

Ty 24 (C*)®

N

inducing a diagram of character lattice
&
M 27
L
where L denotes the character lattice. Since ® 4 takes the standard basis e, - -+ ,es to mq, - -+ , Mg, thus the image of ) 4 1s

ZA. Hence L =2 ZA. O

Proof of Theorem[I0} Let I denote the ideal, then I C I(X4). Pick a monoidal order > on C[z; - - ,x]. The map ®4 :
(C*)™ — C* is given by the Laurent monomial ¢™ in variables ¢1,-- - ,t,. If I # I(X4), then we can pick f € I(X4) — I

with minimal leading monomial 2* = [];_, 7. Rescaling if necessary, let z* be the leading term (i.e. with coefficient 1).
However f(t™1,--- t"=): (C*)® — C* — C is identically 0 as a (series hence a) polynomial in ¢y, - - - , t,,, there must

be cancellation invovling the term coming from z®. In other words, f must contain a monomial 2 = Hle zi” < % such

that

S S

i=1 i=1
This implies Y_;_, a;m; = >;_, bim;, sothata — 3 € K. Then 2 — 2 € I, and it follows that f — 2z + 2 also lies in
I(X 4) — I, with a strictly smaller leading term. Hence we get a contradiction. O

Proof of Proposition|I1] One direction is easy. Suppose [ is generated by binomials 2 — 2% and prime, then V(1) C C* is
irreducible. Observe that V' (I) N (C*)® # @ (since (1,-- - , 1) is in the intersection), implying that V' (I) N (C*)* is a subvariety
hence a torus.

By projecting on the i-th coordinate, there is a character 7' — (C*)®* — C*, which is x™ by our usual convention, where
m; is given by «; and $3;. The construction gives that 7" is the image of

‘I)A(t) = (X"Ll (t)a e 7Xms (t))v

hence V/(I) = X 4 by the irreduciblity. Therefore I = I(V/(I)) is toric by Nullstellensatz and Theorem[10] O

14



Proof of Proposition[I2] Using A = {my,--- ,ms}, we get a C-algebra homomorphism
Clxy -+ ,x5] = C[M]
by x; — x™¢. This corresponds to the morphism
Dy (CH = C?,
i.e. itis (®4)*. The kernel of this map is (X 4) and the image is
Che™, - x™] = C[s].

Thus the coordinate ring of X 4 is
Cloy -+ 2] /I(Xa) = C[S],
which means these two affine varieties are isomorphic. O

The torus multiplication rises to an action (C*)™ ¢ C[M] defined by

ft-folp— f(tp).

Lemma 5. Let V' be a subspace stable under the action of (C*)". Then

Ve @ C-x™.

X'In e V

Proof. LetW := Gmeev C - x™, then apparently W C V. For the opposite inclusion, pick 0 # f € V, we write

f = Z C’ULXm7

meDB

where B C M is finite and ¢,,, # 0 for all m. Then f € D N W where
D :=span(x™ | m € B) C C[M].

Since t - x™ = x™(¢t~!)x™, D and hence D NV are stable under the action of 7. But D NV is finite-dimensional, so
one can show that D NV is spanned simultaneous eigenvectors of Ty . This is taking place in C[M], where simultaneous
eigenvectors are characters. Thus D N V' is spanned by characters. The above expression for f € D NV implies x™ € V for
m € B. Hence f € W. O

Now we turn to the proof of equivalence of constructions:

Proof of Theorem[I3] The implications 2 < 3 < 4 = 1 follows from Theorem [2] Theorem [I0} and Proposition [I2] For 1
= 4, let X be a toric variety containing the torus (C*)™ with character lattice M. Since the coordinate ring of (C*)™ is a
semi-group algebra C[M], the inclusion (C*)™ < X induces a ring homomorphism

C[X] — C[M].

Since (C*)™ in X is Zariski dense, this homomorphism is injective, so we can view C[X] as a subalgebra of C[M]. Since the
action of (C*)™ on X is given by a morphism
CH)"x X = X,

then for t € (C*)" and f € C[X], f : p+> f(t~!: p) is a morphism on X. It follows that C[X] is stable under the action of
(C*)™. Thus by the previous lemma,

Clxl= @ c-x™,

X" GC[X]

which means C[X] is the semi-group algebra for the semi-group S = {x™ € C[X]}. O
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Proof of Theorem[I7} 1 = 2: If X is normal, then C[X] = C[S] is integrally closed in the field C(X'). Suppose km € S for
some k € N* and m € M, then x™ is a polynomial function on (C*)™ and hence a rational function on X since (C*)” C X
is Zariski open dense. We also have x*™ € C[S]. It follows that Y™ is a root of the monic polynomial

X5\ km e C[9)[X].

Therefore x™ € C[S],i.e. m € S.

2 = 3: Let A be a finite generating set of the semi-group S, then S lies in the polyhedral cone cone(A) C My. rank ZA =
n implies dim cone(A) = n. It follows o = cone(A)" is a strongly convex rational cone such that S C ¢¥ N M. By some
combinatorics, the equality holds.

3 = 1: We need to show that C[c¥ N M] is normal if & is a strongly convex rational polyhedral cone. Let pq,- - , p,- be
the rays of o. Since it is generated by the rays, we have

Hence it suffices to prove each C[S,,] is normal when p is a rational ray in Ng. Let u be its generator, and assume it is
primitive, i.e. %u ¢ N. Hence we can extend this to a basis ey, -+ ,e, of N s.t. u = e;. Thus (under an isomorphism
induced by basis change)

C[S,] = Clxy, 25, -+, 2]
C[z1,--- ,x,)] is a UFD, hence it is normal, and so is its localisation C[z 1, 25, -- , 2] = Clz1, -+, Znleyoa,, - O
Theorem 27 (Sumihiro). Let the torus Tx act on a normal separated variety X. Then every point p € X has a T invariant
affine open neighborhood.

Proof sketch of Theorem[22] By Theorem 27, we have an affine open cover U, for some cone o;. Then using Orbit-Cone
correspondence, we are able to show U;NU; is the affine toric variety associated to the cone 7 = o;No ;. Then (use Orbit-Cone
correspondence instead of just combinatorics) one can prove that 7 is a face of both o; and o ;. O
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