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Caution. Within this notes we will only work on varieties /C [1]. You’d better skip all the proofs if this is the first time you
learn toric varieties.

Example 1. Given the polytope

c3

c2

c1

c4

t st

1 s s2 s3
,

we then can produce a morphism

ϕ : A2
(s,t) → P5

(s, t) 7→ [1, s, s2, s3, t, st].

Let X := ϕ(A2), then X is our first toric variety.

1 A Bad Definition of Toric Varieties
Definition. The n-torus is defined to be

(C∗)n := Spec C[x1, x
−1
1 , · · · , xn, x−1

n ],

where the group structure is given component-wisely.

Proposition 1 (Good properties). 1. Let T1 and T2 be tori and let ϕ : T1 → T2 be a morphism that is a group homomor-
phism. Then the image of ϕ is closed in T2.

2. Let T be a torus and let H ⊆ T be an irreducible subvariety of T that is a subgroup. Then H is a torus.

Definition. A character of torus (C∗)n is a morphism χ : (C∗)n → C∗. Dually, a cocharacter, or say a one parameter
subgroup is a morphism λ : C∗ → (C∗)n.

Example 2. Given an m = (a1, · · · , an) ∈ Zn, there is a character χm : (C∗)n → C∗ defined by

χm(t1, · · · , tn) = ta11 · · · tann .

The amazing thing is that all characters come in this way. Also, there is a 1-PS associated with m

λm : C∗ → (C∗)n

t 7→ (ta11 , · · · , tann ).

All 1-PS’s come in this way as well.

Assume that a torus T acts linearly on a finitely dimensional vector space W over C. A basic result is that the maps
w 7→ t · w are simultaneously diagonalizable as follows. Given m ∈M , define the eigenvector space

Wm := {w ∈W | t · w = χm(t)w for all t ∈ T}.

Then one can show that W ∼=
⊕

m∈ZnWm.

Definition (Bad Definition). A toric variety is an irreducible variety V containing a torus T := (C∗)n as a Zariski open subset
such that the action of T on itself extends to an algebraic action of T on V .

Example 3. Consider the canonical embedding C∗ ↪→ C given by C[x] → C[x, x−1]. Generalizing this gives that all affine
spaces are toric varieties.
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Definition. A lattice is a free abelian group of finite rank. Thus a lattice of rank n is isomorphic to Zn.

By Example 2, we say the torus (C∗)n has lattice of characters M = Zn and has lattice of 1-PS N = M∨ ∼= Zn.

Theorem 2. Given a torus (C∗)n, and a set A = {m1, · · · ,ms} ⊆M , then there is a map

ΦA : (C∗)n → Cs,

defined by
ΦA(t) = (χm1(t), · · · , χms(t)).

Let XA be the Zariski closure of the image of ΦA(t). Then XA is an toric variety of character lattice ZA.

Theorem 2 is much more concrete than our definition. However it is still hard to see the Zariski closure. We will later give
another definition and prove that they are equivalent.

Example 4. Consider σ∨ ∩M be the rational cone generated by vectors

1
0
0

 ,
0

1
0

 ,
0

0
1

 ,
 1

1
−1

, since

1
0
0

+

0
1
0

−
0

0
1

−
 1

1
−1

 = 0,

the affine coordinate ring is C[x, y, z, w]/(xy − zw). Since V = Spec C[x, y, z, w]/(xy − zw) is in C4,

V ∩ (C∗)4 = {(t1, t2, t3, t1t2t−1
3 ) | ti ∈ C∗} ∼= (C∗)3,

where the isomorphism is (t1, t2, t3) 7→ (t1, t2, t3, t1t2t
−1
3 ).

2 Cones and Fourier-Motzkin
Definition. Let V be a finite dimensional vector space over R, S ⊆ V is a non-empty subset.

1. S be a (convex) cone if ∀x, y ∈ S, α, β ∈ R, if α, β ≥ 0 then αx+ βy ∈ S.

2. S be a (convex) set if ∀x, y ∈ S, α, β ∈ R, if α, β ≥ 0 and α+ β = 1 then αx+ βy ∈ S.

3. A convex polyhedral cone is of the form

σ = cone(S) =

{∑
u∈S

cuu | cu ≥ 0

}
,

where S ⊆ V is finite. We say that σ is generated by S.

Example 5 (Key examples). 1. Let A ∈ Rm×n, A = [a1, · · · ,an] where ai ∈ Rm. Define

vcone(A) := {x1a1 + · · ·+ xnan | xi ≥ 0} = {Ax | x ≥ 0},

where a cone of this form is called finitely generated.

2. Notations as before, define

conv(A) = {x1a1 + · · ·+ xnan | xi ≥ 0,

n∑
i=1

xi = 1},

where a set of this form is called a polytope.
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3. Let B =

b1

...
bn

 where bi ∈ (Rm)∗. Define

hcone(B) := {y ∈ (Rm)∗ | 〈y, bi〉 ≤ 0} = {y ∈ (Rm)∗ | By ≤ 0}.

4. A ∈ Rm×n, b ∈ Rm, define
P (A, b) := {x ∈ Rn | Ax ≤ b}.

This is called to be polyhedral.

Definition. Note that the span of a cone σ is the smallest subspace of V containing σ. Then the relative interior of σ, denoted
by relint σ, is the interior of σ in its span.

Lemma 1. For a cone σ,
u ∈ relint σ ⇔ 〈m,u〉 > 0

Definition. For a cone σ ⊆ V , its dual cone is

σ∨ := {y ∈ V ∗ | 〈y,x〉 ≤ 0,∀x ∈ V }.

Lemma 2. 1. If σ = vcone(A), then σ∨ = hcone(AT ).

2. σ is a vcone if and only if it is an hcone.

3. σ∨∨ = σ.

Theorem 3 (Fourier-Motzkin Elimination).

Theorem 4 (Weyl-Minkowski). Let σ ⊆ Rn be a cone. Then σ is finitely generated if and only if σ is polyhedral.

3 Polytope Geometry
Definition. Let σ ⊆ Rn be a polyhedral cone. The linear space of σ is the largest subspace contained in σ. The cone σ is
said to be pointed or strongly convex if its linear space is 0.

Proposition 5. 1. The following are equivalent:

(a) σ ∩ −σ = 0.

(b) σ is pointed.

(c) There is a u ∈ σ∨ with σ ∩ U⊥ = 0.

(d) σ∨ spans V .

(e) dimσ = dimσ∨ = dimV .

2. Any cone σ ⊆ V can be written as the sum of a linear space and a pointed cone. In face

σ = L+ τ,

where L := σ ∩ −σ and τ := σ ∩ L⊥ is pointed.

Definition. A face of a polyhedral cone σ ⊆ Rn is a subset τ ⊆ σ of the form

τ := σ ∩ u⊥

for some u ∈ σ∨. A 1-dimensional face is called an edge or an extremal ray. A 1-codimensional face is called a facet.
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Definition. Given any u ∈ Rn, we define

Hm := {f ∈ (Rn)∗ | 〈f, u〉 = 0}

and

H+
m := {f ∈ (Rn)∗ | 〈f, u〉 ≥ 0}.

Lemma 3. 1. σ it self is a face.

2. The smallest face is σ ∩ −σ.

3. A face τ of σ is also a polyhedral cone.

4. A face of a face is also a face.

5. If σ = vcone(a1, · · · ,an), u ∈ σ∨, then τ = vcone(ai | 〈u,ai〉 = 0).

Definition. A cone σ in V = Rn is said to be rational if it is generated by vectors (i.e. vcone) in Qn (or equivalently Zn).

Lemma 4. A cone σ ⊆ Rn is rational if and only if σ∨ is rational.

Definition. Let M be a lattice, then M ∼= Zn for some integer n which is the rank. We have M ⊆MQ := Qn ⊆MR := Rn,
and Mk := M ⊗Z k. Let N be the dual lattice := HomZ(M,Z) = M∗. We say σ is a cone in N if σ is a rational polyhedral
cone in NR.

Definition. Let σ be a cone in N , we define
Sσ := σ∨ ∩M.

Note that Sσ is a semi-group. Natural question: why not Sσ := σ ∩N?

Definition. A semi-group is a set S with an associative binary operation and an element of identity. We say a semi-group S
is affine if S is further required:

1. The binary operation is commutative.

2. The semi-group is finitely generated.

3. S can be embedded into a lattice.

Example 6. Let σ := vcone

(
−1
−1 −1

)
.

σ

5



One can read from the picture that

Sσ =

〈[
−1
−1

]
,

[
1
0

]〉
.

Example 7. Let σ := vcone

(
−2
1 −1

)
.

σ

One can read from the picture that

Sσ =

〈[
1
2

]
,

[
1
1

]
,

[
1
0

]〉
.

Definition. A (commutative, finitely generated) semigroup is a set S with an associative and commutative binary operation
and an identity element, that can be embedded into a lattice.

Proposition 6 (Gordan’s Lemma). If σ is a cone in N , then Sσ is a finitely generated semi-group.

Proof. Let σ∨ = vcone(v1, · · · ,vs), and let K := {x1v1 + · · · + xsvs | 0 ≤ xi < 1}. Then σ∨ ∩M is generated by
{v1, · · · ,vs} ∩K.

Definition. Let σ be a pointed cone. Consider 0 6= m ∈ σ∨ ∩M = Sσ , it is called irreducible if for any decomposition
m = k + l in Sσ , either k = 0 or l = 0.

Proposition 7. Let σ be a pointed polyhedral cone in Rn, and let

H := {m ∈ Sσ | m is irreducible},

then

1. |H| <∞.

2. H generates Sσ .

3. Every generating set contains H .
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Here the set is called the Hilbert basis.

Definition. A polytope P is said to be simplicial if all its facets are simplices.

Definition. A lattice polytope P ⊆MR is said to be normal if

(kP ) ∩M + (lP ) ∩M = ((k + l)P ) ∩M

for all k, l ∈ N.

Theorem 8. Let P ⊆MR be a full dimensional lattice polytope of dimension n ≥ 2, then kP is normal for all k ≥ n− 1.

Definition. A sub-semi-group S ⊆M is said to be saturated if whenever m ∈M and pm ∈M for some p ∈ N+, m ∈ S.

Definition. A lattice polytope P ⊆ MR is said to be very ample if for every vertex m ∈ P , the semi-group SP,m :=
N〈P ∩M −m〉 is saturated in M .

Proposition 9. A normal lattice polytope is very ample.

Definition. A fan Σ in NR is a finite collection of cones such that:

1. Every σ ∈ Σ is a strongly convex rational polyhedral cone.

2. For all σ ∈ Σ, each face of σ is also in Σ.

3. For all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of each.

Definition. Given a full-dimensional lattice polytope P in Rn, for each face F of the polytope, define

σF := {u ∈ NR | 〈y − x,u〉 ≤ 0,∀x ∈ F,y ∈ P}.

Let ΣP := {σF | F ⊆ P is a face}, then ΣP is a fan, called the normal fan associated with the polytope P .

Example 8. Given the polytope

c3

c2c1

we shall have the normal fan

c2

.
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Example 9. Given the polytope

c3

c2

c1

c4

we shall have the normal fan

c2

.

4 Toward Toric Varieties
Let σ be a rational polyhedral cone in NR ∼= Rn. Here comes our main construction:

Definition. Let Aσ := C[Sσ] be a C-algebra, such that

1. {tm | m ∈ Sσ} forms a C-basis for Aσ .

2. tm1tm2 = tm1+m2 .

We then call Uσ := Spec Aσ the affine toric variety associated to σ. Notice that this construction can be generalised to a
semigroup, where C[S] is called the semigroup algebra for the semigroup S.

If Sσ = 〈m1, · · · ,mr〉, then Aσ is generated (as a ring) by tm1 , · · · , tmr . In particular Aσ is Noetherian.

Example 10. Let σ := vcone

(
−1

−1

)
. Then Sσ =

〈[
1
0

]
,

[
0
1

]〉
and thus C[Sσ] = C[s, t], Uσ = C2. Similarly, if

σ := vcone(−In), then Uσ = Cn.

Example 11. Let σ := vcone

(
−1
−1 −1

)
. Then Sσ =

〈[
−1
−1

]
,

[
0
1

]〉
and thus C[Sσ] = C[s−1t−1, t] = C[x, y], Uσ = C2.

Example 12. Let σ := vcone

(
−2
1 −1

)
. From previous computation we know that Aσ = C[s, st, st2] = C[x, y, z]/(y2 −

xz).

Question: the previous examples have 2 generators and 3 generators respectively. What are the differences?

Example 13. Let σ := vcone(0), then Sσ = Z2 and Aσ = C[s, s−1, t, t−1], hence Uσ is the 2-torus.
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The toric variety defined in Theorem 2 is a Zariski closed subset in an affine space, so it is an affine variety. Therefore we
would like to find its defining ideal. As in the proof, we have an induced Φ̂A : Zs → M . Let K be its kernel then there is a
short exact sequence

0→ K → Zs →M.

An element k = (k1, · · · , ks) ∈ K satisfies
∑s
i=1 kimi = 0, i.e. a linear relation among the mi. Let k+ :=

∑
ki>0 kiei and

let k− := −
∑
kj<0 kjej , then k = k+ − k− and k+, k− ∈ Ns. The binomial

xk+ − xk− =
∏
ki>0

xkii −
∏
kj<0

x
−kj
j

vanished on the image of ΦA, because

∏
ki>0

(χmi)ki −
∏
kj<0

(χmj )−kj =
∏
kj<0

(χmj )−kj

(
s∏
i=1

xkimi − 1

)
= 0.

So the ideal contains the set

〈xk+ − xk− | k ∈ K〉 = 〈xm − xn | m,n ∈ Ns and m− n ∈ K〉.

In fact, we have

Theorem 10. The ideal of the toric variety XA for A = {m1, · · · ,ms} ⊆M is

〈xk+ − xk− | k ∈ K〉 = 〈xm − xn | m,n ∈ Ns and m− n ∈ K〉.

Definition. Let K ⊆ Zs be a sublattice.

1. The ideal 〈xm − xn | m,n ∈ Ns and m− n ∈ K〉 is called a lattice ideal.

2. A prime lattice ideal is called a toric ideal.

Hence by Theorem 10, the defining ideal for the toric variety XA is a toric ideal.

Proposition 11. An ideal I ⊆ C[x1, · · · , xs] is toric if and only if it is prime and generated by binomials.

We then consider a semigroup S in M , then we have a semigroup algebra C[S]. It is an integral domain and finitely
generated as a C-algebra.

Proposition 12. The variety SpecC[S] is a toric variety. If the semigroup S = NA is generated by the setA = {m1, · · · ,ms},
then

Spec C[S] ∼= XA.

Theorem 13. This construction gives us an affine toric variety and all affine toric varieties (probably not normal) come from
this way (from a semigroup). More precisely, if V is an affine variety, then the following are equivalent:

1. V is an affine toric variety.

2. V ∼= XA for a finite set A in a lattice.

3. V is an affine variety defined by a toric ideal.

4. V = Spec C[S] for an affine semigroup S.

Proposition 14. An affine toric variety has a fixed point of the torus action if and only if

Definition. Let σ be a pointed cone in N = Zn. We say

1. σ is simplicial if the number of extremal rays = dimσ.

2. σ is smooth if σ is generated by a part of a Z-basis of N .
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Recall that a C point of a variety X is a morphism C → X . When X = Spec C[σ∨ ∩M ] is an affine toric variety, it is
given by the associated ring map

C[σ∨ ∩M ]→ C.

This has to come from a semi-group homomorphism:

Proposition 15. Let V = Spec C[S] be the affine toric variety of the affine semi-group S. Then there is a correspondence
between the following:

1. C-points in V .

2. Maximal ideals m in C[S].

3. Semi-group homomorphisms S → C, where C is considered as a semi-group under multiplication.

Theorem 16. Let σ be a pointed cone in N and dim Span σ = k, then the following are equivalent:

1. Uσ is smooth.

2. Uσ ∼= Ck × (C∗)n−k.

3. σ is smooth.

Theorem 17. For an affine toric variety X , the following are equivalent:

1. X is normal.

2. X := Spec C[S] where S is a saturated affine semi-group.

3. X ∼= Uσ for some strongly convex rational polyhedral cone.

Proposition 18. For the toric variety Xσ := Spec C[σ∨ ∩M ],

dimTXσ,Pσ = |H|

where H is the Hilbert basis of σ∨ ∩M .

Proposition 19. Let τ = σ ∩ u⊥ be a face of σ where u ∈ σ∨. Then the semi-group algebra C[Sτ ] is the localization of
C[Sσ] at the point tm ∈ C[Sσ].

Actually Proposition 19 gives us the information which is called the gluing data. Suppose τ is a common face of σ1, σ2,
then we have

Uσ1
←↩ Uτ ↪→ Uσ2

,

and we can glue Uσ1
and Uσ2

along Uτ . But where can we find the structures including common faces? The definition of a
fan and here is also where polytopes can be related.

Proposition 20. If σ1, σ2 ∈ Σ and τ = σ1 ∩ σ2, then

Sτ = Sσ1
+ Sσ2

.

Proof. The inclusion Sσ1
+ Sσ2

⊆ Sτ follows directly from the general fact that σ∨1 + σ∨2 = (σ1 ∩ σ2)∨ = τ∨.

Example 14. Consider the normal fan of the polytope P =

c3

c2c1

,

then by previous computation, the associated fan
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c3

c1

c2

σ1,3 σ2,3

σ1,2

has affine pieces U1,2 = Spec C[s−1, st] = C2, U1,3 = Spec C[s−1, t−1] = C2, U1,3 = Spec C[st, t−1] = C2, and
gluing affine open subsets U1 = C[s−1, st]s−1 = Spec C[s−1, t−1]s−1 , U2 = Spec C[s−1, st]st = C[st, t−1]st, and U3 =
C[s−1, t−1]t−1 = C[st, t−1]t−1 . This gives the variety CP2.
Example 15. Consider the normal fan of the polytope P =

c3

c2

c1

c4

then by previous computation, the associated fan

c2

has affine pieces U1,2 = Spec C[st2, t] = C2, U1,4 = Spec C[s−1, t] = C2, U3,4 = Spec C[s−1, t−1] = C2, U2,3 =
Spec C[st2, t−1] = C2, and gluing affine open subsets U1 = C[t, st2]t = Spec C[s−1, t]t, U2 = Spec C[st2, t]st2 =
Spec C[st2, t−1]st2 , U3 = Spec C[st2, t−1]t−1 = Spec C[s−1, t−1]t−1 , and U4 = C[s−1, t−1]s−1 = C[t, s−1]s−1 . This gives
the variety at the very beginning. The surface is called the Hirzebruch surface F2.

In conclusion, we have the following

Theorem 21. Given a fan Σ, there is a toric variety XΣ associated with the fan, which is separated and normal.

Proof. We omit the verification of compatibility. The variety is normal because we know there is an affine open cover where
each affine open is normal.

To see XΣ is separated, it suffices to show that for each pair of cones σ1, σ2 in Σ, the image of the diagonal map

∆ : Uτ → Uσ1
× Uσ2

, τ = σ1 ∩ σ2

is Zariski closed. But ∆ comes from the C-algebra homomorphism

∆∗ : C[Sσ1
]⊗C C[Sσ2

]→ C[Sτ ]

given by χm ⊗ χn 7→ χm+n. By Proposition 20, ∆∗ is surjective, so that

C[Sτ ] ∼= (C[Sσ1
]⊗C C[Sσ2

])/I,

hence the image of ∆ is Zariski closed.
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Theorem 22. Given a fan Σ, denote by XΣ the toric variety associated with the fan. Then

1. All normal Toric varieties arise from a fan.

2. XΣ is smooth if and only if Σ is smooth, i.e. all the cones are smooth.

3. XΣ is simplicial (i.e. XΣ is an orbifold, having only finitely many quotient singularities) if and only if Σ is simplicial.
When the fan Σ comes from a polytope, this is equivalent to that the polytope is simplicial.

4. XΣ is complete if and only if the support |Σ| =
⋃
σ∈Σ σ is all of NR.

5 Where is the Action?
We assume in this section dimσ = rank N is the maximal. Notice that we always have σ ⊆ N , or σ∨ ⊆ M , which leads to
a ring homomorphism

C[σ∨ ∩M ]→ C[M ]

and thus
C[σ∨ ∩M ]→ C[M ]⊗C C[σ∨ ∩M ].

Recall that a G action is a morphism σ : G×X → X satisfying

G×G×X G×X

G×X X,

(µ,idX)

(idG,σ) σ

σ

where µ is the multiplication.
Similarly, for a toric variety given by a fan, every affine piece and every intersection contains the torus given by M , so we

have the torus acting on the variety.

6 Orbit-Cone Correspondence
We use a concrete example to illustrate this. Consider in Example 14, the toric variety is XΣ = CP2, where the torus is T 2 ⊆
CP2 with homogeneous coordinates (1, s, t) s.t. s, t 6= 0 (there are also other embeddings). For each u = (a, b) ∈ M ∼= Z2,
we have the corresponding curve (actually an 1-parameter subgroup λu composed with the embedding TM ↪→ CP2):

λu(t) = (1, t−a, t−b).

Consider the limit point as t → 0, for instance, if a < 0, b < 0, then limt→0(1, t−a, t−b) = (1, 0, 0). If a = b > 0, then
limt→0(1, t−a, t−b) = (0, 1, 1). Some further computations tell us that we can just recover the structure of the fan by taking
limits!

Back to TM acting on CP2, there are exactly seven orbits:

O1 =

O2

O3

O4

O5

O6

O7.

This list shows that each orbit contains a unique limit point. Hence we obtain a correspondence between cons and orbits. In
general, we have:

Theorem 23. Let XΣ be the toric variety of the fan Σ ⊆ N . Then:

12



1. There is a bijective correspondence

{cones σ in Σ} ←→ {TN -orbits in XΣ}
σ ←→ O(σ) ∼= HomZ(σ∨ ∩M,C∗).

2. Let n = dimNR. For each cone σ ∈ Σ, dimO(σ) = n− dimσ.

3. The affine open subset Uσ is the union of orbits

Uσ =
⋂
τ≤σ

O(τ).

4. τ ≤ σ if and only if O(σ) ⊆ O(σ), and
O(τ) =

⋂
τ≤σ

O(σ),

where O(τ) denotes the closure in both the classical and Zariski Topologies.

7 Slogan: In Toric World, Geometries are Combinatorics
Theorem 24. A normal toric variety is Cohen-Macaulay.

When the polytope is very ample, we not only get a projective toric variety, but also the morphism how it is embedded
into a projective space. This information is called a very ample line bundle.

Theorem 25 (Ehrhart). We have seen that the Ehrhart series for a full dimensional polytope P ⊆ Rn

Ehr(P,−) : N→ N
t 7→ #(tP ∩ Zn)

is a polynomial with a reciprocity
Ehr(P,−t) = (−1)dEhr(P, t)

where d is the degree of the polynomial.

This theorem can be proved using toric varieties. Let V be the (projective) toric variety associated with the polytope P ,
then (some enlarged) the polytope gives an ample line bundle L over V . Then the Ehrhart series coincides with the Hilbert
series of this line bundle almost by definition. Since the Hilbert series is a polynomial, we are done.

Theorem 26 (Stanley, 86’, [2]). Let P be a n-dimensional simplicial polytope, and let the f -vector f = (f0, · · · , fn−1) be a
sequence of numbers where fj is the number of j-faces of P . Let f−1 = 1. Define

hi :=

i∑
j=0

(
d− j
d− i

)
(−1)i−jfj−1

then we have the so called h-vector. The Dehn-Sommerville equations say that

hi = hn−i,∀1 ≤ i ≤ n,

which hold for any simplicial convex polytope. A sequence of integers (k0, · · · , kn) is said to be an M -vector (after
F.S.Macauley) if

k0 = 1 and ki+1 ≤ k〈i〉i for all 1 ≤ i ≤ n− 1,

where k〈i〉i is defined to be

k
〈i〉
i :=

(
ni + 1

i+ 1

)
+ · · ·

(
nj + 1

j + 1

)
,
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where ni ≥ ni−1 ≥ nj ≥ j ≥ 1 are those (unique) numbers such that

ki =

(
ni
i

)
+ · · ·

(
nj
j

)
.

A sequence of integers (h0, · · · , hn) is the h-vector of a simplicial convex n-polytope if and only if h0 = 1, hi = hn−i
and the sequence (h0, h1 − h0, · · · , h[n/2] − h[n/2]−1) is an M -vector.

This was originally conjectured by McMullen [3], and proved by Stanley using some great toric tools (Hard Lefschetz).

8 The Proofs
Proof of Theorem 2. By Proposition 1, the image T = ΦA((C∗)n) is a torus, which is also closed in (C∗)s. Thus T =
XA ∩ (C∗)s since XA is the Zariski closure. Furthermore, it is a torus so it is irreducible, so is XA.

We next consider the action. Since T ⊆ (C∗)s, an element t ∈ T acts on (C∗)s and takes varieties to varieties. Notice that

T = t · T ⊆ XA,

which means t ·XA is also a variety containing T . Thus XA ⊆ t ·XA because XA is the Zariski closure. Replacing t by t−1

leads to t ·XA ⊆ XA, so XA = t ·XA. Therefore XA is a toric variety.
It remains to compute the character lattice. We have a commutative diagram of tori

TM (C∗)s

T,

ΦA

inducing a diagram of character lattice

M Zs

L

Φ̂A

where L denotes the character lattice. Since Φ̂A takes the standard basis e1, · · · , es to m1, · · · ,ms, thus the image of Φ̂A is
ZA. Hence L ∼= ZA.

Proof of Theorem 10. Let I denote the ideal, then I ⊆ I(XA). Pick a monoidal order ≥ on C[x1 · · · , xs]. The map ΦA :
(C∗)n → Cs is given by the Laurent monomial tmi in variables t1, · · · , tn. If I 6= I(XA), then we can pick f ∈ I(XA)− I
with minimal leading monomial xα =

∏s
i=1 x

ai
i . Rescaling if necessary, let xα be the leading term (i.e. with coefficient 1).

However f(tm1 , · · · , tms) : (C∗)n → Cs → C is identically 0 as a (series hence a) polynomial in t1, · · · , tn, there must
be cancellation invovling the term coming from xα. In other words, f must contain a monomial xβ =

∏s
i=1 x

bi
i < xα such

that
s∏
i=1

(tmi)ai =

s∏
i=1

(tmi)bi .

This implies
∑s
i=1 aimi =

∑s
i=1 bimi, so that α − β ∈ K. Then xα − xβ ∈ I , and it follows that f − xα + xβ also lies in

I(XA)− I , with a strictly smaller leading term. Hence we get a contradiction.

Proof of Proposition 11. One direction is easy. Suppose I is generated by binomials xαi − xβi and prime, then V (I) ⊆ Cs is
irreducible. Observe that V (I)∩(C∗)s 6= ∅ (since (1, · · · , 1) is in the intersection), implying that V (I)∩(C∗)s is a subvariety
hence a torus.

By projecting on the i-th coordinate, there is a character T ↪→ (C∗)s → C∗, which is χmi by our usual convention, where
mi is given by αi and βi. The construction gives that T is the image of

ΦA(t) = (χm1(t), · · · , χms(t)),

hence V (I) = XA by the irreduciblity. Therefore I = I(V (I)) is toric by Nullstellensatz and Theorem 10.
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Proof of Proposition 12. Using A = {m1, · · · ,ms}, we get a C-algebra homomorphism

C[x1 · · · , xs]→ C[M ]

by xi 7→ χmi . This corresponds to the morphism

ΦA : (C∗)n → Cs,

i.e. it is (ΦA)∗. The kernel of this map is I(XA) and the image is

C[χm1 , · · · , χms ] = C[S].

Thus the coordinate ring of XA is
C[x1 · · · , xs]/I(XA) = C[S],

which means these two affine varieties are isomorphic.

The torus multiplication rises to an action (C∗)n � C[M ] defined by

f 7→ t · f : (p 7→ f(t−1 · p)).

Lemma 5. Let V be a subspace stable under the action of (C∗)n. Then

V ∼=
⊕
χm∈V

C · χm.

Proof. Let W :=
⊕

χm∈V C · χm, then apparently W ⊆ V . For the opposite inclusion, pick 0 6= f ∈ V , we write

f =
∑
m∈B

cmχ
m,

where B ⊆M is finite and cm 6= 0 for all m. Then f ∈ D ∩W where

D := span(χm | m ∈ B) ⊆ C[M ].

Since t · χm = χm(t−1)χm, D and hence D ∩ V are stable under the action of TN . But D ∩ V is finite-dimensional, so
one can show that D ∩ V is spanned simultaneous eigenvectors of TN . This is taking place in C[M ], where simultaneous
eigenvectors are characters. Thus D ∩ V is spanned by characters. The above expression for f ∈ D ∩ V implies χm ∈ V for
m ∈ B. Hence f ∈W .

Now we turn to the proof of equivalence of constructions:

Proof of Theorem 13. The implications 2 ⇔ 3 ⇔ 4 ⇒ 1 follows from Theorem 2, Theorem 10, and Proposition 12. For 1
⇒ 4, let X be a toric variety containing the torus (C∗)n with character lattice M . Since the coordinate ring of (C∗)n is a
semi-group algebra C[M ], the inclusion (C∗)n ↪→ X induces a ring homomorphism

C[X]→ C[M ].

Since (C∗)n in X is Zariski dense, this homomorphism is injective, so we can view C[X] as a subalgebra of C[M ]. Since the
action of (C∗)n on X is given by a morphism

(C∗)n ×X → X,

then for t ∈ (C∗)n and f ∈ C[X], f : p 7→ f(t−1 · p) is a morphism on X . It follows that C[X] is stable under the action of
(C∗)n. Thus by the previous lemma,

C[X] ∼=
⊕

χm∈C[X]

C · χm,

which means C[X] is the semi-group algebra for the semi-group S = {χm ∈ C[X]}.
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Proof of Theorem 17. 1⇒ 2: If X is normal, then C[X] = C[S] is integrally closed in the field C(X). Suppose km ∈ S for
some k ∈ N∗ and m ∈M , then χm is a polynomial function on (C∗)n and hence a rational function on X since (C∗)n ⊆ X
is Zariski open dense. We also have χkm ∈ C[S]. It follows that χm is a root of the monic polynomial

Xk − χkm ∈ C[S][X].

Therefore χm ∈ C[S], i.e. m ∈ S.
2⇒ 3: LetA be a finite generating set of the semi-group S, then S lies in the polyhedral cone cone(A) ⊆MR. rank ZA =

n implies dim cone(A) = n. It follows σ = cone(A)∨ is a strongly convex rational cone such that S ⊆ σ∨ ∩M . By some
combinatorics, the equality holds.

3⇒ 1: We need to show that C[σ∨ ∩M ] is normal if σ is a strongly convex rational polyhedral cone. Let ρ1, · · · , ρr be
the rays of σ. Since it is generated by the rays, we have

σ∨ =

r⋂
i=1

ρ∨i ,

and intersecting with M implies Sσ =
⋂r
i=1 Sρi , also gives

C[Sσ] =

r⋂
i=1

C[Sρi ].

Hence it suffices to prove each C[Sρi ] is normal when ρ is a rational ray in NR. Let u be its generator, and assume it is
primitive, i.e. 1

ku 6∈ N . Hence we can extend this to a basis e1, · · · , en of N s.t. u = e1. Thus (under an isomorphism
induced by basis change)

C[Sρ] ∼= C[x1, x
±
2 , · · · , x±n ].

C[x1, · · · , xn] is a UFD, hence it is normal, and so is its localisation C[x1, x
±
2 , · · · , x±n ] = C[x1, · · · , xn]x2···xn .

Theorem 27 (Sumihiro). Let the torus TN act on a normal separated variety X . Then every point p ∈ X has a TN invariant
affine open neighborhood.

Proof sketch of Theorem 22. By Theorem 27, we have an affine open cover Uσi for some cone σi. Then using Orbit-Cone
correspondence, we are able to showUi∩Uj is the affine toric variety associated to the cone τ = σi∩σj . Then (use Orbit-Cone
correspondence instead of just combinatorics) one can prove that τ is a face of both σi and σj .
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