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1 Space of Unitary Vector Bundles on a Compact Riemann Surface
[S2]

1.1 Basic Information
1. Reading time: 2019-Nov to

2. Classification: AG, Complex Geometry

3. Content:

4. Main background: Jordan-Hölder in an Abelian category, The Functor Qout.

We will assume the following:

Theorem 1.1. Let A be an abelian category. If M ∈ ob A has a Jordan-Hölder series, then its cycle of simple
components is determined uniquely up to isomorphism. If A is both Artinian and Noetherian, then every object in
A has a Jordan-Hölder series.

Let X be a Riemann surface with genus g ≥ 2, where OX(1) is a fixed very ample invertible sheaf on X. For
any coherent sheaf F over X, we denote by F (m) the coherent sheaf F ⊗ OX(m). Similarly for F a holomorphic
bundle over X.

For a coherent sheaf E on X, we denote by Q(E /p(x)) the family of all coherent sheaves F on X such that
F is a quotient of F and the Hilbert polynomial of F is p(x), where p(x) is a given linear polynomial, i.e.
p(x) = dimH0(F (m))− dimH1(F (m)) for m sufficiently large.

We now have the following theorem due to Grothendieck:

Theorem 1.2. There is a (unique) structure of a projective algebraic scheme on Q = Q(E /p(x)) and a surjective
homomorphism θ : p∗1(E ) → F of coherent sheaves on X ×Q such that

1. F is flat over Q.

2. the restriction of homomorphism θ to X × {q} ∼= X corresponds to the element of Q(E /p(x)) represented by
q.

3. given a surjective homomorphism φ : p∗1(E ) → G of coherent sheaves on X×T , where T is an algebraic (resp.
analytic) scheme such that G is flat over T , and the Hilbert polynomial of Gt-restriction of G to X×{t} is p(x),
there exists a (unique) morphism f : T → Q such that φ : p∗1(E ) → G is the inverse image of θ : p∗1(E ) → F
by the morphism f .

Proposition 1.3. Let R1 = R1(E /p(x)) be the subset of Q = Q(E /p(x)) consisting of points q ∈ Q such that Fq

is locally free on X. Then R1 is an open subset of Q, and the restriction F1 of F to X × R1 is locally free of
constant rank.

To prove this we need a lemma from commutative algebra:

Lemma 1.1. Let φ : A→ B be a homomorphism of commutative rings such that A is local with the maximal ideal
m, and B is Noetherian. Suppose that for every maximal ideal n of B, φ−1(n) = m, i.e. φ(m)B is contained in the
radical of B. For a B-module M of finite type such that it is flat over A, then M is free over B if M/mM is free
over B/mB.

For G the automorphism group of the coherent sheaf E , we have an action of G on Q = Q(E /p(x)), and
R1(E /p(x)) is a G-invariant subset of Q. Let d be the degree and r be the rank of any Fq, q ∈ R1(E/p). We note
that

dimH0(Fq) ≥ d− r(g − 1)

by Riemann-Roch.
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1.2 Categories of Vector Bundles on a Riemann Surface
Let V be the additive category of vector bundles on a compact Riemann surface X, and let V0 be the full subcategory
of vector bundles of degree 0. (Here the degree of a line bundle is defined to be the degree of its determinant bundle.)

Definition. A vector bundle V ∈ V is said to be semi-stable (resp. stable) if for every proper holomorphic sub-
bundle W of V , we have

d(W )

r(W )
≤ d(V )

r(V )

where d(V )
r(V ) is called the slope of V .

Let S be the full subcategory of V0 consisting of semi-stable vector bundles of degree 0.

Proposition 1.4. The category S is abelian, Artinian, and Noetherian. Furthermore, if α ∈ Hom(V,W ), then α
is of constant rank on the fibres of V .

Proof. It suffices to show that ker α, coker α, and coim α are all of degree 0. By semi-stability, all degrees are ≤ 0.
If d(ker α) < 0, then by 0 = d(V ) = d(ker α) + d(coker α) we get a contradiction. Similarly for others.

By GAGA [S1], the compact Riemann surface X is uniquely determined by its underlying structure of a non-
singular algebraic variety, and a holomorphic vector bundle V on X has a unique underlying structure of an algebraic
vector bundle.

Definition. A subcategory B of V is said to be bounded if there is an algebraic family of vector bundles {Vt}t∈T

parametrized by an algebraic scheme T such that given V ∈ B, there is a t ∈ T for V ∼= Vt.

Proposition 1.5. The subcategory Sn of S consisting of semi-stable vector bundles of degree 0 and rank ≤ n, n
being a fixed positive integer, is bounded.

Proof. If B1 and B2 are two bounded subcategories of V, then the subcategory B consisting of vector bundles which
are extensions of an object in B1 by an object in B2 is again bounded. Hence it suffices to prove that the stable
bundles are bounded. But a stable bundle is indecomposable [NS], whence we can use a result by Atiyah [A].

Let R(E/p) denote the subset of R1(E/p) (as in Theorem 1.2) consisting of points q ∈ R1(E/p) such that the
canonical mapping H0(E) → H0(Fq) is an isomorphism and dimH0(Fq) = d − r(g − 1). It can be proved that
R(E/p) is invariant under the action of Aut E, and further it is open (in which the semi-continuity theorem will
be used).

Proposition 1.6. Let B be a bounded subcategory of V such that every object of B has the same rank r and degree
d. Then there is a positive integer m0 such that, if m ≥ m0 and p the Hilbert polynomial of V (m), V ∈ B, we have

1. For every V ∈ B, H1(V (m)) = 0 and H0(V (m)) generates V (m) (i.e., H0(V (m))generates the fibre of V (m)
at every x ∈ X). In particular, the rank of H0(V (m)) is independent of V ∈ B. Let this be p.

2. If E is the trivial vector bundle of rank p, the set of all q ∈ R(E/p) such that Fq
∼= V (m) for a given V ∈ B

is non-empty and is precisely an orbit for the operation of the group G = Aut E.

3. If {Vi} is an algebraic (resp. analytic) family of vector bundles on X parametrized by an algebraic (resp.
analytic) scheme T such that for every t ∈ T , Vt(m) ∈ B, then given t0 ∈ T , there is a neighbourhood T0 of
t0 and a morphism f : T0 → R(E/p) such that if q = f(t), t ∈ T0, Fq

∼= Vt(m).

4. There is an open, irreducible, non-singular subvariety U of R(E/p) invariant under the action of G such that,
given V ∈ B, there is a q ∈ U with Fq

∼= V (m).
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1.3 Category of Points of N-folded Grassmannians
Through out this section, we shall use Grp,r(E) denoting the Grassmannian of p dimensional sub-spaces of E which
is a C-vector space of rank r, and use Grp,r(E) denoting the Grassmannian of p dimensional quotient spaces of E
which is a C-vector space of rank r. Hence there is a canonical isomorphism Grp,r(E) ∼= Grr−p,r(E). Let GrNp,r(E)
denote the N -fold product of Grp,r(E).

Definition. Let N be a fixed positive integer. We denote GN the category whose objects are points of GrNp,r(E),
where E is any vector space of rank r ≥ 0 and 0 ≤ p ≤ r.

A morphism α : Y → X, for Y = {Fi}1≤i≤N ∈ GrNq,s(F ) and X = {Ei}1≤i≤N in this category is a linear map
ᾱ : F → E (called the underlying linear map) such that ᾱ(Fi) ⊆ Ei.

It is not hard to see GN is an additive category, and satisfies these properties:

1. α is a monomorphism (resp. epi) if and only if ᾱ is injective (resp. surjective).

2. α has a kernel if and only if the rank of Ki = ker α ∩ Fi is independent for i, and then {Ki}1≤i≤N is the
kernel of α. If α has kernel, then its coimage exists.

3. α has a cokernel if and only if the rank of Mi = π(Ei) is independent for i where π : E → coker α is the
canonical projection, and then {Mi}1≤i≤N is the cokernel of α. If α has kernel, then its image exists.

4. If α has both kernel and cokernel, then the image and coimage of α exist and the canonical morphism from
the coimage to the image is an isomorphism if and only if r(Fi)− r(Ki) = r(Ei)− r(Mi) for all 1 ≤ i ≤ N .

If α is a monomorphism (resp. epi) and has a cokernel (resp. kernel), then we say that 0 → Y
α−→ X (resp.

Y
α−→ X → 0) is exact. In this case, let Z be the cokernel (resp. kernel) of α and β : X → Z (resp. β : Z → Y )

be the canonical morphism, we see by the previous comments that α is the kernel of β. Thus we write that
0 → Y → X → Z → 0 (resp. 0 → Z → Y → X → 0) is exact.

Let n be a integer ≥ 2, then we denote by GN,n the full subcategory of GN consisting of objects which are points
of GrNr(n−1),rn(E), where E is any vector space of rank r ≥ 0 and 0 ≤ p ≤ r. It is not hard to show that a morphism
in GN,n is a monomorphism (resp. epimorphism) if and only if it is so in GN .

Definition. An object X = {Ei}1≤i≤N ∈ GrNp,r(E) is said to be semi-stable (resp. stable) if, for every subspace F
of E (resp. proper subspace) we have

1
N

∑N
i=1 r(F ∩ Ei)

p
≤ r(F )

r
.

Also, for X = {Ei}1≤i≤N ∈ Grp,rN (E), the canonical image of X in GrNr−p,r(E) is semi-stable (resp.) if and only
if, for every subspace F of E,

1
N

∑N
i=1 r(Fi)

p
≥ r(F )

r
.

Proposition 1.7. Let 0 → Y → X → Z → 0 be an exact sequence in GN with Y, Z,X in GN,n. Then X is
semi-stable if and only if both Y and Z are semi-stable.

We also denote by KN,n the full subcategory of GN,n consisting of the semi-stable objects of GN,n. It is not hard
to show that a morphism in KN,n is a monomorphism (resp. epimorphism) if and only if it is so in GN .

Proposition 1.8. Let α : Y → X (resp. α : X → Y ) be a monomorphism (resp. epi) in GN with X,Y ∈ GN,n.
Then if X is semi-stable, 0 → Y → X (resp. X → Y → 0) is exact, and Y is semi-stable.

Proposition 1.9. Let X be a stable object of GN,n. Then if α : X → Y is a morphism in KN,n, then either α is
0, or 0 → Y → X is exact.

Definition. An object X ∈ GN,n is said to have a stable series S if there is an increasing sequence S = {Xi}q≤i≤m

X1 ⊂ X2 ⊂ · · · ⊂ Xm = X

of subobjects of X such that every one of the canonical monomorphisms Xi → Xi+1 has a cokernel Xi+1/Xi, and
X1, · · · , Xm/Xm−1 are all stable objects of GN,n.
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By an application of Proposition 1.7, it follows that X ∈ KN,n if X has a stable series S. We denote by AN,n

the full subcategory of KN,n consisting of those objects which possess stable series.

Proposition 1.10. The category AN,n is abelian, artinian, and noetherian, and the simple object in it are precisely
the stable objects.

1.4 Connecting Two Categories
Let X be a Riemann surface with genus g ≥ 2. Let V1 be the full subcategory of the additive category V of
holomorphic vector bundles on X, having the property that all objects are globally generated. Let n be an ordered
set of N distinct points P1, · · · , PN on X. Then if V is an object of V1 of rank r, let E be the vector space H0(V )
and p be its dimension.

We define a functor τ(n), which to V associates the point x ∈ Grr,pN (E) ∼= GrNp−r,p(E) such that the i-th
coordinate of x is precisely the quotient vector space of E represented by the fibre of V at Pi. Thus τ(n) is an
additive functor from V1 into GN .

It is not hard to verify that if 0 → V1 → V2 → V3 → 0 is exact in V such that Vi are in V1 and H1(Vi) = 0, then

0 → τ(n)(V1) → τ(n)(V2) → τ(n)(V3) → 0

is exact. If D is any subcategory of V, we denote by D(m) the subcategory of V of all objects V (m) where V ∈ D.

Proposition 1.11. Let B be a bounded subcategory of V. Then one can find a positive integer m and an ordered
set n of N distinct points P1, · · · , PN on X such that

1. B(m) ⊆ V1 and

2. τ(n)(V1) and τ(n)(V2) for V1, V2 ∈ B(m) are isomorphic if and only if V1 ∼= V2.

Definition. A vector bundle V ∈ V is said to be generically generated by a linear subspace F of H0(V ) if there is
at least one x ∈ X such that F generates the fibre of V at x.

Let W be the full subcategory of v consisting of objects V ∈ V such that

1. if G is any sub-bundle of V with the property

d(G)

r(G)
≥ d(V )

r(V )

then H1(G) = 0 and H0(G) generates G, and

2. if G is a proper sub-bundle such that H0(G) generates G generically, then

r(H0(G))

r(G)
>
r(H0(V ))

r(V )

if d(G)
r(G) <

d(V )
r(V ) .

We see that W ⊆ V1. Let V ∈ W and G a sub-bundle of V such that

d(G)

r(G)
>
d(V )

r(V )
resp.d(G)

r(G)
=
d(V )

r(V )
.

Then since H1(V ) = H1(G) = 0, we have by the Riemann-Roch

r(H0(V ))

r(V )
=
d(V )

r(V )
− g + 1

r(H0(G))

r(G)
=
d(G)

r(G)
− g + 1.

Therefore it follows that
r(H0(G))

r(G)
>
r(H0(V ))

r(V )
resp.r(H

0(G))

r(G)
=
r(H0(V ))

r(V )
.
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Proposition 1.12. Let B be a bounded subcategory of W. Then given any ordered set n of distinct points P1, · · · , PN

on X such that N is sufficiently large, the functor has the following property that, for V ∈ B, τ(n)(V ) is a stable
(resp. semi-stable) object of GN if and only if V is a stable (resp. semi-stable) object of V.

To prove this, we need this lemma:

Lemma 1.2. Let V ∈ V and F a subspace of H0(V ) which generates V generically. Let µ be the number of distinct
points such that F does not generate the fibre of V ate y, then

µ ≤ d(V ).

Proposition 1.13. Let B be a bounded subcategory of V. Then we can find an integer m0 such that if m ≥ m0,
then B(m) ⊆ W.

We also need this lemma:

Lemma 1.3. Let V ∈ V and H0(V ) generate V generically. Then we have

r(H0(V )) ≤ d(V ) + r(V ).

Theorem 1.14. Let B be a bounded subcategory of V. Then we can find an integer m and an ordered set n of
distinct points P1, · · · , PN on X such that

1. If V ∈ B, then H1(V (m)) = 0 and H0(V (m)) which generates V (m) so that, in particular B(m) ⊆ V1.

2. τ(n)(V1) and τ(n)(V2) for V1, V2 ∈ B(m) are isomorphic if and only if V1 ∼= V2.

3. If V ∈ B(m), τ(n)(V ) is stable (resp. semi-stable) if and only if V is stable (resp. semi-stable).

Corollary 1.14.1. Take for B the abelian sub-category Sr of V consisting of the semi-stable bundles of degree 0
and rank r. Let m and n be chosen as in Theorem 1.14, and n = d(L)− g + 1, where L is the line bundle defined
by the invertible sheaf OX(m). Let τ1 : Sr → GN be the functor τ1(V ) := τ(n)(V (m)). Then we have

1. τ1(Sr) is contained in the abelian sub-category AN,n of GN , and the functor τ1 : Sr → AN,n is an exact
functor.

2. For V ∈ Sr, τ(n)(V ) is stable (resp. semi-stable) if and only if V is stable (resp. semi-stable).

3. For V1, V2 ∈ Sr, τ1(V1) and τ1(V2) for V1, V2 ∈ B(m) are isomorphic if and only if V1 ∼= V2. In particular,
gr V1 ∼= gr V2 if and only if gr τ1(V1) = gr τ1(V2).

Corollary 1.14.2. Let {Vt}t∈T be an algebraic family of vector bundles parametrized by an algebraic scheme T .
Then subset Ts (resp. Tss) of points t ∈ T such that Vt is stable (resp. semi-stable) is open in T . Similarly for an
analytic family, then T − Ts (resp. T − Tss) is an analytic subset of T .

Theorem 1.15. Let {zi}1≤i≤m be a sequence of stable objects in GN,n. Let T be the subset of GrNr(n−1),rn(E)ss

consisting of the points x in AN,n, i.e. those having a stable series

x1 ⊂ x2 ⊂ · · · ⊂ xm = x

such that x1 ∼= z1, x2/x1 ∼= z2, · · · , xm/xm−1 = zm. Then T is closed and GL(E) invariant.
If else, T is the subset of GrNr(n−1),rn(E)ss consisting of the points having a stable series with a fixed cycle of

stable components C. Then T is closed and GL(E) invariant. If T1 and T2 are two such subsets associated to two
distinct cycles of stable components, then T1 ∩ T2 = ∅.

Corollary 1.15.1. Let X = GrNr(n−1),rn(E). Then the categorical quotient Y of Xss modulo PGL(E) exists, and
is a projective variety. Further if φ : Xss → Y is the canonical morphism and x1 and x2 are two points of Xss such
that they belong to AN,n and gr x1 ̸= gr x2, then φ(x1) ̸= φ(x2).
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1.5 The Main Theorem and Its Proof
Let X as before be a Riemann surface with genus g ≥ 2, with p : X̃ → X the covering space of X. Let S be the
category of semi-stable vector bundles of degree 0.

Definition. A holomorphic vector bundle is said to be unitary if it is the vector bundle associated to a unitary
representation of π1(X).

It was proved in [NS] that a holomorphic vector bundle V on X is isomorphic to a unitary vector bundle on
X if and only if V is a direct sum of stable vector bundles of degree 0. Therefore for V ∈ S, gr V represents an
isomorphic class of unitary vector bundle.

Definition. For two elements in S, we say they are strongly equivalent if gr V1 = gr V2.

Theorem 1.16. Let Ur denote the set of isomorphic classes of unitary vector bundles of rank r, or equivalently the
set of equivalence classes of semi-stable vector bundles of rank r and degree 0.

Then there is a unique structure of a normal projective variety on Ur such that, if {Vt}t∈T is an algebraic (resp.
analytic) family of semi-stable vector bundles of rank r and degree 0, then the mapping T → Ur defined by t→ gr Vt
is a morphism.

Proof. We shall use the notations mentioned in Theorem 1.14. Let p(x) be the Hilbert polynomial of V (m) where
V ∈ Sr, r = r(V ). Let R = R(E/p) be the scheme as in Proposition 1.6, E being the trivial bundle of rank p,
p = dimH0(V (m)). Consider the canonical morphism τ = τ(n) : R → GrNp,p−r(E) ∼= Grp,rN (E) where E = H0(E)
which to q ∈ R associates the point x of Grp,rN (E) such that pi(x), the i-th canonical projection on to Grp,r(E), is
precisely the fibre of the vector bundle at Pi.

Let Rss be the subset of R consisting of points q ∈ R such that Fq is semi-stable. Then Rss is an open, non-
singular and irreducible subset of R invariant under G = Aut E. Further given V ∈ Sr, r = r(V ), there is a q ∈ R
such that Fq

∼= V , and the set of such q constitutes precisely one orbit under G.
Let Z = GrNr(n−1),rn(E)ss (n := d(L) − g + 1, where L is the line bundle associated to the invertible sheaf

OX(m)). Then τ(Rss) ⊆ Z. In fact, if q ∈ R, τ(q) ∈ AN,n; further if q1, q2 ∈ R such that gr Fq1 ̸= gr Fq2 , then
gr τ(q1) ̸= gr τ(q2).

Let G be the automorphism group of H0(E), then we see that τ is a G-morphism. Let

φ : Z → Y

be the categorical quotient of Z by G, then Y is projective and if q1, q2 ∈ R such that gr Fq1 ̸= gr Fq2 , we have
φ ◦ τ(q1) ̸= φ ◦ τ(q2) by Corollary 1.15.1.

Let Y ′
1 be the closure of φ ◦ τ(Rss). Then the canonical morphism ψ′ : Rss → Y ′

1 is dominant and G-invariant,
i.e. two points in the same orbit are mapped onto the same point by ψ′. Let Y1 be the normalization of Y ′

1 and
p : Y1 → Y ′

1 be the canonical morphism.
Since Rss is non-singular in particular normal, we have a morphism ψ : Rss → Y1 such that ψ′ = p ◦ ψ. Since p

is an isomorphism on a non-empty open subset of Rss, it follows that ψ is G-invariant on a non-empty G-invariant
open subset of Rss, which implies that ψ is G-invariant on the entire Rss. We note also that, if q1, q2 ∈ R such that
gr Fq1 ̸= gr Fq2 , then ψ(q1) ̸= ψ(q2).

It remains to prove that Y1 is actually what we want. So we will define a set-theoretical bijection Ur → Y1. Let
now U denote the space of all unitary representations of π1(X) of rank r. Then we know U is a compact subspace
of the analytic space R(r) of all representations of π of rank r, and we know that the canonical family of vector
bundles on X parametrized by R(r) (namely the one which assigns to each point θ of R(r) the holomorphic vector
bundle on X associated to the representation θ of π) is an analytic family. By the property (3) of the Proposition
1.6, we see that given a point θ of R(r)ss there is a neighbourhood K of θ in R(r)ss and an analytic morphism
f : K → Rss such that if k ∈ K and q = f(k), Fq is isomorphic to the vector bundle associated to the representation
of π given by k.

Now if f1 : K1 → Rss and f2 : K2 → Rss are two such morphisms, K1,K2 being open in Rss, then if k ∈ K1∩K2,
we see that f1(k) and f2(k) lie in the same orbit under G. Hence we conclude that ψ ◦ f1 and ψ ◦ f1 coincide in
K1 ∩K2. From these considerations, we get an analytic morphism from R(r)ss to Rss, and the restriction of this
morphism defines a continuous mapping g : U → Y1.
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By the compactness of U , we know g(U) is closed (in the usual Hausdorff sense) in Y . Further if U0 is the
subspace of U consisting of the irreducible unitary representations of π, we have g(U0) = ψ(R), since a vector
bundle of degree 0 is stable if and only if it is isomorphic to a vector bundle associated to an irreducible unitary of
π. Since ψ is dominant, ψ(Rs) contains a non-empty (Zariski) open subset of Y by a theorem of Chevalley. This
implies that g : U → Y1 is surjective, and we note that if θ1 and θ2 are in U , g(θ1) = g(θ2) if and only if the unitary
bundles on X defined by the representations θ1 and θ2 of π are isomorphic

Proof Idea. For paratramizing semi-stable vector bundles, we take any V ∈ Sr. If V is globally generated, then V
is a quotient of E ⊗ OX , where E = H0(V ). By doing this, we can use the Quot scheme (1.2) to parametrize the
vector bundles. However, there are immediately several issues:

1. The quotients may only be coherent sheaves, instead of vector bundles.

2. The parametrizing map may not be surjective.

3. The parametrizing map may not be injective.

For 1, we first take R1 = R1(E/p) the subset of Q = Q(E /p(x)) consisting of points q ∈ Q such that Fq is locally
free on X (Proposition 1.3).

But before getting into the bijectiveness, there is still some issue: what if V is not globally generated? By
proposition 1.6, we should twist it sufficiently. And also the first part of this property tells us we sort of get all
vector bundles of X.

There is also a natural way to study the quotient scheme: we map (a subscheme of) it to the Grassmannian, or
N -folded (dual) Grassmannian. Loosely, this process is taking N points on the Riemann surface X, get N quotient
space of E which turns out to be a point in GrN .

2 Géométrie algébrique et géométrie analytique [S1]
2.1 Basic Information

1. Reading time: 2020-Aug to

2. Classification: AG, Complex Geometry

3. Content:

4. Main background:

1. For the subset U ⊆ Cn�we say that U is analytic if for each x ∈ U , there are functions f1, · · · , fk holopmorphic
in a neighborhood W of x, such that U ∩ W is identical to the set of points z ∈ W satisfying the equations
fi(z) = 0, i = 1, · · · , k. The subset U is then locally closed. We equip it with the topology induced by Cn.

For any space X, denote by C (X) the sheaf of germs of functions (not necessiraly continuous) on X with values
in C. C (Cn) has a subsheaf H consisting of all holomorphic functions defined on an open subset. Then for an
analytic subset U , there is a restriction

ϵx : C (Cn)x → C (U)x

for any x ∈ U . The image HU,x of ϵx restricted on the subring HCn,x is a subring of C (U)x, which will be denoted
by HU,x. The HU,x form a subsheaf HU of C (U), which we call the sheaf of germs of holomorphic functions on
U . We denote AU,x the kernel of ϵx, then it is the set of f ∈ HCn,x whose restriction to U is zero in a neighborhood
o x. HU,x

∼= HCn,x/AU,x.
For two analytic subsets U, V of Cr and Cs. A continuous map φ : U → V is said to be holomorphic if for each

f ∈ HU,x, f ◦ φ ∈ HV,φ(x).
2. We call an analytic space a set X equipped with a topology and a subsheaf HX of the sheaf C (X), subject

to the following axions:

(H1) There exists open cover {Vi} of X such that each Vi, equipped with the topology and sheaf induced by those
of X, is isomorphic to an analytic subset Ui of an affine space.
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(H2) The topology of X is Hausdorff.

We can similarly define a morphism and the product.
3. For an analytic space X, an analytic sheaf F is simply a sheaf modules over the sheaf of rings HX . Let Y

be a closed analytic subspace, let AY,x be the set of f ∈ HX,x whose restriction onto Y is zero in a neighborhood
of x. The AY,x form a sheaf of ideals AY of the sheaf HX . The quotient sheaf HX/AY is zero outside of Y , and
its restriction to Y is none other than HY .

Proposition 2.1. 1. The sheaf HX is a coherent sheaf of rings.

2. If Y is a closed analytic subspace of X, then the sheaf AY is a coherent analytic sheaf.

2.2
Let X be an algebraic variety, and let Xan be the analytic space associated with X, then we have

3 On the periodicity theorem for complex vector bundles [AB]
3.1 Basic Information

1. Reading time: 2020-Nov to 2020-Dec

2. Classification: Algebraic Topology

3. Content: The proof of Bott Periodicity

4. Main background: Vector Bundles, The Definition and Basic Properties of K-groups

The Bott-Periodicity theorem for the infinite unitary group is a statement about complex vector bundles. It
describes the relation between vector bundles over X and X × S2 :

K0(X × S2) ∼= K0(X)⊗K(S2)

where X is a compact space. This paper talks about an elementary proof using the tool called clutching functions.

For a vector bundle E over X, if Y is a subspace of X, then E|Y :=
⨿

y∈Y Ey has a natural vector bundle
structure. We call it the restriction of E on Y .

Lemma 3.1. Let Y be a closed subspace of a compact (Hausdorff) space X and let E be a vector bundle over X.
Then any section of E|Y extends to a section of E.

Proof.

Lemma 3.2. Let Y be a closed subspace of a compact space X, E and F two vector bundles over X. Then any
isomorphism s : E|Y → F |Y extends to an isomorphism t : E|U → F |U for some open set U containing Y .

Proof.

Proposition 3.1. Let Y be a compact space, ft : Y → X a homotopy and E a vector bundle over X. Then

f∗0 (E) ∼= f∗1 (E).

Proof.

Definition. A projection operator P for a vector bundle E → X is an endomorphism P : E → E with P 2 = P .

If one is given a projection operator P on E, then PE and (id−P )E inherit from E a topology, a projection so
that they are naturally subbundles. To see this, we locally choose for each x ∈ X, a sufficiently small neighborhood
Ux with local sections s1, · · · , sn : Ux → π−1(U) such that
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1. s1, · · · , sr form a base of (PE)x.

2. sr+1, · · · , sn form a base of ((id− P )E)x.
Thus we have a vector bundle isomorphism

φ : U × Cn → PE|U ⊕ (id− P )E|U

(y, (a1, · · · , an)) 7→
r∑

i=1

aiPysi(y) +

n∑
j=r+1

aj(id− P )ysi(y).

This establishes
Lemma 3.3. If P is a projection operator for the vector bundle E, then PE and (id−P )E have an induced vector
bundle structure and

E ∼= PE ⊕ (id− P )E.

Vector bundles are frequently constructed by a glueing or clutching construction. Let

X = X1 ∪X2, A = X1 ∩X2,

all being compact. Suppose that Ei is a vector bundle over Xi and that φ : E1|A → E2|A is a bundle isomorphism.
Then we can define a vector bundle E1 ∪φ E2 as follows.

Elementary properties of this construction:
1. If E is a bundle over X and Ei := E|Xi ,then the identity defines an isomorphism idA : E1|A → E2|A, and

E1 ∪idA
E2

∼= E.

2. If βi : Ei → E′
i are isomorphisms on Xi and φ′β1 = β2φ, then

E1 ∪φ E2
∼= E′

1 ∪φ′ E′
2.

3. If (Ei, φ) and (E′
i, φ

′) are two ”clutching data” on Xi, then

(E1 ∪φ E2)⊕ (E′
1 ∪φ′ E′

2)
∼= (E1 ⊕ E′

1) ∪φ⊕φ′ (E2 ⊕ E′
2),

(E1 ∪φ E2)⊗ (E′
1 ∪φ′ E′

2)
∼= (E1 ⊗ E′

1) ∪φ⊗φ′ (E2 ⊗ E′
2),

(E1 ∪φ E2)
∗ ∼= E∗

1 ∪φ−1 E∗
2 .

Lemma 3.4. The isomorphism class of E1∪φE2 depends only on the homotopy class of the isomorphism φ : E1 →
E2.
Proof. A homotopy of isomorphisms E1|A → E2|A means an isomorphism

Φ : π∗E1|A×I → π∗E2|A×I

where π is the projection X × I → X. Let
ft : X → X × I

be defined by ft(x) = (x, t) and denote by
φt : E1|A → E2|A

the isomorphism induced by Φ and ft, i.e.

φt = (ft|A)∗(Φ) : (π ◦ ft)∗E1|A×I → (π ◦ ft)∗E2|A×I .

Then
E1 ∪φ1

E2
∼= f∗t (π

∗E1 ∪Φ π
∗E2).

Since f0 and f1 are homotopic it follows from Proposition 3.1 that

E1 ∪φ2
E2

∼= E1 ∪φ1
E2

as required.
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Definition. Let E be a vector bundle over X. By deleting the zero section and dividing a C∗-action, one is
given a space P (E) → X, with each fibre over x ∈ X is a projective space P (Ex). If we further assign to each
y ∈ P (E) the 1-dimensional subspace of Ex which corresponds to it (since y itself is a 1-dimensional subspace),
we obtain a line bundle over P (E). It is denoted by H∗�whose dual is H (the choice of convention here is dictated
by algebra-geometric considerations which we do not discuss here). The projection pr : P (E) → X gives us a ring
homomorphism

pr∗ : K0(X) → K0(P (E))

so that K0(P (E)) becomes a K0(X) algebra.

3.2 Laurent Cluching Functions
Suppose L is a line bundle over X, then for any x ∈ X there is a natural embedding

Lx → P (L⊕ ϵ1)x

y 7→ (y, 1)

which exhibits P (L ⊕ ϵ1)x as the compactification of Lx obtained by adding a “section at infinity”. Now let us
choose a definite metric in L and let S ⊆ L be the unit circle bundle in this metric. Thus we identify L a subspace
of P := P (L⊕ ϵ1) so that

P = P 0 ∪ P∞, S = P 0 ∩ P∞,

where P 0 is the closed disc bundle interior to S (i.e. containing the 0-section) and P∞ is the closed disc bundle
interior to S (i.e. containing the ∞-section). The projections S → X, P 0 → X, and P∞ → X will be denoted by
π, π0 and π∞ respectively.

Suppose now E0, E∞ are two vector bundles over X and that f ∈ Iso(π∗E0, π∗E∞). Then we can form a vector
bundle

π∗
0E

0 ∪f π
∗
∞E

∞

over P . We denote this bundle for brevity (E0, f, E∞), and we say that f is a clutching function for (E0, E∞).
Lemma 3.5. Let E be any bundle over P and let E0, E∞ be the vector bundles over X induced by the 0-section
and the ∞-section respectively. Then there exists f ∈ Iso(π∗E0, π∗E∞) such that

E ∼= (E0, f, E∞),

where the isomorphism is the obvious one on the 0-section and the ∞-section. Moreover f is uniquely determined,
up to homotopy by these properties.
Proof. Let s0 : X → P 0 be the 0-section, then s0π0 is homotopic to the identity map, and so by Proposition 3.1 we
have an isomorphism

f0 : E|P 0 → π∗
0E

0.

The same argument applies to E|P∞ and the lemma then follows, taking

f := f∞f
−1
0 .

If F is a vector bundle over X then (F, id, F ) is isomorphic to the pullback of F along P → X. In K(P ) this is
the equation

[(F, id, F )] = [F ][1] = [(P → X)∗F ].

When L is the trivial line bundle X × C, S is the trivial circle bundle X × S1 so that the points of S can be
represented by pairs (x, z) with x ∈ X and z ∈ C with |z| = 1. In this case, z and z−1 are functions on S. We
consider functions on S which are finite Laurent series in z:

n∑
k=−n

ak(x)z
k.

When L is not trivial, we notice that the inclusion S ↪→ L defines a (tautologous) section of π∗L → S. More
precisely, the projection p : L→ X restricted onto S gives the diagram
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π∗L L

S X

p

p|S

where π∗L is all the (l, s) ∈ L× S s.t. p(l) = p|S(s). Thus the section, denoted by z, is defined by

z : S → π∗L

s 7→ (s, s).

When L = ϵ1, S = X×S1. Then an element in S is a pair (x, z) with |z| = 1. For Corollary 3.5.1, one only needs to
think the section as functions defined above. To obtain the more general Theorem 3.5, however we have to consider
z as a section.

By the canonical isomorphism
π∗L ∼= π∗H om(ϵ1, L)

we may also regard z as a section of π∗LH om(ϵ1, L) and as such, it has an inverse z−1 which is a section of

π∗H om(L, ϵ1) ∼= π∗L−1.

More generally, for any integer k, we may regard zk as a section of π∗Lk. If now ak ∈ Γ(L⊗−k) then

π∗(ak)⊗ zk ∈ Γπ∗(ϵ1),

i.e. it is a function on S. For simplicity, we write akzk instead of π∗(ak)⊗ zk.
Finally, suppose that E0, E∞ are two vector bundles on X and that

ak ∈ ΓH om(Lk ⊗ E0, E∞),

then
akz

k ∈ ΓH om(π∗E0, π∗E∞).

A finite sum
f =

n∑
k=−n

akz
k ∈ ΓH om(π∗E0, π∗E∞)

with the ak as above will be called a finite Laurent series for (E0, E∞). If f ∈ Iso(π∗E0, π∗E∞) then it defines a
clutching function and we call this a Laurent clutching function for (E0, E∞).
Example 3.1. Using the same notations above, take E0 := ϵ1, E∞ := L, then z itself is a Laurent clutching function.
Recall that the line bundle H∗ over P as a subbundle of π∗(L⊕ ϵ1). For each y ∈ P (L⊕ ϵ1), H∗

y is a subspace of
(L⊕ ϵ1)x and

1. H∗
y = Lx ⊕ 0 is equivalent to y = ∞.

2. H∗
y = 0⊕ ϵ1x is equivalent to y = 0.

Thus the composition
H∗ ↪→ π∗(L⊕ ϵ1) → π∗(ϵ1)

induced by the projection L⊕ ϵ1 → ϵ1, defines an isomorphism

f0 : H∗|P 0 → π∗
0(ϵ

1)

and similarly the composition
H∗ ↪→ π∗(L⊕ ϵ1) → π∗(L)

defines another isomorphism
f∞ : H∗|P∞ → π∗

∞(L).

Hence
f = f∞f

−1
0 : π∗(ϵ1) → π∗(L)

is a clutching function for H∗.
For each y ∈ Sx,
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Suppose now that f ∈ ΓH om(π∗E0, π∗E∞) is any section, we then can define its Fourier coefficients

ak ∈ ΓH om(Lk ⊗ E0, E∞)

by
ak(x) :=

1

2πi

∫
Sx

fxz
−k−1
x dzx,

where fx and zx denote the restrictions of f, z to Sx, and dzx is therefore a differential in Sx with coefficients in
Lx. Let sn be the partial sum

sn :=

n∑
k=−n

akz
k

and define the Cesaro means

fn :=
1

n

n∑
m=0

sm.

Result from analysis gives

Lemma 3.6. Let f be any clutching function for (E0, E∞), fn the sequence of Cesaro means of the Fourier series
of f . Then fn converges uniformly to f and hence is a Laurent clutching function for all sufficiently large n.

The uniformity can be defined by using metrics in E0 and E∞, but does not depend on the choice of metrics.

3.3 Linearization
By a polynomial clutching function we mean a Laurent clutching function without negative powers of z. Thus let

p =

n∑
k=0

akz
k ∈ ΓH om(π∗E0, π∗E∞)

be a polynomial clutching function of degree ≤ n for (E0, E∞). Consider the homomorphism

Ln(p) : π∗

(
n∑

k=0

Lk ⊗ E0

)
→ π∗

(
E∞ ⊕

n∑
k=1

Lk ⊗ E0

)

given by the matrix

Ln(p) :=


a0 a1 a2 · · · an
−z 1

−z 1
. . . . . .

−z 1

 .
It is clear that Ln(p) is linear in z. Now define the sequence pr(z) inductively by p0 = p, and zpr+1(z) = pr(z)−pr(0).
Then we have the following matrix identity

Ln(p) =


1 p1 p2 · · · pn

1
1

. . .
1




p

1
1

. . .
1




1
−z 1

−z 1
. . . . . .

−z 1

 ,

or more briefly
Ln(p) = (id +N1)(p⊕ id)(id +N2)

with N1, N2 nilpotent.
Since id+ tN with t ∈ [0, 1] gives a homotopy of isomorphisms, if N is nilpotent, it follows from Lemma 3.4 that
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Proposition 3.2. Ln(p) and p⊕ ϵ define isomorphic bundles on P , i.e.

(E0, p, E∞)⊕ (

n∑
k=0

Lk ⊗ E0, id,

n∑
k=0

Lk ⊗ E∞) ∼=

(
n∑

k=0

Lk ⊗ E0,Ln(p), E∞ ⊕
n∑

k=1

Lk ⊗ E0

)
.

For brevity we now write Ln(E0, p, E∞) for the bundle(
n∑

k=0

Lk ⊗ E0,Ln(p), E∞ ⊕
n∑

k=1

Lk ⊗ E0

)
.

Lemma 3.7. Let p be a polynomial clutching function of degree ≤ n for (E0, E∞). Then

Ln+1(E0, p, E∞) ∼= Ln(E0, p, E∞)⊕ (Ln+1 ⊗ E0, id, Ln+1 ⊗ E0)

and
Ln+1(L−1 ⊗ E0, zp, E∞) ∼= Ln(E0, p, E∞)⊕ (L−1 ⊗ E0, z, E0).

Proof.
Ln+1(E0, p, E∞) =

[
Ln(p) 0 · · · 0

0 · · · −z 1

]
.

Similarly in

Ln+1(p) :=



0 a0 a1 a2 · · · an
−z 1

−z 1
−z 1

. . . . . .
−z 1


we multiply 1 on the second row by t and get a homotopy from Ln+1(zp) to Ln(p)⊕−z.

Proposition 3.3. For any polynomial clutching function p for (E0, E∞), we have the identity

([(E0, p, E∞)]− [(E0, id, E0)])([L][H]− [ϵ1]) = 0.

Proof. By the result above, we have

(L−1 ⊗ E0, zp, E∞)⊕ (
n∑

k=0

Lk ⊗ E0, id,
n∑

k=0

Lk ⊗ E∞)

∼=

(
n∑

k=0

Lk ⊗ E0,Ln(p), E∞ ⊕
n∑

k=1

Lk ⊗ E0

)

Passing to K0(P ) this gives

[L−1][H−1][(E0, p, E∞)] + [(E0, id, E0)] = [(E0, p, E∞)] + [L−1][H−1][(E0, id, E0)],

from which the required result follows.

Putting E0 = 1, p = z, E∞ = L and using Example 3.1 we obtain the formula:

([H]− [1])([L][H]− [1]) = 0.
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3.4 Linear Clutching Functions
Suppose T is an endomorphism of a finite-dimensional vector space E, and let S be a circle in the complex plane
which does not pass any eigenvalue of T . Then

Q =
1

2πi

∫
S

(z − T )−1dz

is a projection operator in E which commutes with T . The decomposition

E = E+ ⊕ E− := QE ⊕ (id−Q)E

is therefore invariant under T , so that we can write

T = T+ ⊕ T−

where T+ has all eigenvalues inside S and T− has all eigenvalues outside S. This is the spectral decomposition of
T corresponding to the two components of the complement of S.

To extend these results to vector bundles, we first make a remark on notation. So far z and hence p(z) have been
sections over S. However they extend in a natural way to sections over the whole of L. It will also be convenient to
include the ∞-section of P in certain statements. Thus if we assert that p(z) = az + b is an isomorphism outside
S, we shall take this to include the statement that a is an isomorphism.

Proposition 3.4. Let p be a linear clutching function for (E0, E∞) and define endomorphisms Q0, Q∞ of E0, E∞

b putting
Q0

x :=
1

2πi

∫
Sx

p−1
x dpx

and
????????????

Then Q0 and Q∞ are projection operators and

pQ0 = Q∞p.

Write Ei
+ = QiE and Ei

− = (id − Q)iE (i = 1,∞) so that Ei = Ei
+ ⊕ Ei

−. Then p is compatible with these
decompositions so that

p = p+ ⊕ p−.

Moreover, p+ is an isomorphism outside S, and p− is an isomorphism inside S.

Proof. Because of Lemma 3.3,

Corollary 3.4.1. Let p be the same as Proposition 3.4 and write

p+ = a+z + b+, p− = a−z + b−.

Then putting p(t,−) := p+(t,−) + p−(t,−) where

p+(t,−) := a+z + tb+, p−(t,−) := ta−z + b−

for 0 ≤ t ≤ 1, we then obtain a homotopy a linear clutching functions connecting p with a+ ⊕ b−. Thus

(E0, p, E∞) ∼= (E0
+, z, L⊗ E∞

+ )⊕ (E0
−, z, E

∞
− ).

Proof.
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For p a polynomial clutching function of degree ≤ n for (E0, E∞), Ln(p) is a linear clutching function for
(V 0, V∞) where

V 0 =

n∑
k=0

Lk ⊗ E0, V∞ = E∞ ⊕
n∑

k=1

Lk ⊗ E0.

Hence it defines a decomposition
V 0 = V 0

+ ⊕ V 0
−.

To express the dependence of V 0
+ on p, n we write

V 0
+ = Vn(E

0, p, E∞).

Note that this is a vector bundle on X (by definition). If pt is a homotopy of polynomial clutching functions of
degree ≤ n it follows by constructing Vn over X × I that

Vn(E
0, p0, E

∞) ∼= Vn(E
0, p1, E

∞).

Hence by what we get

Vn+1(E
0, p, E∞) ∼= Vn(E

0, p, E∞)

Vn+1(L
−1 ⊗ E0, zp, E∞) ∼= Vn(E

0, p, E∞)⊕ (L−1 ⊗ E0),

or equivalently
Vn+1(E

0, zp, L⊗ E∞) ∼= L⊗ Vn(E
0, p, E∞)⊕ E0.

Finally put all together we obtain the following equation in K0(P )

[E0, p0, E
∞] + (

n∑
k=1

[Lk ⊗ E0])[ϵ1] = [Vn(E
0, p, E∞)][H−1] + (

n∑
k=0

[Lk ⊗ E0]− [Vn(E
0, p, E∞)])[ϵ1],

and hence
[E0, p0, E

∞] = [Vn(E
0, p, E∞)]([H−1]− [ϵ1]) + [E0][ϵ1].

3.5 The Main Theorem and Its Proof
The main theorem is:

Theorem 3.5. Let L be a line bundle over the compact space X, H the line bundle over P (L⊕ ϵ1) defined above.
Then as a K0(X)-algebra, K0(P (L⊕ ϵ1)) is generated by [H] subject to the single relation

([H]− [1])([L][H]− [1]) = 0.

When X = ∗, P (L ⊕ ϵ1) is a projective line, i.e. S2. Then the theorem implies that K0(S2) is a free abelian
group generated by [1] and [H] such that ([1]− [H])2 = 0.

When L is trivial (X nontrivial), we notice that

P (ϵ2) ∼= X × S2,

so

Corollary 3.5.1. Let π1 : X × S2 → X,π2 : X × S2 → S2 denote the projections. Then the homomorphism

f : K0(X)⊗Z K
0(S2) → K0(X × S2)

[a⊗ b] 7→ π∗
1a · π∗

2b

is a ring isomorphism.

The ideas can be summarized as follows:
The vector bundles over S2 are well-known and are easily determined
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Proof of Theorem 3.5. Let t be an indeterminate. Then because of Proposition 3.3 the mapping t 7→ [H] induces a
K(X)-algebra homomorphism

µ : K0(X)[t]/(t− 1)([L]t− 1) → K(P ).

To prove the theorem we have to show that µ is an isomorphism, and we shall do this by explicitly constructing an
inverse.

First let f be any clutching function for (E0, E∞). Let fn be the sequence of Cesaro means of its Fourier series
and put pn := znfn. Then if n is sufficiently large, Lemma 3.6 asserts that pn is a polynomial clutching function
(of degree ≤ 2n) for (E0, Ln ⊗ E∞). Define

νn(f) ∈ K0(X)[t]/(t− 1)([L]t− 1)

f 7→ [V2n(E
0, pn, L

n ⊗ E∞)](tn−1 − tn) + [E0]tn.

Now for sufficiently large n, the linear segment joining pn+1 and zpn provides a homotopy of polynomial clutching
functions of degree ≤ 2(n+ 1). Hence

V2n+2(E
0, pn+1, L

n+1 ⊗ E∞) ∼= V2n+2(E
0, zpn, L

n+1 ⊗ E∞)

∼= V2n+1(E
0, zpn, L

n+1 ⊗ E∞)

∼= L⊗ V2n(E
0, pn, L

n ⊗ E∞)⊕ E0,

hence
νn+1(f) = {[L][V2n(E0, pn, L

n ⊗ E∞)] + [E0]}(tn − tn+1) + [E0]tn+1 = νn(f)

because (t− 1)([L]t− 1) = 0.
Thus νn(f), for large n, is independent of n and so depends only on f . We write it as ν(f). If now g is sufficiently

close to f and n is sufficiently large then the linear segment joining fn and gn provides a homotopy of polynomial
clutching functions of degree ≤ 2n and therefore

ν(f) = νn(f) = νn(g) = ν(g).

So ν(f) is a locally constant function of f and hence depends only on the homotopy class of f . Hence if E is any
vector bundle over P and f a clutching function defining E, we can define

ν(E) := ν(f),

and ν(E) depends only on the isomorphism class of E. Since ν(E) is additive for ⊕ it induces a group homomorphism

ν : K0(P ) → K0(X)[t]/(t− 1)([L]t− 1)

which is clearly a K0(X)-module homomorphism.
Then on the one hand, in K0(P )

µν([E]) = ([V2n(E
0, pn, L

n ⊗ E∞)](tn−1 − tn) + [E0]tn)

= [V2n(E
0, pn, L

n ⊗ E∞)]([H]n−1 − [H]n) + [E0][H]n

= [(E0, pn, L
n ⊗ E∞)][H]n

= [(E0, fn, E
∞)]

= [(E0, f, E∞)]

= [E],

so µν is the identity. On the other hand, to check νµ is the identity of K0(X)[t]/(t−1)([L]t−1), it suffices to check

νµ(tn) = ν([Hn])

= ν([1, z−n, L−n])

= [V2n(1, 1, 1)](t
n−1tn) + [ϵ1]tn

= tn

since [V2n(1, 1, 1)] = 0. This completes the proof.
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4 Murphy’s law in algebraic geometry: Badly-behaved deformation
spaces [V]

4.1 Basic Information
1. Reading time: 2020-Dec

2. Classification: AG

3. Content:

4. Main background: Moduli spaces
The paper considers the question: ”How band can the deformation space of an object be?” The answer seems

to be: ”Unless there is some a priori reason otherwise, the deformation space may be as bad as possible.”
Definition. Define an equivalence relation on pointed schemes generated by: if (X, p) → (Y, q) is a smooth
morphism, then (X, p) ∼ (Y, q). We call the equivalence classes singularity types, and will call pointed schemes
singularities.

We say that Murphy’s law holds for a moduli space if every singularity type of finite type over Z appears on
that moduli space.
Theorem 4.1. The following moduli spaces satisfy Murphy’s law:

1.

2.

3. the Hilbert scheme of nonsingular surfaces in P5, and the Hilbert scheme of surfaces in P4

4.

5.

6.

7.
Let Def denote the versal or Kuranishi deformation space (not the space of first-order deformations).

4.2 Mnëv’s Universality Theorem
We say an incidence scheme of points and lines in P2, a locally closed subscheme of (P2)m×(P2∗)n = {p1, · · · , pm, l1, · · · , ln}
parameterizing m ≥ 4 marked points and n marked lines, s.t.

1. p1 = [1; 0; 0], p2 = [0; 1; 0], p3 = [0; 0; 1], p4 = [1; 1; 1].

2. We are given some specific incidences: For each pair (pi, lj), either pi is required to lie on lj , or pi is required
not to like on lj .

3. The marked points are required to be distinct, and the marked lines are required to be distinct.

4. Given any two marked lines, there is a marked point required to be on both of them.

5. Each marked line contains at least three marked points.
Theorem 4.2 (Mnëv). Every singularity type of finite type over Z appears on some incidence scheme.

We shall fix a singularity type of finite type over Z. Our goal will be to find this singularity type on the spaces
given in Theorem 4.1. By Mnëv’s theorem, there is an incidence scheme exhibiting this singularity type at a certain
configuration {p1, · · · , pm, l1, · · · , ln}. Consider the surface S that is the blow-up of P2 at the points pi. Let C be
the proper transform of the union of the lj , so C is a smooth curve (a union of P1’s). This induces a morphism
from the incidence scheme to the modul space of surfaces with marked smooth divisors.
Proposition 4.3. The morphism is étale at (P2, {pi}, {lj}) 7→ (S,C).
Proof. We will produce an étale-local inverse near (S,C).
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4.3 From Abelian Covers to Murphy’s Law for Surfaces
Let G := (Z/p)3, where p = 2 or 3 is prime to the characteristic of the residue field of the singularity. Let G∨ be
the dual group, or equivalently the group of characters. Let ⟨−,−⟩ : G×G∨ → Z/p be the pairing (after choice of
root of unity ζ), which we extend to ⟨−,−⟩ : G × G∨ → Z by requiring ⟨σ, χ⟩ ∈ {0, · · · , p − 1}. Suppose we have
two maps D : G→ Div(S) and L : G∨ → Pic(S). We say (D,L) satisfies the cover condition if D0 = 0 and

pLχ =
∑
σ

⟨σ, χ⟩Dσ

for all σ, χ where the equality is taken in Pic(S).

Proposition 4.4 (Pardini). Suppose (D,L) satisfies the cover condition and suppose the Dσ are nonsingular
curves, no three meeting in a point, such that if Dσ and Dσ′ meet then they are transverse and σ and σ′ are linearly
independent in G. Then:

1. There is a corresponding G-cover π : S̃ → S with branch divisor D = ∪Dσ.

2. S̃ is nonsingular.

3. π∗OS̃ = ⊕χOS(−Lχ).

4. π∗KS̃ = ⊕χKS(Lχ).

Example 4.1. p = 2. Fix σ0 ̸= 0 in G, and χ0 ∈ G∨. Let A be a sufficiently ample bundle such that A ∼= C (mod 2).
Let Dσ0

= C,D0 = 0, and let Dσ be a general section of A otherwise, such that Dσ′ meets Dσ′′ transversely for all
σ′ ̸= σ′′. Let L0 = 0, Lχ = 2A if ⟨σ0, χ⟩ = 0 and χ ̸= 0, and Lχ = 3A+C

2 if ⟨σ0, χ⟩ = 1. (As Pic(S) is torsion-free,
there is no ambiguity.)

Theorem 4.5. If above A is sufficiently ample, then:

1. KS̃ is ample. In particular, S̃ is of general type, and is its own canonical model.

2. S̃ is regular: q(S̃) := h1(S̃,OS̃) = 0.

Proof. (a)
2KS̃ = π∗

(
2KS +

∑
Dσ

)
= π∗(2KS + c+ qA)

where q = 6 if p = 2 and q = 8 if p = 3. If A is sufficiently ample, then 2KS +
∑
Dσ is ample, hence (as π is finite)

KS̃ is ample.
(b) By Lerry spectral sequence,

h1(S̃,OS̃) = h1(S, π∗OS̃) =
∑
χ

h1(S,L−1
χ ) = 0

using Serre vanishing (for χ ̸= 0) and the regularity of any blow-up of P2 (for χ = 0).

4.4 Relating Deformation Spaces
Lemma 4.1. Let X be a regular variety (h1(X,OX) = 0) with a map X → Pn, such that h1(X,OX(1)). Suppose
either (i) h2(X,OX) = 0 or (ii) OX(1) is a Q multiple of KX . Then Def(X → Pn) → Def(X) is smooth.

Proof. Choose a basis forH0(Pn,O(1)), and let s0, · · · , sn be the restriction of the basis toX. Then Def(X,OX(1); s0, · · · , sn) →
Def(X → Pn) is smooth of relative dimension 1.

Proof of M3. By applying Lemma 4.1 to an embedding S̃ → P5 for n = 5 by a sufficiently positive multiple of KS̃

(using Theorem 4.5 (b)), we see that the Hilbert scheme of nonsingular surfaces in P5 satisfies Murphy’s law.
Using n = 4 instead yields a surface in P4 with singularities in codimension 2
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5 Vector Bundles Over an Elliptic Curve [A]
5.1 Basic Information

1. Reading time: 2020-Mar to

2. Classification: AG

3. Content:

4. Main background: Derived categories, Derived Functors

6 Grothendieck Duality Made Simple [N]
6.1 Basic Information

1. Reading time: 2020-Mar to

2. Classification: AG, Homological Algebra

3. Content:

4. Main background: Derived categories, Derived Functors

We will assume the following:

7 Stable and unitary vector bundles on a compact Riemann surface
[NS]
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